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TRAVELING WAVE SOLUTIONS OF TWO
TYPES OF GENERALIZED BREAKING
SOLITON EQUATIONS*

Li Wei!, Yuqgian Zhou' and Qian Liu?

Abstract In this paper, the bifurcation theory of dynamical system is applied
to study traveling waves of two types of generalized breaking soliton (GBS)
equations which include many famous partial differential equation models.
Without any parameter constraints, we investigate their traveling wave sys-
tems in detail from the geometric point of view. Due to the existence of a two
dimensional invariant manifold, all bounded and unbounded orbits are iden-
tified and studied in different parameter bifurcation sets. Furthermore, by
calculating complicated elliptic integrals along these orbits, we obtain exact
expressions of all possible single wave solutions of two types of GBS equations.
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1. Introduction

In this paper, we consider a (2+1)-dimensional generalized breaking soliton equation
which was proposed in the form [35]

Ut + QUzez + OUgay + CuUy + duvy + ruyv = 0, (L1)

Uy = Vg,

where the subscripts denote partial derivatives, u(z,y,t) and v(z,y, t) are two phys-
ical potentials, x, y and t are three independent variables, a, b, ¢, d, r are real pa-
rameters. Equation (1.1) can be turned into some famous PDE models, for example
the KdV equation (¢ = 6a, d = 4b, r = 2b) and the Bogoyavlensky-Konoplechenko
(BK) equation (¢ = 6a, d = r = 4b) [14,18,19,29,41].

In 2015, Xu applied the singularity analysis to equation (1.1) to derive its in-
tegrable conditions. She pointed out that equation (1.1) passed the Painlevé test
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3ar
under the condition that ¢ = - d = 2r, i.e. the equation

3ar
Ug + AUgry + DUgry + ——Uly + 27UV, + TUz0 = 0,
b (1.2)

Uy = Vg,

is Painlevé integrable. With the binary Bell polynomials, she gave some integrable
properties of equation (1.2), such as bilinear form, N-soliton solution [17], bilin-
ear Backlund transformation, Lax pair and infinite conservation laws [35]. The
completely integrable equation (1.2) attracted people’s great attention. In 2016,
Wazwaz obtained its many types of solutions including multiple soliton solutions,
bell solitary wave solution and some periodic solutions by using the simplified Hirota
method and some solitary wave ansatze methods, such as the tanh method and the
tan method [34]. In the same year, based on the bilinear Backlund transformation
and the multidimensional Riemann theta function, Zhao and Han derived the one
and two periodic wave solutions of equation (1.2) and discussed the dynamical be-
haviors of the quasiperiodic wave solutions [42]. In 2017, according to the truncated
Painlevé expansion and the consistent Riccati expansion method, the nonlocal sym-
metry of equation (1.2) was derived and the interaction solutions between solitons
and cnoidal waves were discussed [5]. Recently, people begin to focus on another
special form of equation (1.1) (¢ = 6a,d = r = 3b). In 2018, by deriving a bilinear
form of it and using the extended homoclinic test theory, Yan et al. constructed its
soliton solutions, homoclinic breather waves and rogue waves solutions [38]. Later,
through appropriate choice of the functions in the bilinear forms, two types of mixed
soliton and rogue wave solutions of it were constructed. Meanwhile, the rogue wave
structures and the interaction characteristics between the soliton and rogue wave
were studied [15,20].

With the transformatiom v = F, and v = F;, equation (1.1) can be turned into

Fot + aFpzpe + 0Fpony + CEpFop + dF  Frpy + 1Fp Fy = 0, (1.3)

which can be regarded as a more generalized model of breaking soliton equation and
includes many well-known partial differential equations. When a = ¢ =0, b = 1,
d = —4 and r = —2, it degenerates to the (2+41)-dimensional breaking soliton
equation

which was first established by Calogero and Degasperis [9,10] in 1977. If a = ¢ = 0,
b=1,d =4 and r = 4, then equation (1.3) becomes another breaking soliton
equation

Fut + Frpay + 4F s Fy + AF, Fyyy = 0, (1.5)

which has been studied by Bogoyavlenskii [10]. Equations (1.4) and (1.5) can be
used to describe the (241)-dimensional interaction of a Riemann wave propagating
along the y-axis with a long wave along the x-axis. Meanwhile, equations (1.4) and
(1.5) are well known as classic breaking soliton equations since the phenomenon of
overturning (whiplash) of the wave front occurs which leads to the solution becoming
multivalued [4,23]. The Painlevé property, dromion-like structures and various exact
solutions of them have been studied by people widely [1,7,8,12,13,21,25,26,28, 30,
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32,36,37,39]. Whena=¢=0,b=1,d=4 and r = 2, equation (1.3) degenerates
to the (241)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation

Fat + Fupay + 2FpaFy + 4F, Fyy = 0. (1.6)

Tts bilinear form, lump solutions and some exact solutions have been given [3,6,11,
24,27,31,33]. Noting that equations (1.4), (1.5) and (1.6) can be rewritten in a
unified form

Fa:t+Fwwwy+k1F:ery+k2Fa:Fwy207

where ki, ko are real constants, by using the extended homoclinic test approach,
sine-cosine method and modified simple equation method [16], people constructed
some exact solutions of it, such as soliton solutions and breather type solutions
[2,11,22].

Though there have been so many profound results about traveling waves of
equations (1.1) and (1.3) which contribute to understanding of nonlinear physical
phenomena and wave propagation, there exist some problems unsolved. Firstly,
we note that above conclusions about equations (1.1) and (1.3) are all given under
some special parameter conditions. It means that wave phenomena described by
them without parameter constraints need study further. In addition, although some
direct methods mentioned above can be applied to obtain traveling wave solutions
of equations (1.1) and (1.3) concisely and efficiently, some traveling wave solutions
could be still lost, especially for the unbounded traveling wave solutions. These
problems arouse our great interest in surveying the traveling waves of equations
(1.1) and (1.3) again. In this paper, without any parameter constraints, we try
to give explicit expressions of all possible single wave solutions of them. From the
geometric point of view, we investigate the phase space structure of traveling wave
systems of equations (1.1) and (1.3) by using method of dynamical system. Due
to the existence of a two dimensional integrable invariant manifold, we achieve the
goal by calculating some complicated elliptic integrals. Our conclusions will further
promote the study of analytic solutions and numerical solutions of equations (1.1)
and (1.3) as well as understanding the complicated nonlinear wave phenomena.

2. Traveling wave system and bifurcation analysis

Firstly, we begin with equation (1.3). With the traveling wave transformation

F:F(Ivy’t):f(f):f(x'i_my_nt)v

we obtain the traveling wave system of equation (1.3)
(a—i—mb)f”” —&—(c—&—md—i—mr)f//f/ —nf =0, (2.1)

where ’ stands for d/d€, m # 0 represents the wave numbers in the y direction and
n # 0 is the wave speed. Integrating (2.1) once, we get

1
(a+mb)f" + §(c+md+mr)f’2 —nf =e,
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which has the equivalent system
I =n

P =49 (2.2)
rctmd+mr , n e
¢ = 2(a + mb) LA -

where e is an integral constant. Interestingly, system (2.2) has a 2-dimensional
invariant manifold in R3. Flows on it are governed by the last two equations in
system (2.2), i.e.

b =q

+ —(c+md+ mr)p* + 2np+ 2e (2.3)
7= 2(a + mb) ’
which is exactly a Hamiltonian system with the energy function
1 A n e
H =—¢ - ? 2.4
(P, 9) 20 T 6(a+mb)p 2(a+mb)p at+mb (24)
where A =c+m(d+r).
Theorem 2.1. The equilibria of system (2.3) have the following properties:
Vn2 +2eA
o If n? +24e > 0, system (2.3) has two equilibria Bl(wﬁ) and

A
n —v/n? + 2eA

By(——————,0). Further, By is a center and By is a saddle when

a+bm > 0, whereas By is a saddle and By is a center when a + bm < 0.

e Ifn®+2Ae =0, system (2.3) has a unique cusp Bg(%,()).

e Ifn? +2Ae <0, system (2.3) has no equilibrium.
Proof. For the case n®+2Ae # 0, it is not difficult for one to check corresponding
conclusions above by a direct computation and the qualitative theory of differential
equations [40]. Here we omit it for simplicity.

For the case n? +2A4e = 0, system (2.3) has a unique equilibrium Bg(%, 0) with
a nilpotent matrix

0 1
M(Bs) =
0 0

It means that Bjs is a degenerated equilibrium. In order to judge its type further,
we make a homeomorphic transformation

n
=P Za Y =q,
which converts system (2.3) into the normal form below
¢ =1,

42
¥ = are" L+ ()] + b " Y[l + q()] + Vg, ) = W/:(fnb),
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A
where k = 2, ap = —m7 b =0, p(¢) = 0, g(p) = 0 and g(p,?v) =
0. According to the qualitative theory of differential equation [40, Theorem 7.3,

Chapter 2], Bs is a cusp as shown in figure 1. O
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Figure 1. Simulation of cusp B3 fora=c=0,b=1,d = —4,r = -2, m = g,n =e=2.

Next, it needs to discuss global phase portraits of system (2.3) in different param-
eter bifurcation sets {(a,b,c,d,r,m,n,e)|n* + 24e > 0}, {(a,b,c,d,r,m,n,e)|n* +
2Ae = 0} and {(a,b,c,d,r,m,n,e)|n® + 2A4e < 0}. According to the properties of
Hamiltonian system [40] and energy function (2.4), we have the following results.

Case 1. For n?> +24e > 0 and a+bm > 0, there is a homoclinic orbit 4 connecting
the saddle Bs. Inside the homoclinic loop v U By there exists a family of periodic
orbits

I'(h) = {H(p,q) = h,h € (h(B1), h(B2))},

which surround center By, where

—2n3 — (2n% + 4eA)Vn? + 2eA — 6neA

B =
h(B1) 6A42(a + mb) ’
h(By) = —2n3 + (2n% + 4eA)vV/n? + 2eA — 6neA
2/~ 6A2%(a + mb) '

Moreover, I'(h) tends to By as h—h(Bp) and tends to v as h—h(Bg). Outside of
the homoclinic loop v U Bs, all orbits are unbounded, as shown in figure 2(a).

Case 2. For n? +2Ae = 0, all orbits of system (2.3) are unbounded. There are two
special orbits II§ and II; which are different from others. The a-limit set of TI§
and the w-limit set of IT; correspond to the unique cusp Bs, as shown in figure 2(b).

Case 3. For n? 4 24e < 0, system (2.3) has only one type of orbits. All of
them are unbounded, as shown in figure 2(c).
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(a) n®> +24e >0 (b) n® +24e=0 (c) n® +24e <0

Figure 2. The phase portraits of system (2.3) in different parameter bifurcation sets.

Remark 2.1. Noting that the phase portrait of system (2.3) for the case n?+24e >
0 and a + bm > 0 is topologically equivalent to that for the case n? + 24e > 0 and
a + bm < 0, here we only give the conclusions about the former for simplicity.

3. Exact solutions of system (2.3)

In this section, we try to seek explicit expressions of all solutions of system (2.3),
including bounded and unbounded ones.

3.1. Homoclinic solution and periodic solutions of system (2.3)

From the results in section 2, when n? 4+ 24e > 0, system (2.3) has two types of
bounded orbits, namely the homoclinic orbit and the periodic orbits. Firstly, we
begin with the periodic orbits.

(B1) For n? 4+ 24e > 0, a+bm > 0 and A < 0, according to the energy func-
tion (2.4), any one of the periodic orbits T'(h) can be expressed by

A

qg=+ *m\/(pfpl)(pz —p)(ps — ),

n+2vn? +2eA -

where p1, p2 and p3 are reals and satisfy the constraint condition

A
N2 T+ 26A
p1<p<p2< % < ps. Assuming that its period is 2T and choosing

initial value p(0) = p;, we have

dp

P 3
= [ d, o0<e<T,
/pl V5 V(0 = 1) (P2 = p)(ps — p) /0

P1 dp

0
- = ¢, —-T<€&<0,
/” \/%\/(p*pl)(prp)(pgfp) /f
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which can be rewritten as

dp

/pl \/%\/(p —p1)(p2 = p)(ps — p)

By calculating the elliptic integral

: V(P —pl)(pip— PICE w (\/ﬂ’ k) ’

2 k2_p2_p1

\/ps—p1’ B P3 — D1

system (2.3)

=[¢], —T<¢{<T.

, we get the expression of periodic solution of

where g =

—A(ps —p1) P2 — D1
_ _ 2 _
po11(§) = p1+ (p2 — p1)sn ( 12(a + mb) 3 g T<&<T.

If n2 4+ 24e > 0, a+bm < 0 and A > 0, one can check that periodic solution of
system (2.3) is the same form as pp11(&).

For n?42Ae > 0, a+bm > 0 and A > 0, by choosing the initial value p(0) = p;
and adopting similar calculation, we get the second type of expression of periodic
solution of system (2.3)

! Py —P1)P3 — P
po12(§) = py + > = p1)(ps —p1) , —T<ELT,
/ / ’ / A(py—p}) Py —P;
(P3 = 1) = (p5 = py)sn? (\/ T2(atmb) & \ pZ—pf)
’ ’ ’ , /M2
where p;, py and p, are reals and satisfy the constraint condition p; < % <

’ ! \/ 2
p2<p<p3<w. If n? +24e > 0, a+bm < 0and A < 0, one can check

that the periodic solution of system (2.3) is the same form as pp12().

(B2) For n? +24e > 0, a +bm > 0 and A < 0, the homoclinic orbit 7 can be
expressed by

A

= :l: _— — 2 —
q Satmb) V(ps —)*(p — pa),
2v/n? 4 2eA —v/n? +2eA
where py = ntavntzed and ps = novntaced satisfy the condition that

A
ps < p < p5. Choosing p(0) = p4, we have

[ ==tk o
= ) >7
Ps —m(m—p) D — P4 0
Pa

d 0
-/ 7 — [z ¢<o,
P 3t (Ps —P)VP — P4 £
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which can be rewritten as

/ VT a+mb) VP — P4

Noting that
/” dp 1 1n\/p5—p4—\/p—p4
(

=&, —o0<€< +oo.

ps—P)VP—DP1i D5 —DP1 D5 —Ppit+D—Dpi

we get the bell-shaped bounded solution of the system (2.3)

(ps — pa) (1 - exp (/- 5224 |£|))
pp21(§) = ps + , — o0 < &< 4o,

(1 +exp ( ?)((zzj:mf)4 ‘€|)>

which can be further simplified to

(ps —pa) (1= exp () —5oE8¢
pr21(§) = pa+ ’ 4< ( S )) , —oo<&<+o0. (3.1)

2
(1+ e (-5E55¢))

If n?4+2A4e > 0, a+bm < 0 and A > 0, one can check that the bell-shaped bounded
solution of the system (2.3) is the same form as ppa1(§).

For n?+2Ae > 0, a+bm > 0 and A > 0, similarly, by choosing the initial value
p(0) = p,5, we obtain another type of bell-shaped bounded solution of the system

(2.3)
2
’ ’ A
=i 1o (1) |
pb22(§) =DPs — 2 ) —o0 < f < +OO7 (32)
A ! _ U
(1 +exp ( 3?:3—771:;)) 5))
/ —V/n2? +2eA / 2v/n? 4+ 2eA
where p, = % and py = W satisfy the condition that

p; <p< p;,. If n2 +24e > 0, a+bm < 0 and A < 0, one can check that the
bell-shaped bounded solution of the system (2.3) is the same form as pp22(&).

3.2. Unbounded solutions of system (2.3)

Next, we try to derive exact expressions of all unbounded solutions of system (2.3).
According to the parameter bifurcation sets in section 2, we need to discuss them
in three cases.

Remark 3.1. In fact, similar to bounded solutions of system (2.3), the expressions
of unbounded solutions of system (2.3) for the case a+bm < 0and A > 0 (a+bm < 0
and A < 0) are same as that for the case a +bm >0 and A <0 (a+bm > 0 and
A > 0). So, we only give the expressions of unbounded solutions of system (2.3)
below for cases a +bm > 0, A < 0 and a + bm > 0, A > 0 for simplicity.
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(I) First of all, we start with the case that n? +2Ae > 0. This case incudes five
subcases (U1-U5) according to different level curves of energy function (2.4).

(U1) For n? 4+ 24e > 0, a+bm > 0 and A < 0, we consider the first type of
unbounded orbits I'? and Ty as shown in figure 2(a), where their energy is equal
to energy of saddle Bs, as well as energy of homoclinic orbit v. They can be
respectively expressed by

A

qg==* —m\/(p —ps5)*(p — pa),

where py < p5 < p < +00. Given initial value p(0) = 400, we have

£ <0,

“+o0 d 0
e R A
P ~ 3atmby P — P5)V/P — Pa £

/Edf, &> 0,

Lot
+oo *W(P*ps) D — P4 0

which can be rewritten as

P\ st (s — PVP — pa

=|¢{], £€#0.

Noting that

/+°° dp 1 VP—pi— VP —pa
p (p_p5

WP —ps Vb5 b1 P—Pit+ D5 —pa

we get the expression of the first type of unbounded solution of system (2.3)

(p5 — pa) (1 +exp ( _Iggi:}:;)) € |))2

pull(é-) =p4+ 2 ’ 57&07
A(ps—pa)
(1—exp (/5550 1< 1))
which can be further simplified to
2
(ps — pa) (1 + exp ( —‘3((51‘,,{’;; f))
Pu11(§) = ps + . £#£0. (3.3)

2
(1= exe (v -5t7) )

For n*+2Ae > 0, a+bm > 0 and A > 0, by choosing the initial value p(0) = —oo,
we can get the first type of unbounded solution of system (2.3) as follows

2
/ / A ’ _ ’
(5 — P4) (1 + exp ( s é“))
pul?(g) =Ds5— 2
A(ps—p;
(- (yf28¢) )

, §#0, (3.4)
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where —oco < p < p; < p'5.

(U2) For n? +24e > 0, a +bm > 0 and A < 0, we consider the second type of
unbounded orbits where their energy is lower than energy of saddle Bs, but higher
than energy of center B;. Any one of them, for example the orbit I's as shown in
figure 2(a), can be expressed by

A
= i _ — — _
q 3(a—%1nb)V/Q) p6)(p — p7)(p — ps),
+/n?+2eA —/n?+2eA
where pg, p7, ps are reals and relationship pg < navn A+ c <p7 < novn A+ ¢ <
pg <p< 00 holds. Choosing p(0) = +00, we have
+oo d 0
/ . d ~ [ae ¢<o
P \/ ~ 3(a+mb) \/(p - pﬁ)(p - p7)(p - pS) £

dp

_[roo V=5 V= po) (0 — p)(p — ps) o

which can be rewritten as

3
dg§, §>0,

dp

+oo
/p \/%\/(p —p6) (P —pr)(p — ps)

By calculating the elliptic integral

400 dp :g-sn_1< (pS_pG) k‘)
» V—p6)p—p7)(p—ps) p—ps) )’

=[] £#0.

2 kz_p7_P6

\/ps—pe" 7ps—p6

of system (2.3) as follows

, we get the second type of unbounded solution

where g =

Puz1 (6) = ps + Ps — P , b <E<E, 40,  (35)
sn2 (\/_ A(ps—ps) \/prpe)
12(a+mb) P8 —Dé6

a+mb

A(ps — ps) / /1 P7 Pc . sin?

For n?4+2A4e > 0, a+bm > 0and A > O, by choosing the initial value p(0) = —oo,
we can get the second type of unbounded solution of it

where & =4

’

Pu2a () = pi — Ps — s . —&<E<&, €40, (3.6)

2 Alpg—pg)
sn (\/12(a8+m%)§, \/pg p6>
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/3 , —/n?+2eA
Where§1—4 / and —oo <p<p6<w<
ps p6 p8W7 51n29 A

’ n-H/ n2+2€ ’

pr< f <ps-

(U3) For n? +24e > 0, a +bm > 0 and A < 0, we consider the third type of
unbounded orbit T'y shown in figure 2(a), where its energy is equal to energy of
center Bi. It can be expressed by

A
S S — o2 (p —
q 3(a+mb) \/(p pg) (p plO)a
n +vn? + 2eA n—2vn? + 2eA . .
where pg = ——— and pjp = —————— are reals and relationship

A
P9 < pro < p < 400 holds. Choosing the initial value p(0) = +oo, we have the
following integral expressions

/+oo dp —/0
p \/—m@—m)\/(?—]?m) &
B P dp _ 13

/+oo\/3(afmb)<ppg>\/<ppw> /odf’ v

which can be rewritten as

/+oo dp
P\ st @~ Po)V/ (P — p1o)

g, §<0,

=&, £€#0.

Noting that

/+OO dp 1 ( P — P10 )
= m — 2arctany | ——— |,
P (P—P9)\/(P—p1o) VP10 — Po P10 — P9

we get the third type of unbounded solution of system (2.3)

A _
Pus1(€) = pro+ (p1o—po) - cot? ( —M€> , =& <<, £#£0, (3.7)
_ 12(a + mb) .
where & = 714(1)10 o)

For n®4+2Ae > 0, a+bm > 0 and A > 0, by choosing the initial value p(0) = —oo,
we can get the third type of unbounded solution of system (2.3)

/ / / A(p'o — p / /
pu32<s>=pg—<pw—p9>-cot2( M&) —G<E<g €40, (39)
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/ 12(a + mb) r on—2vn%2+42eA n+vn? 4 2eA
Where 52 = - 7~ T, pg - T plO = and
A(plo Po) A A

—oo<p<p9 <P10

(U4) For n? 4+ 24e > 0, a4+ bm > 0 and A < 0, we consider the fourth type of
unbounded orbits, where their energy is lower than energy of center B;. Any one
of them, for example the orbit I'5; shown in figure 2(a), has the form

3n Ge

A )\/(P —p11)[p? + (P11 — %)PJF (p3, — Vi Z)]v

—
1 3(a+ mb

where p1g < p11 < p < +o0. Taking p(0) = +o0, we have

+o00 o
/ i Z/ dg, §<0.
! \/_m\/(p—p11)[p2+(p11—37”)p+(p 1_71311—6716)] 3
_/ a4 /d§ & <.

o[~ gt =P+ (o = 00+ (0 S -

By calculating the elliptic integral

dp _g-on- (p pi1— B )
Bnyp 4 (p?) — 3pyy — 82)] p-pu+B

[
\/P p11)[P? +(p11—

6 6 1 2AB — 3Apy; — 3
where B® = 3p}, — mhu 2 g=——and k? = P11 — on

A A’ VB 4AB
fourth unbounded solution of system (2.3)

, we get the

2\/ 2 _ bn, _ be
pun(§) = pu = fag2, — Sy - S0 VT AL
’ oA A ,

A
1—cn | Y 3etmd) £ (3.9)
4/3Ap2 —6npyy—6e
\ A

_§3<§<£37 53&0’

4/31711 APu** / do
/_ Ne “Se_3p,-%2
3(a+mb) \/ i SPUTSE Gin%g

2\/31111—7;011—*
For n*+2Ae > 0, a+bm > 0 and A > 0, by choosing the initial value p(0) = —oo,
we can get the fourth unbounded solution of system (2.3)

where &5 =

4 6n, ./ 6e
’ / 6n , 6e 2\/3(1’11)2 —abn1— 7
Pu2(§) = p1q + \/3(;011)2 - gPu- g~ ,

A
Viwmm | (3.10)

7 7
‘\L/SA(pll)QfsnpllfGe
A

1—cn

—E<E<E, E#0,
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4/3(P11) _Tpn 46
/ VB2, % -8, 5%
(a+mb) i1 AP~ A 2P11" 324

/ 7/
2\/3(1911)2_67”1’11_%

where 5/3 =

- sin?6
and —oo < p <p'11 <p9.

(U5) For n? +24e > 0, a+bm > 0 and A < 0, we consider the fifth type of
unbounded orbits, where their energy is higher than energy of saddle By. Any one
of them, for example the orbit I'; shown in figure 2(a), can be expressed by

A 3n 3n 6e
=4y - — 2 o 2 O _oe
q 3(CL + mb) \/(p pl?)[p + (p12 A )p + (p12 A P12 2 )]7

n+2vn? + 2eA

where p1o < I E— and relationship p12 < p < +00 holds. Choosing
p(0) = +0o0, we have

+o0 J .
/ - :/ d¢, £<0.
p \/ 3(a+mb)\/p —p12)[p?+ p12—*)p+(p12_7p12—@)] 3

d 3
_/ P :/ dg, € > 0.
+oo, = sty =P+ (12— )+ (R — Gp1a— )] 0

Similar calculation leads to the fifth unbounded solution of system (2.3)

6n 6
6n 6 2\/317%2 APz g
Pus1(§) = p12 — \/317%2 P2 =y ,

A —
1—-cn —7m 3 (3.11)
4/3Ap2,—6np1p—6e
YR i - e

_£4<£<545 5#07

4. 4 3p12—7p12—f

do

Vo (a+mb) / \/ Sl Apia 4 spias ik gin2g

where £ =

2\/310 o= Sp1a— 8¢
For n?+2Ae > 0, a+bm > 0 and A > 0, by taking the initial value p(0) = —oo,
we can get the fifth unbounded solution of system (2.3) as follows

/ 6n .,/ Ge
/ , 6n , 6e 2\/3(1012)2 — aAabPi2— A
Pus2(§) = p1a + \/3(1’12)2 T P T )

f—:
1—cn Slatmb) 13 (3.12)

! !
4\1/3A(p12)2 —6mp;,—6e
A

—E <E<E, E#0,

4. 4/3(p1y)%— 14’ Plo—

do

)
\/ 3(a+mb) / \/ V3(P12) AP12 % 21)12 Py Lol

2
sin“6
2\/3(1712)2 Ap12 (:Te

where 5; =
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n+2vn?2 +2eA
—a

—00 < p < Py and pyg >

(IT) Next, we discuss the case that n? 4+ 2A4e = 0. This case includes two sub-
cases (U6-U7) according to different level curves of energy function.

(U6) For n?+2A4e=0,a+bm >0 and A < 0, we consider the unbounded orbits
I and II; shown in figure 2(b), where their energy is equal to energy of the cusp
Bs, which can be expressed by

A A A
T=E S PRV

i

A
where — < p < 4o00. Similarly, choosing p(0) = +00, we have
n

/ . [ & ¢<0
p \/—W(P—g)\/lﬂ— = £
D dp €
—/ = [ d§, £>0.
o [J__A (A [, _ A
* 3(a+mb)(p n) p n 0

By a direct calculation, we get the sixth unbounded solution of system (2.3)

A 12(a+ mb)

Puei(§) = = e E#0. (3.13)

For n*+2Ae = 0, a+bm > 0 and A > 0, by choosing the initial value p(0) = —oo,
we can get the sixth unbounded solution

A 12(a+ mb)

Pucz2(§) = n + A §#0, (3.14)

A
where —oco < p < —.
n

(UT) For n? +2A4e =0, a+bm > 0 and A < 0, we consider other unbounded orbits,
for example II; and II3 shown in figure 2(b), which can be uniformly expressed by

A 6e

3n 3n
= _— — pya)[p2 _ o 3n  Ge
qg=+ 3((Hmb)\/(p p3)lp? + (P13 — —)p+ (s — —rpis = =),

A
where p13 < p < +00 and p13 # —. Choosing p(0) = +00, we have
n

—+00 d 0
/ P :/ ¢, €<0.
P \/*m\/(P*p13)[2?2+(1713*%)er(p%g*Sjnpls*%)} ¢

P 3
—/ dp :/ g, €>0.
+°°\/*m\/(pfp13)[p2+(p13 =+l -5 o
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A direct calculation leads to the seventh unbounded solution of system (2.3)

6n Ge
6n 6e 2\/31"13 — AP~ F
Pur1(§) = p13 — \/310%3 TPt )

A
1—cn V__ 3(atmbd) 3 (3.15)
4 3Ap%376np13766
V— = —

§5<§<€57 57&07

Y 3pis— A pU** / do
J N T T T
3(a+mb) \/ 2\/3p§3_%p13_% sin“6
For n?42Ae = 0, a+bm > 0 and A > 0, by giving the initial value p(0) = —oo,
we can get the seventh unbounded solution

where & =

/ 6n 6e
/ , 6n 6e 2\/3(1913)2 —abPi3— 74
pur2(§) = P13+ \/3(1913)2 gl )

V Sty ¢ (3.16)

! !
%/314(1)13)276”[)13766
p\

1—cn

€5 <E<E, E#0,

o4y M &0
where & =
A \/3— s
3(a+mb) 0 \/ (P15)?— %15~ — 3015 — 3% . sin20

2\/3(P13 -5 Pls_%

[NE

' A
and p;5 # ot

(IIT) Finally, we discuss the case that n? + 2A4e < 0.

(U8) For n? +2A4e <0, a+bm >0 and A < 0, any one of orbits can be expressed
by

Ge

A 3n 3n
= _ 2 _ 2 _
3(a + mb) \/(p p14)[p + (p14 A )p + (p14 A P14 A )]7

where p14 < p < +00. Choosing p(0) = 400, we have

—+oo d 0
/' P :/"d& £<0,
\/ 2 3n 2 6e 13

s\ 0= P1) P2+ (p1a— 2 )+ (03— Zp1a— %)

/+ dp )]z/ofdg, £>0.

°°\/ 3(a+mb)\/p —p1a)[p?+ p14—*)p+(p14—7p14—*

Thus, we obtain the last type of unbounded solutions of system (2.3)

5 6n 6e 2\/317%4 - 67”1714 - %
Pus1(§) = p1a — /3014 — Xplzl 2 + )

_ Vs, (3.17)

4/3Ap2, —6np1y—6e
A

1—cn

£6<§<€67 6#07
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4.4 3p%,— 6:1714

/ do
V3p2, —Spia—Sg—3Spa—352 . 9 '
V3 b . 0
(a+m ) \/ 2\/3p14_7p14_% Sin
For n?42Ae < 0, a+bm > 0 and A > 0, by giving the initial value p(0) = —oo,
we can get the eighth unbounded solution

where & =

' SR N CIP I
pu82(§) =pist \/3(]714)2 = sz _ Z _ \/ ’

A
1—cn V S(atmb) ¢ (3.18)

! !
4\1/3A<p14)2—6np14_6e
- a

€5 <E<E, E#0,

v 3(p1y)2— A pla— /
\/ 3(a+mb)

4. Traveling wave solutions of equation (1.3)

[ME]

do
< / 7 7
\/ vV 3(1’14)2*%1’14 147%

/ 7/
2\/3(1713)2*61:1’14 %

where fé

- sin20

According to equation (2.2), to get the final traveling wave solutions of equation
(1.3), we need to integrate the obtained solutions of system (2.3) once again with
respect to &.

Remark 4.1. From section 3, we note that some expressions of solutions of system
(2.3) are similar, for example pya1, Pud2, Pus, Pus2, Putls Pur2; Pust and puga. To
avoid repetitive calculations, we only give detailed calculation for seven types of
traveling wave solutions of equation (1.3) which correspond to solutions py11, ppi2,
D21, Pu2ls Pusl, Puar and pyug1 respectively. The rest of traveling wave solution of
equation (1.3) will be listed in the appendix 1.

(S1) Noting that

1
2
/sn (u)du = ﬁ(u — E(u)),

we integrate the periodic solution py11 of system (2.3) with respect to £ to calculate
the first type of traveling wave solution of equation (1.3) as follows

ﬁ@>:/¢muoa

/[p1+(pz p1)s 2( _A(p?’_pl)ff>]d£

+ mb
(a+mb
1-§+(p
2 ~Alps —p1)

A(ps — 1 Alps —p1)
X /[sn2 ( 12(a3—|— mb) §> d( 12(a3+ mb) £>]

:p3'§_(\/12(a+mbj)4(p3—p1))E( _g((z;er—Tilb))£>+Cl
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where —T < £ < T and C] is a constant.
(S2) For another type of periodic solution py12(€) of system (2.3), noting that

[ T~ B + R R sa(w)ed()

where &' = \/1 — k2, we have
726 = [ puate)a
_ /[pf1 N (P2 — 1) (Ps — 1) e
(p3 — p1) — (P53 — pp)sn? ( Alra—ry) §>

P3 Pl
12(a+mb)

P3—P1

~ [t + B b e
lp‘;_p;sn2< §>

:/[p/1+ P2 — Py ]dé
Y

1—k2~sn2< Alp; —p)

12(a+mb)
- 1 1
— [+ + J}de

1—Fk-sn ( A(pﬂ)l §> 1+Fk-sn ( 12(IJSW1 5)

’ 12 a—|—mb pp—

:p1.£+\/ ( A)(pg 20
B A(p%,—pi)g L PP A(pé,—pi)5 e
12(a + mb) Py — D} 12(a + mb) 2

where —T < £ < T and Cs is a constant.

(S3) Integrating ppoy directly, we get the third type of traveling wave solution of
equation (1.3)

f3(8) = /Pb21(§)d§

/ o+ P (1-ow( 3<a+7ff>)§)) Jd¢
(1o ()

3(ps — +mb 1
:p5,§+4\/_ (p pz;)l(a m). — e
€xp ( 3(aj|-mb) 5)

where —oo < £ < oo and Cj is a constant.

(S4) Integrating py21 leads to

ﬁ@=/@m@%:/m+ DS PO g

sn? ( 142(518-&- 5:;1) §>
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From the fact that

/ Sng?u) = / ns?(uw)du = u — E(u) — dn(u) - cs(u).

The fourth type of traveling wave solution of equation (1.3) can be given by

f4(£)ps'£\/12(p8p6)(a+mb) .[E( 14(3781’6)5>

—A 12(a 4 mb)
—A(ps — ps) —A(ps — pe)
_dn< 12(a + mb) 5) CS( 12(a + mb) §>} + O,
where —&; < € < &1, € # 0 and (4 is a constant.

(S5) Integrating p,s31 directly, we get the fifth type of traveling wave solution of
equation (1.3)

f(6) = / Pusn (€)dé

B /[plo + (p10 — po) - cot® ( _Imf)]df

o £~ \/12(a+mb)(]910]99) ~cot< M£> e

A 12(a + mb)
where —&; < € < &9, £ # 0 and Cj is a constant.

(S6) Integrating py,41 leads to

fol6) = / Pust (€)de

6n 6e 2y/3pt; — Apu - i
Z/[Pll—\/?)P%—APn—A-F \/ |d€.

A

~ 3(atmb)

4/3Ap2 —6npyq—6e
V A

1—cn

Noting that

du —u— Elu _ dn(u) - sn(u)
e R R e

we have

(€)= (o + 30— s - %)

2 6n 6e 4/3Ap3, —6np11—6e _ A
2. \/3p11 —aAbu—ZFN ———ax B 3(a+mb) ¢
—A 4/3Ap2, —6np11—6e
3(a+mb) A
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_ A _ A
dn 3(a+mb) 5 sn \ ~ 3(at+mbd)

4/3Ap2 —6npyq—6e 4/3Ap2 —6npyq—6e
- a - a
[ A
3(a+mb)
l—cn | —————-¢
4/3Ap?, —6npi1—6e
\ A

where —€3 < £ < &3, £ # 0 and Cj is a constant.

+

1+ Cs

(S7) At last, integrating p,e1 directly leads to the seventh type of traveling wave
solution of equation (1.3)

7O = [puntag= [(2 - L2OEM e A LA, o

where £ # 0 and C7 is a constant.

5. Discussion and conclusion

In this paper, the dynamical system method is applied to study the traveling waves
of equation (1.3). It allows detailed analysis of the phase space geometry of the
traveling wave system of equation (1.3) so that all bounded and unbounded orbits
are identified clearly and investigated carefully. Due to it, we obtain all single wave
solutions of equation (1.3) without any loss. It is shown that our method is a
powerful approach to deal with traveling waves of a PDE and can be applied to
other PDE models.

Finally, as application of our results, we give all single wave solutions of equation
(1.1) in Appendix 2 by the transformation u = F, and v = F},.

Remark 5.1. From the fact that v = F,, v = F, and traveling wave transformation
F(z,y,t) = (&) = f(z + my — nt), we have v(§) = m - u(). So, for the sake of
simplicity, we only list solutions u(£) of equation (1.1) in Appendix 2.
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Appendix 1

Table 1. All single wave solutions of equation (1.3)
Conditionl | Condition2, TWS Range of p Range of €

[12(a + mb)(ps — p, A Y;
(€)= pog - (¢ L2t M ) <m<pep< YRR, T<g<n

)F(\

3(ps — pa)(a+ mb)

atmb>0 HC T 00 < § < +oo
) .
G i< ps << oo £#40
n?+24e >0 12(ps — pg)(a + mb) —Alps —ps —Alps — s n+vn? +2eA n—vn? +2eA ,
i) = py g — | LRl a 2 D)y [ AP o) -y 3 Jes(y) o+ Ca | o< T <pr < T mp<Ax | G <E<b, ££0

0Vt 2ed

2(a + mb)(p1o — po, . .
5O =p-g -0 )y m= Ceict<tn €20
[ G
Jo(6) = (o + 30t — Zon —
Po<pn <p<+0 & <é<&, E#0
n+ 2T 2eA
i< TR i <p < oo —G<E<& €40
@+ mb)(ps — p1) ) n—2vn?+2eA n+VnZ+2eA
11(&) = pak %15‘(\ A G <m<p<p< S <ps ~T<g<T
3(ps — pa)(a + mb) 1 . =T34 VoA
B I R e e ] py = <p<py=— T —00 <€ < +00
ﬂf;:ih”\ 0 A [N = P <y Y
. 3(a + mb)(ps — pa) 1
F(§) = pag -+ 4y - TR TP i< p < oo 0

3

Alps — po) § w2 2eA _
- N+Cy | pe< <pr<
12(a + mb) I

nViZF2ed _

)

Alps =)
12{a + mb) \

(ps — o)
12(a + mb)

1) = py € - (Rl b mh) & ) — dn <<t | 6 <E<E, €40

7+ 2eA + 2+ e/
fo(&) = 6+C DA = BERIAZA oo |~ e <t €40
SAnT,
fo(€) = (p1a +
Pro < pn <p< 400 €3 <E<E3 EF0

T oA

iV

€ <E<b E#0

T
Pl
x
a+mb>0 —<p<+oo E#£0
24 on 1<0 n
0?4240 =0 — 2 Jan s
oG Vs~ S
3pls = ps = )¢
A
o # S < < o G <E<E, £40
B(—Y
v
F S R ) a
armb>0 | KO- 56+ A e S <o ££0
A<0 - = AT ot
[ o 6 t
Fo(&) llru*\g‘/'n’j/'u*j) 3
A
Pt S <p <o &<t €40
©
Fr0(8) = G
a+mb>0 B o it £20
n? 4240 <0 Pu<p<to G <E<b, £4
[
x
23k — %
a+mb<0
i Pu<p < 00 f<E<bs EAD
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Conditionl_| Condition2

Range of p

Range of €

a+mb
i ol

- 12(a + mb)(py — py) . | AP s~ 1) ., . n—Vn?$2eA _ _nt2Vn?i2ed .
& =p -+ 2 3= P 3 ul(vmﬁ)j+(l P < T <P <p<py< ) —T<&<T
700 = e — 1y 2 —paF D) . n+ 2V/n7 ¥ %A
2 3 y ntave teed

1 |
<p<py=

—o0 < g < oo

3(a+ mb)(ps — pa)

€ =py 6~ 1y T

o <p<py <Py

exp( 1
n?+24e >0 . 2(ps — pp)a + mb) (v, —7e) TAwe—ry) A —p) w Vi rzeA .
PN e Al N A =0 g, ) e penh e
Ful&) = - A [E(\s a7t ! ]”(\c B0 Tmh) W T Ty o | TP a <
2(a + mb)(ply — Py Ay — Pl s n—2VnT+2A
7€) = pro €+ eI o ﬁm& B
B, L 20y/30)* — Sl - Gy e

. ) forr o 6n.  Ge,
£3(0) = @y /3007 - o - ) €

2(a+ mb)

(m(?\—g 0 <p<py <Py L E£0
el
, - G, Ge, . 23000
1) = (prz = \[3012)* = oo = ) €4
— dn( < E<Ey, E£0
o VT@m .
T
N 12(a + mb)(p} — py [ Al — p . n+VnT¥2ed ;_n-2Vn?¥2eA o
@) = g+ Rt B s 2o+ p< BEEEES cp <p<ai< - Teget

N 305 — pa)(a + mb)
(€)= pyg — 4y TR

a+mb <0
A<0

n - 2VnT ¥
1

a s
e <p<n=

—00 < £ < +oo

. 30+ mb)(ps —p. [l - ;
5@ = g - 0y 2t e ) =G o << By < T e20
expl(y/ 32200, 1
foe 12(py — py)(a + mb) (v — i) [AWL —py) o ey o VIR ¢ <i< 20
£ =p5- €+ yy B 50 Tty dny yoey e Tt HCo | 0P —— GeE<t, €
[A( ) .
15(&) =plo- €+ L 6 <6<

, 6n
(P10~ ZPn

dn(

)+
 [3A(r, ) —Grpl, 6
T

v

0 <p< Py <py

G=i<

§#0

£106) = Pz

\ Fatmm

ol \V3P12)? ~ Gy

+[3A)? Gy
T

v

P> %0 <p <Py

12|

a+mb >0

]
K@=+ &~
A>0 2

—o<p<

40

n?+24e =0 o

o

\301)?

Pl

£5(&) :(I‘H’\

A ,
P o <p < 40
Vst
{fA
A, Daval a
atmb<0 _/‘/517757%*,(" . o
oo o ALy e
! v 1
fo(&) = (P13 — \
A ,
P # Lm0 <P <P
) i
¥ R +Cy
[5Gyt
v T
—Fru-
atmb>0 i .
n?+24e <0 A>0 —00 < p<Piy —<E<t, €40
atmb<0 )
A<0 20 <P <P &<t £40
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Appendix 2

Table 2. All single wave solutions of equation (1.1)

n?+24e >0

a+mb >0
A<0

Conditionl | Condition2 TWS Range of p Range of £
At = n— 1
ur(&) = p1+ (p2 — pr)sn?( | =1 (ps = p1) <p<p<p< <ps T<E<T
12(a + mb)

(05— pa)(1 — exply/— 5500)?

n+2vn? +2eA n—vn?42eA

uz(§) = pa + Py = <p<ps= 00 < €< +oo
(L+exly A A
s — )1+ exply/
uz(§) = pa+ Pa<ps<p< 4o E#0
= 21 2¢A >+ 2¢A
us(€) = po po< LIV H2eA BV A2 <p<too | —f1<E<E, ££0

A(p10 — po)

n+vn? +2eA n—2vn? + 2eA

A>0

3A%, —Gnp1a—6e
SAndy—bnpig o

Us — ( - . 2, 9 = = < o] —&2 13 N
u5(€) = pio + (P10 — po) - cot T2(a + mb) P 1 <P Y <p< 4o & <E<&, £40
[, 6
= /3
us() = pn =3k P <pu <p<too CG<E<E 40
/ - o 232, — Sp, - &
ey o, Gn Ge Vot — 4 A -
ur(€) = pr2 \/3/’12 P2 = ( s < u‘pw <p<too CE<E< E40
n Z
[-4A P n—2Vn?+2A n+ Vn? + 2eA J L
u(€) =p1 + (p2 —mw?rv ﬁ:) R R T R ] T <E<T
Alp: )2 v
(ps = pa)(1 = oxp(y/ - 5ERS ) n— 2/ T 3eA n+ VAT T34
a+mb<0 | u2f) =ps+ N e v pa= 1 <p<ps= T —00 < £ < 400
A>0 (1+ exp(y/ Zpmple))? ! !
pa)(1+ exp(y/
ua(€) = ps + Pa<ps<p< 4o E#0
” e ry B
ug(€) = ps + )n.<” \”A+_l4<)77<”+\”A+ (A<m<p<_ﬁC Ce<e<E, €40
o [ A : n —Vn? + 2eA n+ 2v/n? § 204
us(6) = pro + (pro — po) - cof?(y |~ APLO —P0) ¢y po= <po= <p<too | —L<E<b £#0
(a + mb) A A
2¢/39t — Gon —
us() = pu —y/ Pro<pu <p < +oo &3 <E<&, £#0
P N
ur(®) = p2 = pro < RIS < p < oo —&<E<b €40
A a
a+mb>0 | ug(§) == —<p<too 40
A<0 n n
) B y
n? +24e = [, 6n_ G6e
3p%y — P — — X X
A A P13 # Pis <p < oo =& <E<&G E£0
a
a+mb>0 Z<p<too 40
A<0 “
P13 < p < 4o & <E<&, E#£0
atmb>0 | wio() =pua— /303, - Zopu - o+ ) . .
W 424c<0| A<0 v A A pu<p<too f<f<& £#0
/ 6n 6e
+ 2 = pra — /3% — s — =
a+mb<0 | uo(€) =pu T v Pra<p< oo b <E<&, 40
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Conditionl | Condition2 TWS Range of p Range of €
‘ . (2 —p1)(ps — 1) oA
=p+ , , , + 2v/nZ ¥ 2eA
w) =pt P < <py<p<py< LERVNF 24 T<g<T
(s =90) = (s = p)sn*(y 5
a+mb>0 | , (7’?’770(1"“‘1’(\, , n A , n+2vVn%+2eA
A0 | ual&)=ps— pi= <p<ps= L —00 <€ < 400
(14 exp(y e €)?
’ ’ A ) 2
oo (s = pa) (1L + exp(y [ 550 €)) ,
n? +24e >0 (€)= py — o0 < p< Py <Py £40
(1 - exply S0
C_ o Py , E ViZT2eA . .
uy(€) = pg ey o <p g < VT ez << n+vnZ + 2ez | 6 <e<c. cr0
on (| i) A A
, . A(plo — pa) ] , n-2Vni2A _ . n+vet2ed .
4500 = po — (o — pa)eor® ([ T80 —o<p<py = T <po= v << 40
- 2 ) oy,
. [, 6, G 2y/3(P11)* = P
ug(€) = pyy +1/3(011)% — — 01y — f f . ,
6O =pu+ 300" = o o0 <p <Pl <o 6 <E<E, E£0
(&) = (pra + /300, >L@>’ _Ge n+2vn? § 2¢A
ur(€) = (pro +/3(P12 AP Pa>——————. —0<p< Py —E<E<E, £#0
Y = 4 (P = p1)(ps — 1) , CoiTT %A
uy(€) =py ” <Py <p<py< % T<e<T
atmb<0 | , L (ps—py)(1 - exp( )
A<0 uy(€) = ps — py= —00 <€ < 400

(1 + exp(

, . (=Pl (L4 exp(
uy(€) =p5

o —Vn? +2¢A

T <y | —G <<, €40
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