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SOLITON SOLUTIONS FOR ANTI-CUBIC
NONLINEARITY USING THREE

ANALYTICAL APPROACHES
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Abstract In this article, three constructive techniques namely, Expa-function
method, the modified Kudryashov method and the generalized tanh-method
are adopted to analyze the nonlinear Schrödinger equation having anti-cubic
nonlinearity. Nonlinear Schrödinger equation is a comprehensive model that
governs wave behavior in optical fiber. Cubic-quintic nonlinear Schrödinger
equation, additionally having anti-cubic nonlinear term is investigated to con-
struct bright, dark, kink and singular soliton solutions. The graphical repre-
sentations of the soliton propagation are also demonstrated by the solutions
obtained using these three techniques.
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1. Introduction
The importance of nonlinear partial differential equations (NLPDEs) is acceptable
due to their immense use in almost all branches of science like physics, chemistry,
biology, mechanics, fiber optics, electronics and atmospheric science. Many physical
phenomena are described by the models, based upon these NLPDEs. So obtaining
various exact and accurate solutions of these NLPDEs is a fascinating subject in
mathematical research. During last few years, many important developments [1–4,
7,21,22,24,25,27,30,32–39,41–48,51,53] were made for searching the exact solutions
for NLPDEs.

Nonlinear Schrödinger equation (NLSE) is a special class of NLPDEs. The
NLSEs are applicable in different fields of biological, physical and engineering sci-
ences. NLSE is often used in various processes of plasma physics, nuclear physics,
fiber optics and fluid dynamics. The importance of NLSE is evident from the fact
that it describes the modeling of many important phenomena, such as wave dynam-
ics in optical fibers, modeling of structure of DNA and wave pattern producing in
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semiconductor material [14]. NLSE with different forms of nonlinearities has im-
mense applications in modeling of many physical phenomena of theoretical physics.
Such applications are noticed in water waves, nonlinear optics, Bose-Einstein con-
densates and nonlinear quantum field theory.

Soliton is a useful feature discussed with analysis of NLSE. Optical soliton is
very eminent area of research in field of nonlinear models during past two decades.
Optical solitons are used in communication systems through optical fibers. Optical
solitons were first studied by Zakharov and Shabat [52] in 1971. These solitons
provides very accurate signal transmission over extremely long distances. This
provides scope for innovation and development in future communication technology.

In last two decades, various methods were adopted to solve NLSEs with different
forms of nonlinearity, such as the trial solution approach [17], the ansatz approach
[40], the semi-inverse variational principle [11, 12], the tan(φ/2)-expansion method
[29], the extended (G′/G)-expansion scheme [16], the NLSE- based constructive
method [13], elliptic function method [8], the extended trial equation method [15],
simplest equation approach [18] and the first integral method [19].

Nonlinear Schrödinger equation with anti-cubic nonlinear term was firrst ob-
served by Fedele et al. [20] during 2003. Afterward, the models with anti-cubic
nonlinearity were worked out by many researchers [6, 9, 10, 12, 15, 28, 49]. As Expa-
function method [5], generalized tanh-method [26, 50] and modified-Kudryashov
method [23, 31] r are also very useful and efficient methods to acquire traveling
wave solutions of many NLPDEs. So these reliable approaches are applied to ac-
quire soliton solutions of NLSE having anti-cubic nonlinearity. We extract optical
soliton solutions and interpret them graphically.

2. The Governing Model
The Nonlinear Schrödinger equation (NLSE) having anti-cubic nonlinearity of form

ιqt + δ1qxx + (δ2|q|−4 + δ3|q|2 + δ4|q|4) q = 0. (2.1)

Here, q(x,t) is the function that describes wave profile, x and t are spatial and
temporal coordinates respectively. The first term on left side is the temporal evo-
lution of the pulse while δ1 is coefficient of group velocity dispersion (GVD). The
coefficients δ2, δ3 and δ4 introduce anti-cubic, cubic and quintic nonlinearities re-
spectively. If δ2=0, then Eq. (2.1) reduces to cubic-quintic NLSE.

3. Algorithm of applied methods
In this section, we briefly explain the constructive steps of Expa-function method,
modified Kudryashov method and generalized tanh-method.

Let PDE as follows

G(u, ux, uy, uz, ut, uxt, uyt, uxx, · · · ) = 0, (3.1)

where G is a polynomial involving u and its various partial derivatives, including
the highest order derivative term and all nonlinear terms.
Step 1 (Conversion of PDE into ODE)
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We use the wave transformation as

q(x, t) = u(ξ).eι(−κx+ωt), where ξ = α(x− ct), (3.2)

into Eq. (3.1), to convert that into ordinary differential equation as

H(u, u′, u′′, u′′′, · · · ) = 0. (3.3)

Here, u is a function of ξ and u′ = du/dξ ; and c is the wave-speed.
Note: First step, conversion of PDE into ODE, is common in all three methods,
so we will start description of each method from step 2.

3.1. Expa-function method
The further steps for Expa-function method are as follows:-
Step 2. Let

u(ξ) =

∑N
i=0 aia

iξ∑N
i=0 bia

iξ
, (3.4)

is supposed to be the solution of Eq. (3.3), where ai (i = 1, 2, 3, · · · , N) and bi
(i = 1, 2, 3, · · · , N) are constants to be determined afterward.
Step 3. Now balancing the highest-order derivative and the nonlinear term of
highest order which occur in Eq. (3.3), we determine the values of N.
Step 4. Then use Eq. (3.4) into Equation (3.3), we get an expression in aiξ, where
(i = 1, 2, 3, 4, · · · , θ) as

P (aξ = t0 + t1a
ξ + · · ·+ tθa

θξ = 0. (3.5)

Now accumulating all the terms in the coefficients of aiξ where power(i) is same
and then putting these equal to zero, we get a system of equations in all constant
terms. Solving these equations using Maple, the values of involved parameters are
find out. Then putting all values into Equation (3.4), we find amplitude component
u. We ultimately attain the required solutions by putting these values in (3.2).

3.2. The modified Kudryashov method
The other principal steps carried out in the modified Kudryashov method to find
the solution of given a NLEE are as:
Step 2. Let

u(ξ) =

N∑
i=0

aip
i, (3.6)

is supposed to be the solution of Eq. (3.3), where ai (i = 1, 2, 3, · · · , N) are constants
to be determined afterward. Here, p(ξ) is the following function

p(ξ) =
1

1 + λaξ
, (3.7)

where, λ is arbitrary constant.
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This function p(ξ) clearly satisfies the following first order ordinary differential
equation

dp

dξ
= (p2 − p) ln a. (3.8)

Step 3. Now by homogeneous balancing of the highest-order derivative and the
nonlinear term of highest order which occur in Eq. (3.3), we determine the values
of N.
Step 4. Then use Eq. (3.6) and Eq. (3.8) into Eq. (3.3), we get an expression
in pi, where (i = 1, 2, 3, 4, · · · ). Now accumulating the terms in coefficients of pi

for each i where power(i) is same and then putting these equal to zero, we get a
system of equations in all constant terms. Solving these equations by using Maple,
the values of all involved parameters are determined. Then putting all values into
Equation (3.6) and using Eq. (3.7), we ultimately attain the required solutions.

3.3. The generalized tanh-method
The further main steps applied in the generalized tanh-method to find the solution
of given a NLEE are as:
Step 2. Let

u(ξ) =

N∑
i=0

aiη
i, (3.9)

is supposed to be the solution of Eq. (3.3), where ai (i = 1, 2, 3, · · · , N) are constants
to be determined afterward. Here, η(ξ) is the solution of following Ricatti equation

η′ = m+ η2. (3.10)

Step 3. Now by homogeneous balancing of the highest-order derivative and the
nonlinear term of highest order which occur in Eq. (3.3), we determine the values
of N.
Step 4. Then use Eq. (3.9) and Eq. (3.10) into Equation (3.3), we get an expres-
sion in ηi, where (i = 1, 2, 3, 4, · · · ). Now accumulating the terms in coefficients of
ηi for each i where power(i) is same and then putting these equal to zero, we get a
system of equations in all constant terms. Solving these equations by using Maple,
the values of all involved parameters are determined. Then putting all values into
Equation (3.9) and considering solutions in the next step, we ultimately attain the
required solutions.
Step 5. The well known solutions for Eq. (3.10) are described [50] as follows:

Case 1 For m < 0 , solution to Eq. (3.10) are

η(ξ) = −
√
−m tanh(

√
−mξ), (3.11)

and

η(ξ) = −
√
−m coth(

√
−mξ). (3.12)

Case 2 For m = 0 , solution to Eq. (3.10) is

η(ξ) = −1

ξ
. (3.13)
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Case 3 For m > 0 , solution to Eq. (3.10) are

η(ξ) =
√
m tan(

√
mξ), (3.14)

and

η(ξ) = −
√
m cot(

√
mξ). (3.15)

4. Mathematical Analysis
Using the following wave-transformation,

q(x, t) = h(ξ)eιϕ where ξ = α(x− ct), ϕ(x, t) = −κx+ ωt. (4.1)

The function h(ξ) is amplitude component and ϕ(x, t) is phase component of soliton,
c is speed and α is inverse width of traveling wave, κ and ω are frequency and wave
number of soliton respectively.

Using Eq. (4.1) into Eq. (2.1), we get the following ODE

(−ιαch′ − ωh+ δ1α
2h′′ − 2ιδ1ακh

′ − δ1κ
2h+ δ2h

−3 + δ3h
3 + δ4h

5) eιϕ = 0. (4.2)

As eιϕ ̸= 0 , so Eq. (4.2) becomes

− ωh+ δ1α
2h′′ − δ1κ

2h+ δ2h
−3 + δ3h

3 + δ4h
5 + ι (−αch′ − 2δ1ακh

′) = 0. (4.3)

The imaginary part of Eq. (4.3) yields

− αch′ − 2δ1ακh
′ = 0 ⇒ c = −2δ1κ. (4.4)

Now considering the real part of Eq. (4.3), we have

δ1α
2h′′ − (ω + δ1κ

2)h+ δ2h
−3 + δ3h

3 + δ4h
5 = 0. (4.5)

Balancing between highest order derivative term h′′ and nonlinear term of highest
order h5 in Eq. (4.5), we have N = 1

2 .
So we take

h = u
1
2 . (4.6)

Using Eq. (4.6) into Eq. (4.5), we get

2δ1α
2u− 1

2u′′−δ1α
2u− 3

2 (u′)2−4(ω+δ1κ
2)u

1
2 +4δ2u

− 3
2 +4δ3u

3
2 +4δ4u

5
2 = 0. (4.7)

Multiplying Eq. (4.7) by u
3
2 , we finally have the following ODE

2δ1α
2uu′′ − δ1α

2(u′)2 − 4(ω + δ1κ
2)u2 + 4δ2 + 4δ3u

3 + 4δ4u
4 = 0. (4.8)

This can be written as

2δ1α
2uu′′ − δ1α

2(u′)2 − 4δ1(σω + κ2)u2 + 4δ2 + 4δ3u
3 + 4δ4u

4 = 0, (4.9)

where σ =
1

δ1
.
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5. Solitons with anti-cubic nonlinearity
Now, we use prescribed methods to obtain the soliton solutions of NLSE having
anti-cubic nonlinearity. We proceed according to steps mentioned for each method.

5.1. Applying Expa-function method
Through balancing between the highest order nonlinear term u4 and derivative term
of the highest order uu′′ in Eq. (4.9), we attain N=1.

Hence, solution form by Expa-function method as given in Eq. (3.4) is reduced
into the following form

u(ξ) =
a0 + a1a

ξ

b0 + b1aξ
. (5.1)

Here, a0, a1, b0 and b1 are constants which have to be determined.
Putting u, u′ and u′′ using Eq. (5.1) into Eq. (4.9), a polynomial is obtained in

aξ. Then accumulating all the coefficient of aiξ with same power i=0 ,1,2,3,4 and
then putting these equal to zero, we get a system of algebraic equations as:

−4δ1σωb
2
1a

2
1 + 4δ3b1a

3
1 − 4δ1κ

2b21a
2
1 + 4δ4a

4
1 + 4δ2b

4
1 = 0,

2α2δ1 ln(a)
2a0b

2
1a1 − 8δ1κ

2b21a0a1 − 2α2δ1 ln(a)
2a21b0b1 − 8δ1σωb0b1a

2
1

+12δ3b1a0a
2
1 − 8δ1σωb

2
1a0a1 + 4δ3b0a

3
1 + 16δ4a0a

3
1

+16δ2b0b
3
1 − 8δ1κ

2b0b1a
2
1 = 0,

−2α2δ1(ln(a))
2a1b0a0b1 + 24δ4a

2
0a

2
1 − 16δ1κ

2b0b1a0a1 − 16δ1σωb0b1a0a1

−4δ1σωb
2
0a

2
1 + α2δ1(ln(a))

2a21b
2
0 + α2δ1(ln(a))

2a20b
2
1 − 4δ1κ

2b20a
2
1 − 4δ1σωb

2
1a

2
0

+24δ2b
2
0b

2
1 + 12δ3b0a0a

2
1 − 4δ1κ

2b21a
2
0 + 12δ3b1a

2
0a1 == 0,

2α2δ1 ln(a)
2a1b

2
0a0 − 8δ1σωb0b1a

2
0 − 2α2δ1 ln(a)

2a20b1b0 − 8δ1σωb
2
0a0a1

−8δ1κ
2b0b1a

2
0 + 12δ3b0a

2
0a1 − 8δ1κ

2b20a0a1 + 16δ4a
3
0a1 + 16δ2b

3
0b1 + 4δ3b1a

3
0 = 0,

4δ3b0a
3
0 − 4δ1κ

2b20a
2
0 + 4δ2b

4
0 + 4δ4a

4
0 − 4δ1σωb

2
0a

2
0 = 0.

(5.2)
On solving this system of equations with help of Maple, we attain the values of
involved parameters. We construct solution corresponding to these values as:

α =

√
− 1

12δ4δ1
.{3δ3b1 + 8δ4a1

b1 ln(a)
}, κ = κ,

ω =
−48δ4δ1b

2
1κ

2 + 24δ4a1δ3b1 + 32δ24a
2
1 − 9δ23b

2
1

48δ4δ1σb21
,

a0 =
−b0(4δ4a1 + 3δ3b1)

4δ4b1
, a1 = a1, b0 = b0, b1 = b1,

δ2 =
−a21(24δ4a1δ3b1 + 16δ24a

2
1 + 9δ23b

2
1)

48δ4b41
.

Putting these values in Eq. (5.1), we have

u(ξ) =
−3δ3b0b1 − 4δ4a1(b0 − b1a

ξ

4δ4b1(b0 + b1aξ
(5.3)
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where, ξ = α(x− ct) ⇒ ξ = α(x+ 2δ1κt) , using Eq. (4.4)
Now put this value of u in Eq. (4.6) and ultimately putting all these values in

Eq. (4.1), we attain the exact traveling wave solution to Eq. (2.1) as follows

q(x, t) =

√
−3δ3b0b1 − 4δ4a1(b0 − b1a

α(x+2δ1κt)

4δ4b1(b0 + b1aα(x+2δ1κt)
× eι(−κx+ωt) (5.4)

where, α and ω are as given above.

5.2. Applying modified Kudryashov method
Through balancing between the highest order nonlinear term u4 and derivative term
of the highest order uu′′ in Eq. (4.9), we attain N=1.

Hence, solution form by modified Kudryashov method as given in Eq. (3.6) is
reduced into the following form

u(ξ) = a0 + a1p. (5.5)

Here, a0 and a1 are constants which have to be determined.
Putting u, u′ and u′′ using Eq. (5.5) into Eq. (4.9) and also considering Eq.

(3.8), a polynomial is obtained in p(ξ). Then accumulating all the coefficient of pi
with same power i = 0, 1, 2, · · · , 4 and then putting them equal to zero, we get a
system of algebraic equations as:

4δ4a
4
1 + 3α2δ1a

2
1 ln(a)

2 = 0,

16δ4a0a
3
1 + 4α2δ1a1 ln(a)

2a0 − 4α2δ1a
2
1 ln(a)

2 + 4δ3a
3
1 = 0,

−4δ1κ
2a21−6α2δ1a1 ln(a)

2a0−4δ1σωa
2
1+24δ4a

2
0a

2
1+12δ3a0a

2
1+α2δ1a

2
1 ln(a)

2=0,

16δ4a
3
0a1 − 8δ1κ

2a0a1 + 12δ3a
2
0a1 − 8δ1σωa0a1 + 2α2δ1a1 ln(a)

2a0 = 0,

−4δ1σωa
2
0 + 4δ2 + 4δ3a

3
0 + 4δ4a

4
0 − 4δ1κ

2a20 = 0.

(5.6)
On solving this system of equations with help of Maple, we attain the values of
involved parameters. We construct solution corresponding to these values.

κ = κ, α = α, σ = σ,

ω =
−16δ24a

2
1α

2 ln(a)2 + 27α2 ln(a)2δ23 − 128δ24a
2
1κ

2

128(δ24a
2
1σ)

,

a0 = −4a1δ4 + 3δ3
8δ4

, a1 = a1, δ1 = − 4a21δ4
3α2 ln(a)2

,

δ2 = − (4a1δ4 + 3δ3)
2(16δ24a

2
1 + 9δ23 − 24a1δ4δ3)

12288δ34
.

Putting these values in Eq. (4.9) and also considering Eq. (3.7), we have

u(ξ) = −4a1δ4 + 3δ3
8δ4

+
a1

1 + λaξ
, (5.7)

where, ξ = α(x− ct) ⇒ ξ = α(x+ 2δ1κt) , using Eq. (4.4).
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Now put this value of u in Eq. (4.6) and ultimately putting all these values in
Eq. (4.1), we attain the exact traveling wave solution to Eq. (2.1) as follows

q(x, t) =

√
−4a1δ4 + 3δ3

8δ4
+

a1
1 + λaα(x+2δ1κt)

× eι(−κx+ωt). (5.8)

where ω is as given above.

5.3. Applying generalized tanh-method
Adopting homogeneous balancing between the highest order nonlinear term u4 and
derivative term of the highest order uu′′ in Eq. (4.9), we attain N=1.

Hence, solution form by generalized tanh-method as given in Eq. (3.9) is reduced
into the following form

u(ξ) = a0 + a1η. (5.9)

Here, a0 and a1 are constants which have to be determined and η(ξ) is such that
satisfies Eq. (3.10). Putting u, u′ and u′′ using Eq. (5.9) into Eq. (4.9) and also
considering Eq. (3.10), a polynomial is obtained in η(ξ). Then accumulating all the
coefficient of ηi with same power i = 0, 1, 2, · · · , 4 and then putting them equal to
zero, we get a system of algebraic equations as:

3α2δ1a
2
1 + 4δ4a

4
1 = 0,

4δ3a
3
1 + 4α2δ1a0a1 + 16δ4a0a

3
1 = 0,

2α2δ1a
2
1m− 4δ1κ

2a21 − 4δ1σωa
2
1 + 24δ4a

2
0a

2
1 + 12δ3a0a

2
1 = 0,

−8δ1σωa0a1 − 8δ1κ
2a0a1 + 12δ3a

2
0a1 + 4α2δ1a0a1m+ 16δ4a

3
0a1 = 0,

−α2δ1a
2
1m

2 − 4δ1σωa
2
0 + 4δ4a

4
0 − 4δ1κ

2a20 + 4δ2 + 4δ3a
3
0 = 0.

(5.10)

On solving this system of equations with help of Maple, we attain the values of
involved parameters as follows. We construct solution corresponding to these values.

κ = κ, α = α, m = m,

ω =
−32δ1δ4κ

2 − 9δ23 + 16α2δ1mδ4
32δ4

,

a0 = −3δ3
8δ4

, a1 =

√
−3δ1
4δ4

α,

δ2=−
576δ21σδ

2
3κ

2δ4+162δ43δ1σ−288δ23α
2δ21mσδ4−135δ43−576δ1κ

2δ23δ4+768δ21α
4m2δ24

4096δ34
.

Putting these values in Eq. (5.9), we have

u(ξ) = −3δ3
8δ4

+

√
−3δ1
4δ4

αη, (5.11)

where, ξ = α(x− ct) ⇒ ξ = α(x+ 2δ1κt) , using Eq. (4.4).
Now put this value of u in Eq. (4.6), ultimately in Eq. (4.1) and also consider-

ing solutions described in Step 5 of Section 2.11, we have following optical soliton
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solutions to Eq. (2.1) as
Case 1 For m < 0 , solution to Eq. (2.1) are

q(x, t) =

[
−3δ3
8δ4

−
√
−3δ1
4δ4

α
√
−m tanh{

√
−m α(x+ 2δ1κt)}

] 1
2

× eι(−κx+ωt),

(5.12)
and

q(x, t) =

[
−3δ3
8δ4

−
√
−3δ1
4δ4

α
√
−m coth{

√
−m α(x+ 2δ1κt)}

] 1
2

× eι(−κx+ωt),

(5.13)
which are dark and singular soliton solutions respectively.
Case 2 For m = 0, solution to Eq. (2.1) is

q(x, t) =

[
−3δ3
8δ4

−
√
−3δ1
4δ4

{
1

x+ 2δ1κt

}] 1
2

× eι(−κx+ωt). (5.14)

Case 3 For m > 0, solution to Eq. (2.1) are

q(x, t) =

[
−3δ3
8δ4

+

√
−3δ1
4δ4

α
√
m tan{

√
m α(x+ 2δ1κt)}

] 1
2

× eι(−κx+ωt), (5.15)

and

q(x, t) =

[
−3δ3
8δ4

−
√
−3δ1
4δ4

α
√
m cot{

√
m α(x+ 2δ1κt)}

] 1
2

× eι(−κx+ωt), (5.16)

which represent singular periodic soliton solutions.
In all solutions, ω is as given above. These solitons exist provided that

δ1δ4 < 0. (5.17)

6. Results and Graphical Representation
In this study, we successfully obtained new exact traveling wave soliton solutions
of the NLSE with anti-cubic nonlinearity. These solutions are in the exponential
functions form and the hyperbolic functions form. For the physical interpretation,
three-dimensional (3D) and two-dimensional (2D) graphs of the solutions of the
NLSE having AC nonlinearity are represented in Fig. 1 to Fig. 7. The solution
acquired by Expa-function method as given in Eq. (5.4) is bright soliton, as plotted
in Fig. 1 for arbitrary values of the involved parameters as

a1 = 1, b0 = 12, b1 = −3, δ1 = 4, δ3 = 2, δ4 = −1, k =
1

2
, a = 3.2.

The solution deduced by modified Kudryashov method, as given in Eq. (5.8) is kink
soliton, drawn in Fig. 2 for arbitrary values of the involved parameters as

a1 = 0.5, α = 2, λ = 1, δ3 = 1, δ4 = −1, k = 1, a = 3.5.
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The graphs of all solutions acquired by generalized tanh-method, are plotted, by
giving specific values to the involved parameters as follows;

α = −2, κ = 2, δ1 = 1, δ3 = 4, δ4 = −3.

Fig. 3 depicts the graphs of the solution given by Eq. (5.12), which is kinked
dark soliton, drawn for m=-1. Fig. 4 shows the graphs of the solution given by
Eq. (5.13), which is singular soliton, for m=-1. Fig. 5 demonstrates the graph of
solution given in Eq. (5.14), which is singular kink-shaped soliton, for m=0. Fig.
6 and Fig. 7 represent the graphs of solutions given in Eq. (5.15) and Eq. (5.16),
which are singular periodic solitons, for m=1.

Figure 1. (a) 3-D plot of solution (5.4) for −20 ≤ x ≤ 20 and −5 ≤ t ≤ 10 (b) 2-D plot of solution
(5.4) for x = 0 and −5 ≤ t ≤ 10

Figure 2. (a) 3-D plot of solution (5.8) for −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10(b) 2-D plot of solution
(5.8) for −10 ≤ x ≤ 10 and t = 0
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Figure 3. (a) 3-D plot of solution (5.12) for −10 ≤ x ≤ 10 and −1 ≤ t ≤ 1 (b) 2-D plot of solution
(5.12) for x = 0 and −1 ≤ t ≤ 1

Figure 4. (a) 3-D plot of solution (5.13) for −6 ≤ x ≤ 6 and −3 ≤ t ≤ 3 (b) 2-D plot of solution
(5.13) for x = 0 and −3 ≤ t ≤ 3

Figure 5. (a) 3D plot of solution (5.14) for −6 ≤ x ≤ 6 and −3 ≤ t ≤ 3 (b) 2D plot of solution (5.14)
for x = 0 and −3 ≤ t ≤ 3



2188 M. Ramzan, Y. M. Chu, H. U. Rehman, M. S. Saleem & C. Park

Figure 6. (a) 3D plot of solution (5.15) for −1 ≤ x ≤ 0 and −1 ≤ t ≤ 1 (b) 2D plot of solution (5.15)
for x = 0 and −1 ≤ t ≤ 1

Figure 7. (a) 3D plot of solution (5.16) for −2 ≤ x ≤ 1 and −1 ≤ t ≤ 2 (b) 2D plot of solution (5.16)
for −2 ≤ x ≤ 1 and t = 0

Remark 6.1. From this graphical representation, we suggest that these solutions
for NLSE having anti-cubic nonlinearity would be very helpful in demonstration
and analysis of all physical phenomena described by this equation.

Remark 6.2. We affirm that these reported solutions for NLSE having anti-cubic
nonlinearity using Expa-function method, the modified Kudryashov method and
the generalized tanh-method are new and have not been stated earlier.

7. Conclusion
In this article, we established new optical soliton solutions for NLSE having anti-
cubic nonlinearity with the help of Expa-function method, the modified Kudryashov
method and the generalized tanh-method. Maple is used for solving all the equations
involved in this paper. All the solutions are also checked by putting them into the
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PDE and proved to be correct. The results show that the reported approaches
are very useful, efficient and accurate tools to get the soliton solutions of PDEs.
The obtained solutions may be very helpful for demonstrating the certain nonlinear
physical phenomena. All the graphs were plotted with help of Maple. Our graphical
representation of acquired solutions shows that these solutions are well illustrative in
describing the related physical phenomena. The solitons solutions obtained in this
way would be very useful to investigate the signals through optical-fibers, theory of
plasma physics and waves in electromagnetic field.
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