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SYMPLECTIC STOCHASTIC PARTITIONED
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Abstract In this paper, a novel way of constructing symplectic stochastic
partitioned Runge-Kutta methods for stochastic Hamiltonian systems is pre-
sented. First, a new class of continuous-stage stochastic partitioned Runge-
Kutta methods for partitioned stochastic differential equations are proposed.
The order conditions of the continuous-stage stochastic partitioned Runge-
Kutta methods are derived via the stochastic B-series theory. The sym-
plectic conditions of the continuous-stage stochastic partitioned Runge-Kutta
methods when applied to stochastic Hamiltonian systems are analyzed. Then
we prove applying any quadrature formula to a symplectic continuous-stage
stochastic partitioned Runge-Kutta method will result in a classical symplectic
stochastic partitioned Runge-Kutta method. In this way, various symplectic
stochastic partitioned Runge-Kutta methods can be easily constructed by us-
ing different quadrature formulas. A concrete symplectic continuous-stage
stochastic partitioned Runge-Kutta method of order 1 is constructed and two
retrieved stochastic partitioned Runge-Kutta methods are obtained. Numer-
ical experiments are presented to verify the theoretical results and show the
effectiveness of the derived methods.
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Runge-Kutta methods, continuous-stage, stochastic B-series.
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1. Introduction
Stochastic differential equations (SDEs) are widely used to model many dynamical
and social systems [18]. Since most SDEs cannot be solved analytically, the devel-
opment of numerical methods for the approximation of SDEs has become a field of
increasing interest in recent years (see [2, 13,14,19,24] and references therein).

Since many systems possess some important geometrical or physical properties,
numerical integrators that can preserve the intrinsic properties of the original sys-
tems have received much attention recently. In this paper we are concerned with the
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stochastic Hamiltonian system determined by two sufficiently smooth real-valued
functions H(p, q) and H̃(p, q) over the phase space R2d, which is represented by the
following SDEs in the Stratonovich sensedp = −∂H(p,q)

∂q dt− ∂H̃(p,q)
∂q ◦ dW (t), p(0) = p0 ∈ Rd,

dq = ∂H(p,q)
∂p dt+ ∂H̃(p,q)

∂p ◦ dW (t), q(0) = q0 ∈ Rd,
(1.1)

where p, q, ∂H(p,q)
∂p , ∂H(p,q)

∂q , ∂H̃(p,q)
∂p , ∂H̃(p,q)

∂q , p0 and q0 are d-dimensional column
vectors with components pi, qi, ∂H(p,q)

∂pi , ∂H(p,q)
∂qi , ∂H̃(p,q)

∂pi , ∂H̃(p,q)
∂qi , pi0 and qi0 respec-

tively, i = 1, . . . , d. W (t) is a standard 1-dimensional Wiener process. Stochastic
Hamiltonian systems are one of the most important classes of dynamical systems.
It is known that the phase flows of (1.1) have the property of preserving symplectic
structure, i.e.,

dp(t) ∧ dq(t) = dp0 ∧ dq0, ∀t ≥ 0, (1.2)

where the differential two-form dp ∧ dq is defined by

dp ∧ dq = dp1 ∧ dq1 + dp2 ∧ dq2 + . . .+ dpd ∧ dqd. (1.3)

Naturally, a numerical method is called symplectic if the condition

dpn+1 ∧ dqn+1 = dpn ∧ dqn, n = 0, 1, . . . , (1.4)

holds, where (pn, qn) is the approximation of (p(t), q(t)) at t = nh.
Many excellent results on deterministic symplectic numerical methods have been

derived during the last four decades (e.g., [7–9, 11, 26–30, 34]). Recently, stochastic
symplectic methods have also received some attention. Milstein [20] constructs some
symplectic methods for stochastic Hamiltonian system with multiplicative noise by
using the technique of truncated Brownian motion increments. Misawa [21] de-
rives symplectic integrators from composition methods for stochastic Hamiltonian
systems. Wang [32] proposes symplectic methods by computing an approximate
stochastic generating function. Ma [16, 17] studies symplectic stochastic Runge-
Kutta methods and symplectic stochastic partitioned Runge-Kutta methods for
stochastic Hamiltonian systems with multiplicative noise. Wang constructs sym-
plectic Runge-Kutta methods for three types of stochastic Hamiltonian systems
in [33]. Han [12] derives high-order stochastic symplectic partitioned Runge-Kutta
methods for stochastic Hamiltonian systems with additive noise. Continuous-stage
Runge-Kutta methods were firstly presented by Butcher in 1970s [5], and then they
have been considered e.g. in [10,22,31] and more recently also for stochastic differ-
ential equations [35].

In this work, we aim to find a new and efficient way to construct symplectic
stochastic partitioned Runge-Kutta methods for solving (1.1). The rest of the paper
is organized as follows. In Section 2, we present the continuous-stage stochastic
partitioned Runge-Kutta (CSSPRK) methods for general partitioned SDEs with R
partitions and M noises. Based on the stochastic B-series theory, we derive the
order conditions. In Section 3, we apply the CSSPRK methods to the stochastic
Hamiltonian system (1.1) to obtain the symplectic conditions, furthermore, we prove
the classical stochastic partitioned Runge-Kutta (SPRK) methods retrieved from
the CSSPRK methods with any quadrature formula are symplectic provided the
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CSSPRK methods are symplectic. In Section 4, we construct a concrete symplectic
CSSPRK method of order 1 and derive the corresponding classical SPRK methods
by means of some quadrature formulas. Numerical experiments are presented in
Section 5 to report our theoretical results.

2. CSSPRK methods and order conditions
For the partitioned SDEs with R partitions and M noises in the Stratonovich sense

dX(r)(t) =
M∑

m=0
g
(r)
m (X(1)(t), X(2)(t), . . . , X(R)(t)) ∗ dWm(t), t ∈ [0, T ],

X(r)(0) = x
(r)
0 , r = 1, . . . , R,

(2.1)

where the deterministic terms are represented by m = 0 and the stochastic terms
are represented by m = 1, . . . ,M . ∗dW0(t) = dt and ∗dWm(t) = ◦dWm(t) for
m = 1, . . . ,M . Wm(t) (m = 1, . . . ,M) are 1-dimensional and pairwise independent
Wiener processes defined on a complete filtered probability space (Ω,F ,P, {F}t⩾0)
fulfilling the usual conditions. The coefficients g(r)m : Rd1× . . .×RdR → Rdr are suffi-
ciently smooth and satisfy the conditions such that the solution of (2.1) uniquely ex-
ists. Denote the initial values vector by x0 = (x

(1)
0 , . . . , x

(R)
0 ), which is independent

of the σ-algebra generated by the underlying Wiener process with E∥x0∥2 < ∞.
For an equidistant discretization of the interval [0, T ] with a fixed step size h > 0,

we denote the numerical approximation of X(r) at tn = nh by Y
(r)
n . Now we define

the CSSPRK method for solving (2.1) as following

Y
(r)
ε = Y

(r)
n +

M∑
m=0

∫ 1

0
Z

(r,m)
ε,σ g

(r)
m (Y

(1)
σ , . . . , Y

(R)
σ )dσ, r = 1, . . . , R,

Y
(r)
n+1 = Y

(r)
n +

M∑
m=0

∫ 1

0
z
(r,m)
ε g

(r)
m (Y

(1)
ε , . . . , Y

(R)
ε )dε, r = 1, . . . , R,

(2.2)

where Z
(r,m)
ε,σ is a function of two variables ε, σ ∈ [0, 1], z

(r,m)
ε is a function of

ε ∈ [0, 1], the random variables are included in the coefficients Z
(r,m)
ε,σ and z

(r,m)
ε,σ .

Before discussing order conditions of the proposed CSSPRK method (2.2), we
first recall some theories about stochastic B-series and rooted trees. The B-series
theory for ordinary differential equations was introduced in [4], and B-series for
stochastic case were developed in [1–3,6, 15,25].

Definition 2.1 ( [1]). The set of shaped, rooted trees

T = T1 ∪ T2 ∪ · · · ∪ TR

where
Tr = {∅r} ∪ Tr,0 ∪ Tr,1 ∪ · · · ∪ Tr,M

for r = 1, . . . , R is recursively defined by
(I) •r,m belongs to Tr,m representing one vertex of shape r and color m;
(II) If τ1, . . . , τκ ∈ T\{∅0, . . . , ∅R}, then [τ1, . . . , τκ]r,m ∈ Tr,m denotes the tree by
grafting the roots of τ1, . . . , τκ to a new vertex of shape r and color m.
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Definition 2.2 ( [1]). For a tree τ ∈ T , the elementary differential is a mapping
F (τ) : Rd1 × · · · × RdR → Rdr defined recursively by
(I) F (∅r)(x0) = x

(r)
0 , ∅r ∈ Tr,

(II) F (•r,m)(x0) = g
(r)
m (x0),

(III) If τ = [τ1, . . . , τκ]r,m ∈ Tr,m, then

F (τ)(x0) = (Dr1...rκg
(r)
m )(x0)(F (τ1)(x0), . . . , F (τκ)(x0)),

where rk is the shape of τk, k = 1, . . . , κ, and Dr1...rκ = ∂κ

∂x(r1)...∂x(rκ) is the deriva-
tive operator of order κ.

Lemma 2.1 ( [1]). If Y (r)(h) is a B-series B(r)(φ, x0;h) as

Y (r)(h) = B(r)(φ, x0;h) =
∑
τ∈Tr

α(τ) · φ(τ)(h) · F (τ)(x0),

for r = 1, . . . , R, where α(τ) is defined by

α(∅r) = 1, α(•r,m) = 1, α([τ1, . . . , τκ]r,m) =
1

µ1!µ2! · · ·

κ∏
k=1

α(τk),

here µ1, µ2, . . . count equal trees among τ1, . . . , τκ. Then g
(r)
m (Y (1)(h), . . . , Y (R)(h))

can be represented as a formal series of the form

g(r)m (Y (1)(h), . . . , Y (R)(h)) =
∑

τ∈Tr,m

α(τ) · φ′
r,m(τ)(h) · F (τ)(x0),

for r = 1, . . . , R, m = 0, . . . ,M , where

φ′
r,m(τ)(h) =


1, if τ = •r,m,
κ∏

k=1

φ(τk)(h), if τ = [τ1, . . . , τκ]r,m ∈ Tr,m.

Lemma 2.2 ( [1]). The exact solution X(r)(t0 + h) of (2.1) can be written as a
B-series B(r)(ϕ, x0;h)

X(r)(t0 + h) = B(r)(ϕ, x0;h) =
∑
τ∈Tr

α(τ) · ϕ(τ)(h) · F (τ)(x0),

with
ϕ(∅r)(h) = 1, ϕ(•r,m)(h) = Wm(h),

ϕ([τ1, . . . , τκ]r,m)(h) =
∫ h

0

κ∏
k=1

ϕ(τk)(s) ∗ dWm(s),

for all [τ1, . . . , τκ]r,m ∈ Tr,m, r = 1, . . . , R, m = 0, . . . ,M .

Now we put forward to the first main result of our work.

Theorem 2.1. The continuous-stage values Y
(r)
ε and the numerical solution Y

(r)
1

can be written in the form of B-series

Y
(r)
ε = B(r)(Ψε, x0;h) =

∑
τ∈Tr

α(τ) ·Ψε(τ)(h) · F (τ)(x0),

Y
(r)
1 = B(r)(Φ, x0;h) =

∑
τ∈Tr

α(τ) · Φ(τ)(h) · F (τ)(x0),
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for r = 1, . . . , R, with

Ψε(∅r)(h) = 1, Ψε(•r,m)(h) =
∫ 1

0
Z

(r,m)
ε,σ dσ,

Ψε([τ1, . . . , τκ]r,m)(h) =
∫ 1

0
Z

(r,m)
ε,σ

κ∏
k=1

Ψσ(τk)(h)dσ,
(2.3)

and
Φ(∅r)(h) = 1, Φ(•r,m)(h) =

∫ 1

0
z
(r,m)
ε dε,

Φ([τ1, . . . , τκ]r,m)(h) =
∫ 1

0
z
(r,m)
ε

κ∏
k=1

Ψε(τk)(h)dε,
(2.4)

for all [τ1, . . . , τκ]r,m ∈ Tr,m, r = 1, . . . , R, m = 0, . . . ,M .

Proof. The proof follows the way proving Theorem 2.2 in [1]. Write Y
(r)
ε as

B-series
Y (r)
ε =

∑
τ∈Tr

α(τ) ·Ψε(τ)(h) · F (τ)(x0), r = 1, . . . , R. (2.5)

From Lemma 2.1 and the first equality of (2.2) we get

Y
(r)
ε = x

(r)
0 +

M∑
m=0

∫ 1

0
Z

(r,m)
ε,σ

∑
τ∈Tr,m

α(τ) ·Ψ′
σ,r,m(τ)(h) · F (τ)(x0)dσ

= x
(r)
0 +

M∑
m=0

∑
τ∈Tr,m

α(τ) ·
∫ 1

0
Z

(r,m)
ε,σ Ψ′

σ,r,m(τ)(h)dσ · F (τ)(x0),

(2.6)

where

Ψ′
σ,r,m(τ)(h) =


1, if τ = •r,m,
κ∏

k=1

Ψσ(τk)(h), if τ = [τ1, . . . , τκ]r,m ∈ Tr,m.
(2.7)

Comparing (2.5) with (2.6) term by term, we obtain (2.3).
Similarly, suppose

Y
(r)
1 =

∑
τ∈Tr

α(τ) · Φ(τ)(h) · F (τ)(x0), r = 1, . . . , R. (2.8)

By the second equality of (2.2), Lemma 2.1 and (2.5) we have

Y
(r)
1 = x

(r)
0 +

M∑
m=0

∫ 1

0
z
(r,m)
ε

∑
τ∈Tr,m

α(τ) ·Ψ′
ε,r,m(τ)(h) · F (τ)(x0)dε

= x
(r)
0 +

M∑
m=0

∑
τ∈Tr,m

α(τ) ·
∫ 1

0
z
(r,m)
ε Ψ′

ε,r,m(τ)(h)dε · F (τ)(x0),

(2.9)

where

Ψ′
ε,r,m(τ)(h) =


1, if τ = •r,m,
κ∏

k=1

Ψε(τk)(h), if τ = [τ1, . . . , τκ]r,m ∈ Tr,m,
(2.10)

thus (2.4) follows from comparing (2.8) with (2.9) term by term.
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Definition 2.3. [1, 3] The order of a tree τ ∈ T is defined by

ρ(∅r) = 0, ρ(τ = [τ1, . . . , τκ]r,m) =

κ∑
k=1

ρ(τk) +

1, for m = 0,

1
2 , otherwise.

By comparing the derived B-series of the exact solution and the numerical so-
lution, now we can obtain the order conditions of the proposed CSSPRK method.

Theorem 2.2. The CSSPRK method (2.2) has mean square convergence order P
if

Φ(τ)(h) = ϕ(τ)(h), ∀τ ∈ T with ρ(τ) ≤ P,

EΦ(τ)(h) = Eϕ(τ)(h), ∀τ ∈ T with ρ(τ) = P + 1
2 .

(2.11)

The result (2.11) follows from Lemma 2.2 and Theorem 2.1, see [3] for details.

3. Symplectic CSSPRK methods

3.1. Symplectic conditions

The stochastic Hamiltonian system (1.1) is of the form (2.1) with R = 2, M = 1.
In this section, we will apply the CSSPRK method (2.2) to (1.1) to study the
symplectic conditions. For convenience, we denote f1(p, q) = ∂H(p,q)

∂q , f2(p, q) =
∂H(p,q)

∂p , g1(p, q) = ∂H̃(p,q)
∂q and g2(p, q) = ∂H̃(p,q)

∂p with the components f i
1(p, q) =

∂H(p,q)
∂qi , f i

2(p, q) = ∂H(p,q)
∂pi , gi1(p, q) = ∂H̃(p,q)

∂qi and gi2(p, q) = ∂H̃(p,q)
∂pi , respectively,

i = 1, . . . , d. For a given step size h > 0, with the initial values (P0, Q0) = (p0, q0),
we apply the CSSPRK method (2.2) with Z

(1,0)
ε,σ = hAε,σ, Z

(1,1)
ε,σ = ∆W (h)Bε,σ,

Z
(2,0)
ε,σ = hÃε,σ, Z(2,1)

ε,σ = ∆W (h)B̃ε,σ, z(1,0)ε = hCε, z(1,1)ε = ∆W (h)Dε, z(2,0)ε = hC̃ε

and z
(2,1)
ε = ∆W (h)D̃ε to (1.1) to derive the following iterative scheme

pε = Pn − h

∫ 1

0

Aε,σf1(pσ, qσ)dσ −∆W (h)

∫ 1

0

Bε,σg1(pσ, qσ)dσ, (3.1a)

qε = Qn + h

∫ 1

0

Ãε,σf2(pσ, qσ)dσ +∆W (h)

∫ 1

0

B̃ε,σg2(pσ, qσ)dσ, (3.1b)

Pn+1 = Pn − h

∫ 1

0

Cεf1(pε, qε)dε−∆W (h)

∫ 1

0

Dεg1(pε, qε)dε, (3.1c)

Qn+1 = Qn + h

∫ 1

0

C̃εf2(pε, qε)dε+∆W (h)

∫ 1

0

D̃εg2(pε, qε)dε, (3.1d)

where ∆W (h) = W (tn+1)−W (tn) are independent Gaussian random variables with
N(0, h) distribution. Now we propose the symplectic conditions results.

Theorem 3.1. The scheme (3.1) preserves the symplectic structure of (1.1), i.e.,
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dPn+1 ∧ dQn+1 = dPn ∧ dQn, if the coefficients satisfy the following conditions

CεÃε,σ + C̃σAσ,ε = CεC̃σ,

DεÃε,σ + C̃σBσ,ε = DεC̃σ,

CεB̃ε,σ + D̃σAσ,ε = CεD̃σ,

DεB̃ε,σ + D̃σBσ,ε = DεD̃σ,

Cε = C̃ε, Dε = D̃ε.

(3.2)

Proof. For simplifying notations, we denote f1(pε, qε) = f1,ε, f1(pσ, qσ) = f1,σ,
f2(pε, qε) = f2,ε, f2(pσ, qσ) = f2,σ, g1(pε, qε) = g1,ε, g1(pσ, qσ) = g1,σ, g2(pε, qε) =
g2,ε, g2(pσ, qσ) = g2,σ. Differentiating on both sides of (3.1c) and (3.1d) with respect
to Pn and Qn yields

dPn+1 = dPn − h
∫ 1

0
Cεdf1,εdε−∆W (h)

∫ 1

0
Dεdg1,εdε,

dQn+1 = dQn + h
∫ 1

0
C̃εdf2,εdε+∆W (h)

∫ 1

0
D̃εdg2,εdε,

(3.3)

where

df1,ε =
∂f1,ε
∂Pn

dPn +
∂f1,ε
∂Qn

dQn, dg1,ε =
∂g1,ε
∂Pn

dPn +
∂g1,ε
∂Qn

dQn,

df2,ε =
∂f2,ε
∂Pn

dPn +
∂f2,ε
∂Qn

dQn, dg2,ε =
∂g2,ε
∂Pn

dPn +
∂g2,ε
∂Qn

dQn.

Then according to the properties of wedge product [23], by a straightforward com-
putation, we obtain

dPn+1 ∧ dQn+1 =dPn ∧ dQn + h

∫ 1

0

C̃εdPn ∧ df2,εdε

+∆W (h)

∫ 1

0

D̃εdPn ∧ dg2,εdε− h

∫ 1

0

Cεdf1,ε ∧ dQndε

− h2

∫ 1

0

∫ 1

0

CεC̃σdf1,ε ∧ df2,σdσdε

−∆W (h)h

∫ 1

0

∫ 1

0

CεD̃σdf1,ε ∧ dg2,σdσdε (3.4)

−∆W (h)

∫ 1

0

Dεdg1,ε ∧ dQndε

−∆W (h)h

∫ 1

0

∫ 1

0

DεC̃σdg1,ε ∧ df2,σdσdε

−∆W 2(h)

∫ 1

0

∫ 1

0

DεD̃σdg1,ε ∧ dg2,σdσdε.

Differentiating on both sides of (3.1a) and (3.1b) with respect to Pn and Qn yields

dpε = dPn − h
∫ 1

0
Aε,σdf1,σdσ −∆W (h)

∫ 1

0
Bε,σdg1,σdσ,

dqε = dQn + h
∫ 1

0
Ãε,σdf2,σdσ +∆W (h)

∫ 1

0
B̃ε,σdg2,σdσ,
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then there are

dPn ∧ df2,ε = dpε ∧ df2,ε + h
∫ 1

0
Aε,σdf1,σ ∧ df2,εdσ

+∆W (h)
∫ 1

0
Bε,σdg1,σ ∧ df2,εdσ,

dPn ∧ dg2,ε = dpε ∧ dg2,ε + h
∫ 1

0
Aε,σdf1,σ ∧ dg2,εdσ

+∆W (h)
∫ 1

0
Bε,σdg1,σ ∧ dg2,εdσ,

df1,ε ∧ dQn = df1,ε ∧ dqε − h
∫ 1

0
Ãε,σdf1,ε ∧ df2,σdσ

−∆W (h)
∫ 1

0
B̃ε,σdf1,ε ∧ dg2,σdσ,

dg1,ε ∧ dQn = dg1,ε ∧ dqε − h
∫ 1

0
Ãε,σdg1,ε ∧ df2,σdσ

−∆W (h)
∫ 1

0
B̃ε,σdg1,ε ∧ dg2,σdσ.

(3.5)

Inserting (3.5) into (3.4), we get

dPn+1 ∧ dQn+1

=dPn ∧ dQn + h

∫ 1

0

C̃εdpε ∧ df2,εdε+ h2

∫ 1

0

C̃ε

∫ 1

0

Aε,σdf1,σ ∧ df2,εdσdε

+∆W (h)h

∫ 1

0

C̃ε

∫ 1

0

Bε,σdg1,σ ∧ df2,εdσdε+∆W (h)

∫ 1

0

D̃εdpε ∧ dg2,εdε

+∆W (h)h

∫ 1

0

D̃ε

∫ 1

0

Aε,σdf1,σ ∧ dg2,εdσdε

+∆W 2(h)

∫ 1

0

D̃ε

∫ 1

0

Bε,σdg1,σ ∧ dg2,εdσdε

− h

∫ 1

0

Cεdf1,ε ∧ dqεdε+ h2

∫ 1

0

Cε

∫ 1

0

Ãε,σdf1,ε ∧ df2,σdσdε (3.6)

+∆W (h)h

∫ 1

0

Cε

∫ 1

0

B̃ε,σdf1,ε ∧ dg2,σdσdε− h2

∫ 1

0

∫ 1

0

CεC̃σdf1,ε ∧ df2,σdσdε

−∆W (h)h

∫ 1

0

∫ 1

0

CεD̃σdf1,ε ∧ dg2,σdσdε−∆W (h)

∫ 1

0

Dεdg1,ε ∧ dqεdε

+∆W (h)h

∫ 1

0

Dε

∫ 1

0

Ãε,σdg1,ε ∧ df2,σdσdε

+∆W 2(h)

∫ 1

0

Dε

∫ 1

0

B̃ε,σdg1,ε ∧ dg2,σdσdε

−∆W (h)h

∫ 1

0

∫ 1

0

DεC̃σdg1,ε ∧ df2,σdσdε

−∆W 2(h)

∫ 1

0

∫ 1

0

DεD̃σdg1,ε ∧ dg2,σdσdε.

Substituting the conditions Cε = C̃ε, Dε = D̃ε in (3.2) into (3.6), we deduce that

dPn+1 ∧ dQn+1

=dPn ∧ dQn + h

∫ 1

0

Cε(dpε ∧ df2,ε − df1,ε ∧ dqε)dε
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+∆W (h)

∫ 1

0

Dε(dpε ∧ dg2,ε − dg1,ε ∧ dqε)dε

+ h2

∫ 1

0

∫ 1

0

(CεÃε,σ + C̃σAσ,ε − CεC̃σ)df1,ε ∧ df2,σdσdε (3.7)

+∆W (h)h

∫ 1

0

∫ 1

0

(DεÃε,σ + C̃σBσ,ε −DεC̃σ)dg1,ε ∧ df2,σdσdε

+∆W (h)h

∫ 1

0

∫ 1

0

(CεB̃ε,σ + D̃σAσ,ε − CεD̃σ)df1,ε ∧ dg2,σdσdε

+∆W 2(h)

∫ 1

0

∫ 1

0

(DεB̃ε,σ + D̃σBσ,ε −DεD̃σ)dg1,ε ∧ dg2,σdσdε,

where we have used the equality∫ 1

0

C̃ε

∫ 1

0

Aε,σdf1,σ ∧ df2,εdσdε =

∫ 1

0

∫ 1

0

C̃σAσ,εdf1,ε ∧ df2,σdσdε,

and other similar equalities in the derivation of (3.7).
By (1.3) we have

dpε ∧ df2,ε − df1,ε ∧ dqε

=

d∑
k=1

(dpkε ∧ dfk
2,ε − dfk

1,ε ∧ dqkε )

=

d∑
k=1

[dpkε ∧ (

d∑
j=1

∂fk
2,ε

∂pjε
dpjε +

d∑
j=1

∂fk
2,ε

∂qjε
dqjε)

− (

d∑
j=1

∂fk
1,ε

∂pjε
dpjε +

d∑
j=1

∂fk
1,ε

∂qjε
dqjε) ∧ dqkε ] (3.8)

=

d∑
k,j=1

∂fk
2,ε

∂pjε
dpkε ∧ dpjε +

d∑
k,j=1

(
∂fk

2,ε

∂qjε
dpkε ∧ dqjε −

∂fk
1,ε

∂pjε
dpjε ∧ dqkε )

−
d∑

k,j=1

∂fk
1,ε

∂qjε
dqjε ∧ dqkε

=
∑
k<j

(
∂fk

2,ε

∂pjε
−

∂f j
2,ε

∂pkε
)dpkε ∧ dpjε +

d∑
k,j=1

(
∂fk

2,ε

∂qjε
−

∂f j
1,ε

∂pkε
)dpkε ∧ dqjε

−
∑
j<k

(
∂fk

1,ε

∂qjε
−

∂f j
1,ε

∂qkε
)dqjε ∧ dqkε .

It follows from the sufficiently smooth property of H(p, q) that

∂fk
2,ε

∂qjε
−

∂f j
1,ε

∂pkε
=

∂

∂qjε

(
∂H(pε, qε)

∂pkε

)
− ∂

∂pkε

(
∂H(pε, qε)

∂qjε

)
=

∂2H(pε, qε)

∂qjε∂pkε
− ∂2H(pε, qε)

∂pkε∂q
j
ε

= 0, k, j = 1, . . . , d.

(3.9)
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Similarly, we can easily check

∂fk
2,ε

∂pjε
−

∂f j
2,ε

∂pkε
= 0,

∂fk
1,ε

∂qjε
−

∂f j
1,ε

∂qkε
= 0, k, j = 1, . . . , d. (3.10)

Inserting (3.9) and (3.10) into (3.8), we obtain

dpε ∧ df2,ε − df1,ε ∧ dqε = 0, (3.11)

then in the same way, we can deduce that

dpε ∧ dg2,ε − dg1,ε ∧ dqε = 0. (3.12)

Finally, substituting (3.11), (3.12) and the first four conditions in (3.2) into (3.7),
we derive

dPn+1 ∧ dQn+1 = dPn ∧ dQn,

which completes the proof.

3.2. SPRK methods retrieved from CSSPRK methods
So far, we have constructed the CSSPRK methods, studied the order conditions,
and analyzed the symplectic conditions of the CSSPRK methods when applied to
the stochastic Hamiltonian system (1.1). Notice there are integrals in the proposed
CSSPRK methods, hence the use of numerical quadrature formulas is necessary in
practical implementation.

Applying a quadrature formula denoted by (bi, ci)
s
i=1 to (3.1), we get a classical

SPRK method of s-stage for solving (1.1) by

pi = Pn − h
s∑

j=1

bjAci,cjf1(pj , qj)−∆W (h)
s∑

j=1

bjBci,cjg1(pj , qj), i = 1, . . . , s,

qi = Qn + h
s∑

j=1

bjÃci,cjf2(pj , qj) + ∆W (h)
s∑

j=1

bjB̃ci,cjg2(pj , qj), i = 1, . . . , s,

pn+1 = Pn − h
s∑

i=1

biCcif1(pi, qi)−∆W (h)
s∑

i=1

biDcig1(pi, qi),

qn+1 = Qn + h
s∑

i=1

biC̃cif2(pi, qi) + ∆W (h)
s∑

i=1

biD̃cig2(pi, qi),

(3.13)
where Aci,cj = Aε,σ|ε=ci,σ=cj , Bci,cj = Bε,σ|ε=ci,σ=cj , Ãci,cj = Ãε,σ|ε=ci,σ=cj ,
B̃ci,cj = B̃ε,σ|ε=ci,σ=cj , Cci = Cε|ε=ci , Dci = Dε|ε=ci , C̃ci = C̃ε|ε=ci , D̃ci =

D̃ε|ε=ci .
(3.13) is a classical SPRK method applied to (1.1), which can be denoted by the

following Butcher tableau

(bjAci,cj )s×s (bjBci,cj )s×s (bjÃci,cj )s×s (bjB̃ci,cj )s×s

u v ũ ṽ
, (3.14)

where u = (b1Cc1 , . . . , bsCcs), v = (b1Dc1 , . . . , bsDcs), ũ = (b1C̃c1 , . . . , bsC̃cs), ṽ =
(b1D̃c1 , . . . , bsD̃cs).
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Lemma 3.1 ( [16]). For a SPRK method denoted by the Butcher tableau

(aij)s×s (bij)s×s (ãij)s×s (b̃ij)s×s

α β α̃ β̃
, (3.15)

where α = (α1, . . . , αs), β = (β1, . . . , βs), α̃ = (α̃1, . . . , α̃s), β̃ = (β̃1, . . . , β̃s),
when applied to the stochastic Hamiltonian system (1.1), (3.15) is symplectic if the
coefficients satisfy

αiãij + α̃jaji = αiα̃j , i, j = 1, . . . , s,

βiãij + α̃jbji = βiα̃j , i, j = 1, . . . , s,

αib̃ij + β̃jaji = αiβ̃j , i, j = 1, . . . , s,

βib̃ij + β̃jbji = βiβ̃j , i, j = 1, . . . , s,

αi = α̃i, βi = β̃i, i = 1, . . . , s.

(3.16)

Next we will show the symplectic conditions of (3.13).

Theorem 3.2. If the coefficients of the CSSPRK method (3.1) satisfy the sym-
plectic conditions (3.2), then the SPRK method (3.13) retrieved from (3.1) and the
quadrature formula (bi, ci)

s
i=1 is symplectic for solving the stochastic Hamiltonian

system (1.1).

Proof. Let ε = ci, σ = cj in (3.2), then we have

CciÃci,cj + C̃cjAcj ,ci = CciC̃cj ,

DciÃci,cj + C̃cjBcj ,ci = DciC̃cj ,

CciB̃ci,cj + D̃cjAcj ,ci = CciD̃cj ,

DciB̃ci,cj + D̃cjBcj ,ci = DciD̃cj ,

Cci = C̃ci , Dci = D̃ci .

(3.17)

Multiplying bibj on both sides of the first four equalities in (3.17) and multiplying
bi on both sides of the last two equalities in (3.17) yield

(biCci)(bjÃci,cj ) + (bjC̃cj )(biAcj ,ci) = (biCci)(bjC̃cj ), i, j = 1, . . . , s,

(biDci)(bjÃci,cj ) + (bjC̃cj )(biBcj ,ci) = (biDci)(bjC̃cj ), i, j = 1, . . . , s,

(biCci)(bjB̃ci,cj ) + (bjD̃cj )(biAcj ,ci) = (biCci)(bjD̃cj ), i, j = 1, . . . , s,

(biDci)(bjB̃ci,cj ) + (bjD̃cj )(biBcj ,ci) = (biDci)(bjD̃cj ), i, j = 1, . . . , s,

biCci = biC̃ci , biDci = biD̃ci , i = 1, . . . , s,

(3.18)

which are exactly the symplectic conditions of the SPRK method (3.13) according
to Lemma 3.1. The proof is completed.
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Theorem 3.2 reveals the SPRK methods retrieved from the CSSPRK methods
will always be symplectic if the CSSPRK methods are symplectic, no matter what
quadrature formulas are chosen. It implies that we can construct various symplectic
SPRK methods by choosing different quadrature formulas based on one CSSPRK
method, which is a new and cheap way to derive symplectic SPRK methods.

4. Construction of a symplectic CSSPRK method
and two symplectic SPRK methods

In this section, we will construct a concrete symplectic CSSPRK method (3.1) for
solving (1.1) according to the symplectic conditions derived in Section 3, then get
the corresponding SPRK methods by using some quadrature formulas. Since the
convergence order 1.5 for Runge-Kutta types schemes can not be surpassed if just
the increment ∆W (h) of the Wiener process is used [2], in view of the form of (3.1),
here we only focus on constructing a symplectic CSSPRK method of order 1.

By Theorem 2.2, (3.1) has order 1 if the two conditions

Φ(τ)(h) = ϕ(τ)(h), ∀τ ∈ T with ρ(τ) ≤ 1,

EΦ(τ)(h) = Eϕ(τ)(h), ∀τ ∈ T with ρ(τ) = 1.5,
(4.1)

hold. Notice the second condition in (4.1) is always true, since τ with ρ(τ) = 1.5
must have an odd number of stochastic nodes so that the expectations will be 0. We
list all the trees with ρ(τ) ≤ 1 in Table 1, where we use •r,0 to denote a deterministic
node in partition r, and •r,1 to denote a stochastic node in partition r for r = 1, 2.
According to the first condition in (4.1), we get the following equations

∫ 1

0

Dεdε = 1,

∫ 1

0

D̃εdε = 1,∫ 1

0

Cεdε = 1,

∫ 1

0

C̃εdε = 1,∫ 1

0

Dε(

∫ 1

0

B̃ε,σdσ)dε =
1

2
,∫ 1

0

D̃ε(

∫ 1

0

Bε,σdσ)dε =
1

2
,∫ 1

0

Dε(

∫ 1

0

Bε,σdσ)dε =
1

2
,∫ 1

0

D̃ε(

∫ 1

0

B̃ε,σdσ)dε =
1

2
.

(4.2)
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Table 1. Trees with order ρ(τ) ≤ 1 and corresponding functions
No. τ ρ(τ) ϕ(τ) Φ(τ)

1 1, 1 0.5 ∆W (h) ∆W (h)
∫ 1

0
Dεdε

2 2, 1 0.5 ∆W (h) ∆W (h)
∫ 1

0
D̃εdε

3 1, 0 1 h h
∫ 1

0
Cεdε

4 2, 0 1 h h
∫ 1

0
C̃εdε

5
1, 1
2, 1 1

∆W 2(h)

2
∆W 2(h)

∫ 1

0
Dε

∫ 1

0
B̃ε,σdσdε

6
2, 1
1, 1 1

∆W 2(h)

2
∆W 2(h)

∫ 1

0
D̃ε

∫ 1

0
Bε,σdσdε

7
1, 1
1, 1 1

∆W 2(h)

2
∆W 2(h)

∫ 1

0
Dε

∫ 1

0
Bε,σdσdε

8
2, 1
2, 1 1

∆W 2(h)

2
∆W 2(h)

∫ 1

0
D̃ε

∫ 1

0
B̃ε,σdσdε

The symplectic conditions for (3.1) are derived in Theorem 3.1 as

CεÃε,σ + C̃σAσ,ε = CεC̃σ,

DεÃε,σ + C̃σBσ,ε = DεC̃σ,

CεB̃ε,σ + D̃σAσ,ε = CεD̃σ,

DεB̃ε,σ + D̃σBσ,ε = DεD̃σ,

Cε = C̃ε, Dε = D̃ε.

(4.3)

Now we solve the equations (4.2)-(4.3). For simplifying conditions, we set

Dε = D̃ε = 1, Cε = C̃ε = 2ε, (4.4)

then the equations (4.2)-(4.3) reduce to∫ 1

0

∫ 1

0

Bε,σdσdε =
1

2
,

2εÃε,σ + 2σAσ,ε = 4εσ,

Ãε,σ + 2σBσ,ε = 2σ, (4.5)
2εB̃ε,σ +Aσ,ε = 2ε,

B̃ε,σ +Bσ,ε = 1.

By solving (4.5), we get a solution

Aε,σ = 4εσ2, Bε,σ = 2εσ, Ãε,σ = 2σ(1− 2εσ), B̃ε,σ = 1− 2εσ. (4.6)
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Notice there are many solutions satisfying (4.2)-(4.3), while here we just take the
solution (4.4) with (4.6) as an example. Inserting (4.4) and (4.6) into (3.1), we
obtain a symplectic CSSPRK method with order 1 for solving (1.1) as following

pε = Pn − h
∫ 1

0
4εσ2f1(pσ, qσ)dσ −∆W (h)

∫ 1

0
2εσg1(pσ, qσ)dσ,

qε = Qn + h
∫ 1

0
2σ(1− 2εσ)f2(pσ, qσ)dσ +∆W (h)

∫ 1

0
(1− 2εσ)g2(pσ, qσ)dσ,

Pn+1 = Pn − h
∫ 1

0
2εf1(pε, qε)dε−∆W (h)

∫ 1

0
g1(pε, qε)dε,

Qn+1 = Qn + h
∫ 1

0
2εf2(pε, qε)dε+∆W (h)

∫ 1

0
g2(pε, qε)dε.

(4.7)

By applying different quadrature formulas to (4.7), we will derive different sym-
plectic SPRK methods. Next we demonstrate the order results of the retrieved
SPRK methods.

Theorem 4.1. Assume the coefficients of the CSSPRK method (3.1) satisfy (4.4)
and (4.6), then the SPRK method (3.13) retrieved from (3.1) with the quadrature
formula (bi, ci)

s
i=1 has convergence order 1 as long as the quadrature formula has

order p̂ ≥ 2.

Proof. Since Dε = D̃ε = 1 are constants, Cε = C̃ε = 2ε are polynomials of degree
1, Bε,σ = 2εσ and B̃ε,σ = 1 − 2εσ are bivariate polynomials of degree 1 in ε and
degree 1 in σ in (4.4) and (4.6), applying the quadrature formula (bi, ci)

s
i=1 of order

p̂ ≥ 2 to the integrals in (4.2) yields
s∑

i=1

biDci =
∫ 1

0
Dεdε = 1,

s∑
i=1

biD̃ci =
∫ 1

0
D̃εdε = 1,

s∑
i=1

biCci =
∫ 1

0
Cεdε = 1,

s∑
i=1

biC̃ci =
∫ 1

0
C̃εdε = 1,

s∑
i=1

s∑
j=1

(biDci)(bjB̃ci,cj ) =
∫ 1

0
Dε(

∫ 1

0
B̃ε,σdσ)dε =

1

2
,

s∑
i=1

s∑
j=1

(biD̃ci)(bjBci,cj ) =
∫ 1

0
D̃ε(

∫ 1

0
Bε,σdσ)dε =

1

2
,

s∑
i=1

s∑
j=1

(biDci)(bjBci,cj ) =
∫ 1

0
Dε(

∫ 1

0
Bε,σdσ)dε =

1

2
,

s∑
i=1

s∑
j=1

(biD̃ci)(bjB̃ci,cj ) =
∫ 1

0
D̃ε(

∫ 1

0
B̃ε,σdσ)dε =

1

2
,

(4.8)

which are the conditions of convergence order 1 for (3.13) according to [16]. The
proof is completed.

Now we construct two SPRK methods by applying two different quadrature
formulas of order p̂ ≥ 2 to (4.7) respectively. First, we use Gauss quadrature
formula (bi, ci)

2
i=1 with (b1, b2) = ( 12 ,

1
2 ) and (c1, c2) = ( 12 −

√
3
6 , 1

2 +
√
3
6 ) to get a

2-stage SPRK method denoted by the following Butcher tableau

1
2 − 5

√
3

18
1
6 +

√
3

18
1
3 −

√
3
6

1
6

√
3
9

1
3 +

√
3
9

1
6 +

√
3
6

1
3

1
6 −

√
3

18
1
2 + 5

√
3

18
1
6

1
3 +

√
3
6

1
3 −

√
3
9 −

√
3
9

1
3

1
6 −

√
3
6

1
2 −

√
3
6

1
2 +

√
3
6

1
2

1
2

1
2 −

√
3
6

1
2 +

√
3
6

1
2

1
2

(4.9)
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Second, we choose a quadrature formula (bi, ci)
3
i=1 with (b1, b2, b3) = ( 16 ,

2
3 ,

1
6 ) and

(c1, c2, c3) = (0, 1
2 , 1) to get the following 3-stage SPRK method denoted by the

Butcher tableau

0 0 0 0 0 0 0 2
3

1
3

1
6

2
3

1
6

0 1
3

1
3 0 1

3
1
6 0 1

3 0 1
6

1
3 0

0 2
3

2
3 0 2

3
1
3 0 0 − 1

3
1
6 0 − 1

6

0 2
3

1
3

1
6

2
3

1
6 0 2

3
1
3

1
6

2
3

1
6

. (4.10)

Due to Theorem 3.2 and Theorem 4.1, the SPRK methods (4.9) and (4.10) are
symplectic and have convergence order 1 for solving (1.1), which will be verified in
the next section.

5. Numerical examples
In this section, the symplectic SPRK methods (4.9) and (4.10) retrieved from the
symplectic CSSPRK method (4.7) will be applied to solving three stochastic Hamil-
tonian systems to verify the convergence order results and show the superiority of
symplectic SPRK methods. For convenience, we denote the 2-stage symplectic
SPRK method (4.9) by SPRK-2 and the 3-stage symplectic SPRK method (4.10)
by SPRK-3.

Example 5.1. Consider the Kubo stochastic oscillatordp(t) = −aq(t)dt− bq(t) ◦ dW (t), t ∈ [0, T ],

dq(t) = ap(t)dt+ bp(t) ◦ dW (t), t ∈ [0, T ].
(5.1)

(5.1) is a stochastic Hamiltonian system (1.1) with H(p, q) =
a(p2 + q2)

2
, H̃(p, q) =

b(p2 + q2)

2
. This example is often used to demonstrate the convergence order of a

numerical method. Compared to those equations whose exact solutions cannot be
expressed explicitly, (5.1) has the following explicit exact solution

p(t) = p0 cos(at+ bW (t))− q0 sin(at+ bW (t)),

q(t) = p0 sin(at+ bW (t)) + q0 cos(at+ bW (t)),

where p0 = p(0), q0 = q(0) are initial values, so that the derived convergence order
results are more convincing.

We employ SPRK-2 and SPRK-3 to solve (5.1). Choose the initial values
p0 = 0.5, q0 = 0 and the coefficients a = 1, b = 0.5. Figure 1 demonstrates
the convergence rates of SPRK-2 and SPRK-3 for solving (5.1), where we use 1000
independent sample paths, and for each path, SPRK-2 and SPRK-3 are imple-
mented with five different step sizes: h = 2−5, 2−6, 2−7, 2−8, 2−9, respectively.
We calculate the sample errors at the terminal T = 1 by( 1000∑

i=1

√
|p(1, ωi)− pN (ωi)|2 + |q(1, ωi)− qN (ωi)|2

)
/1000,
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and show the results in a log-log plot in Figure 1. By comparing with the reference
line with slope 1, we see SPRK-2 and SPRK-3 are of convergence order 1, which
coincides with Theorem 4.1.
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Figure 1. The convergence rates of SPRK-2 and SPRK-3 for solving (5.1). Left: SPRK-2; Right:
SPRK-3.

For illustrating the superiority of symplectic SPRK methods, in the next two
examples, we introduce a common non-symplectic SPRK method (denoted by NS-
SPRK for short) as

0 1 0.5 0.5

1 1 1 1
, (5.2)

and make a comparison.

Example 5.2. The stochastic Kepler problem

Consider the stochastic Kepler problem

d


p1

p2

q1

q2

 =



− q1

(q21 + q22)
3
2

− q2

(q21 + q22)
3
2

p1

p2


(dt+ β ◦ dWt),

p1(0) = p10, p2(0) = p20, q1(0) = q10, q2(0) = q20,

(5.3)

where β denotes the noise intensity. The system (5.3) possesses a quadratic invariant
I(p1, p2, q1, q2) = q1p2 − q2p1 representing the angular momentum.

We choose the initial values p10 = 0, p20 =
√

1+e
1−e , q10 = 1 − e, q20 = 0 with

e = 0.3, and the noise intensity β = 0.1. Figure 2 reports the numerical solutions
with respect to (q1, q2) of a sample phase trajectory of (5.3) simulated by SPRK-2,
SPRK-3 and NS-SPRK on the interval [0, 200] with step size h = 0.1, respectively,
from which we find the numerical solution of NS-SPRK spirals outward while the
numerical solutions of SPRK-2 and SPRK-3 could better simulate the behaviour
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of the exact solution. Figure 3 exhibits the errors |I(pn, qn) − I(p0, q0)| of SPRK-
2, SPRK-3 and NS-SPRK on the interval [0, 200] with step size h = 0.1. It is
shown the symplectic SPRK methods SPRK-2 and SPRK-3 can preserve this kind
of quadratic invariants very well while NS-SPRK cannot.
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Figure 2. Numerical solutions with respect to (q1, q2) of (5.3) computed by the three numerical methods
with h = 0.1. Left: SPRK-2; Middle: SPRK-3; Right: NS-SPRK.
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Figure 3. Errors in the angular momentum computed by the three numerical methods for the system
(5.3) with h = 0.1. Left: SPRK-2; Middle: SPRK-3; Right: NS-SPRK.

Example 5.3. We consider the mathematical pendulum problem [11] with the
additive noise, which is given by

dp(t) = − sin q(t)dt+ σ ◦ dW (t), p(0) = p0,

dq(t) = p(t)dt, q(0) = q0.
(5.4)

It is easy to check that (5.4) is a stochastic Hamiltonian system (1.1) with
H(p, q) = 1

2p
2 − cos q, H̃(p, q) = −σq. The Hamiltonian H(p, q) = 1

2p
2 − cos q has

a linear growth moment, that is,

E(H(p(t), q(t))) = E(H(p0, q0)) +
1

2
σ2t, (5.5)

where (p(t), q(t)) is the exact solution of (5.4).
We apply SPRK-2, SPRK-3 and NS-SPRK to (5.4) to test the abilities of the

three numerical methods in keeping the property (5.5). Choose the step size h = 0.1,
the initial values p0 = 1, q0 = 0 and the coefficient σ = 0.1. Figure 4 reports the
moments computed by SPRK-2, SPRK-3 and NS-SPRK on the interval [0, 100],
where we choose 1000 independent sample paths to simulate E(H(pn, qn)). It turns
out that SPRK-2 and SPRK-3 show good behaviour in keeping the linear growth
of the moment while NS-SPRK doesn’t keep the property.
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Figure 4. Moments computed by the three numerical methods for the system (5.4) with h = 0.1. Left:
SPRK-2; Middle: SPRK-3; Right: NS-SPRK.

The three examples above report that symplectic SPRK methods can preserve
some qualities of the original stochastic Hamiltonian systems while common non-
symplectic methods cannot, so symplectic SPRK methods could better simulate
the original stochastic Hamiltonian systems, which also shows the importance of
constructing symplectic SPRK methods.

6. Conclusions
In this paper, we present a novel way of constructing symplectic SPRK methods for
stochastic Hamiltonian systems. First, we propose CSSPRK methods for general
partitioned SDEs. Based on the stochastic B-series theory, we derive the order con-
ditions. Then we apply the CSSPRK methods to stochastic Hamiltonian systems to
obtain the symplectic conditions. Moreover, we prove the classical SPRK methods
retrieved from the symplectic CSSPRK methods with any quadrature formula are
still symplectic, which means various symplectic SPRK methods could be easily
constructed by use of different quadrature formulas. As an example, a concrete
symplectic CSSPRK method with order 1 and two retrieved classical SPRK meth-
ods are obtained. Finally, numerical experiments are given to verify the theoretical
results.
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