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Abstract We study periodic solutions and first integrals in a three-dimensional
quadratic system of ODEs. Coefficient conditions for existence of centers on
center manifolds are obtained. Some bounds of the number of limit cycles
bifurcating from the centers under small perturbations are given.
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1. Introduction
Quadratic autonomous systems of ordinary differential equation represent an im-
portant object to study in the qualitative theory of ODEs. The theory of planar
quadratic systems, that is, systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are quadratic polynomials, is well developed and the classification
of phase portraits of this system is almost completed [1], however the question of
the second part of Hilbert’s 16th problem about the upper bound for the number
of limit cycles remains unanswered even for system (1.1).

The quadratic three dimensional system, that is, the system

ẋ =a0 + a1x+ a4x
2 + a2y + a5xy + a6y

2 + a3z + a9xz + a7yz + a8z
2,

ẏ =b0 + b1x+ b4x
2 + b2y + b5xy + b6y

2 + b3z + b9xz + b7yz + b8z
2,

ż =c0 + c1x+ c4x
2 + c2y + c5xy + c6y

2 + c3z + c9xz + c7yz + c8z
2,

(1.2)

is much less investigated. It is practically impossible to study system (1.2) in full
generality, so only some subfamilies of the system have been studied. In particular,
integrability of some subfamilies of (1.2) was studied in [2, 3, 6, 12,18].
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Limit cycles of (1.2) were studied in many works. An example of a quadratic
system with infinitely many non-isolated limit cycles was presented in [5]. Twelve
limit cycles in a subfamily of system (1.2) with Z3 symmetry were constructed
in [16]. An example of a subfamily of (1.2) having 10 small amplitude limit cycles
was given in [9] and recently it has been shown in [17] that 12 limit cycles can
bifurcate from two foci at the center manifold in the system

ẋ =xy,

ẏ =− (B1 + d)y + z − (x2 + z2)/2 +B1yz −B2y
2,

ż =− C3z − C1y − C2y
2 + C1yz + C3z

2.

(1.3)

Polynomial systems having some kind of symmetry have attracted much atten-
tion (see e.g. [9, 16, 19] and the references given there). In this paper we study
integrability and limit cycle bifurcations in a family of system (1.2) with “YOU”
symmetry, which is different from the one considered in [9] and [17]. Simple com-
putations show that system (1.2) is symmetric with respect to x → −x and has
singular points E1 = (1, 0, 1) and E2 = (−1, 0, 1) if and only if

a0 = a4 = a2 = a6 = a3 = a7 = a8 = b1 = b5 = b9 = c1 = c5 = c9 = 0,

b0 = −b4 − b3 − b8,

c0 = −c3 − c4 − c8.

(1.4)

To simplify the further computations we set

a1 = a9 = 0, a5 = −2b4, b3 = −2b8.

Then, under conditions (1.4) system (1.2) is written as

ẋ =− 2b4xy,

ẏ =− b4 + b8 + b4x
2 + b2y + b6y

2 − 2b8z + b7yz + b8z
2,

ż =− c3 − c4 − c8 + c4x
2 + c2y + c6y

2 + c3z + c7yz + c8z
2.

(1.5)

If b4 = b8 = − 1
2 , c4 = 0, c3 = −c8, c6 = −c2, then system (1.5) is the same as

system (1.3). We obtain another subfamily of (1.5) setting in (1.5) b2 = c7 = 0,
that is,

ẋ =− 2b4xy,

ẏ =− b4 + b8 + b4x
2 + b6y

2 − 2b8z + b7yz + b8z
2,

ż =− c3 − c4 − c8 + c4x
2 + c2y + c6y

2 + c3z + c8z
2.

We can rescale all equations of this system by −2b4, or, equivalently, we set in it
b4 = −1/2. Additionally, we set c3 = −1− 2c8 obtaining after moving the origin to
the point E1 the system

ẋ =y + xy,

ẏ =− x− x2

2
+ b7y + b6y

2 + b7yz + b8z
2,

ż =− z + 2c4x+ c4x
2 + c2y + c6y

2 + c8z
2.

(1.6)

In the present paper we study first integrals and periodic solutions of system
(1.6). We first obtain some conditions on the parameters of the system under which
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it has families of periodic solutions on the center manifolds passing through the
points E1 and E2. In fact, in such situation the system has analytic first integrals
in the neighborhoods of E1 and E2. Then, we study bifurcations of the families of
periodic solutions and estimate the number of limit cycles which appear near E1

and E2 after small perturbations.

2. Preliminaries
Consider a three-dimensional system of the form

u̇ = αu− v + P (u, v, w;µ) = P̃ (u, v, w;µ)

v̇ = u+ αv +Q(u, v, w;µ) = Q̃(u, v, w;µ)

ẇ = −λw +R(u, v, w;µ) = R̃(u, v, w;µ),

(2.1)

where P,Q,R are power series without constant and linear terms, which are con-
vergent in a neighborhood of the origin, µ = (µ1, . . . , µp), and the parameter space
is some algebraic set E = (λ;µ, α) which is a subset of (λ;µ, α) = R∗ × Rp × R,
where R∗ = R \ {0}.

In this section we assume that α = 0. Then the Jacobian of (2.1) at the origin
has the eigenvalues ±i and λ. According to the Center Manifold Theorem (see
e.c. [7]), system (2.1) has a local center manifold W c passing through the origin
defined by a function w = f(u, v) and tangent to the (u, v)-plane at the origin. The
phase portrait in a neighborhood of the origin on W c can be, depending on the
nonlinear terms P , Q and R, either a center, in which case every trajectory (other
than the origin itself) is an oval surrounding the origin, or a focus, in which case,
every trajectory spirals towards the origin or every trajectory spirals away from the
origin as the time increases.

Let
X = P̃ ∂

∂u + Q̃ ∂
∂v + R̃ ∂

∂w (2.2)

be the vector field corresponding to system (2.1).
The following theorem is proved in [4, §13].

Theorem 2.1 (Lyapunov Center Theorem). The origin is a center for X|W c if and
only if X admits a real analytic local first integral in a neighborhood of the origin in
R3. Moreover when there exists a center the local center manifold W c is analytic.

For system (2.1) one can always find a function

Φ(u, v, w) = u2 + v2 +

∞∑
j+k+ℓ=3

ϕjkℓu
jvkwℓ (2.3)

such that

XΦ =

∞∑
i=1

v2i+1(u
2 + v2)i+1. (2.4)

For any fixed value λ ∈ R∗ the coefficients v2i+1 are polynomials in parameters of
system (2.1) (see [14] for more details about the properties of v2i+1). Obviously, for
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fixed values of the parameters function (2.3) is a first integral of (2.1) if and only if
v2i+1 = 0 for all i ∈ N.

However if system (2.1) depends on many parameters the calculation of v2i+1

becomes an extremely difficult computational problem. It has been observed already
by Lyapunov that computations are easier, if we introduce complex phase variables
setting

X = u+ iv.

Then the first two equations in (2.1) are equivalent to a single equation

Ẋ = iX + P(X, X̄, w).

Adjoining to this equation its complex conjugate, replacing X̄ everywhere by Y ,
regarding Y as an independent complex variable, replacing w by Z and rescaling
time dt→ −idt we obtain the complexification of family (2.1) given by the system

Ẋ = iX +

∞∑
p+q+r=2

apqr(µ)X
pY qZr

Ẏ = −iY +

∞∑
p+q+r=2

bpqr(µ)X
pY qZr

Ż = −λZ +

∞∑
p+q+r=2

cpqr(µ)X
pY qZr,

(2.5)

where bqpr = āpqr and the cpqr are such that
∑N

p+q+r=2 cpqrx
px̄qwr is real for all

x ∈ C, for all w ∈ R. Existence of a first integral Φ(u, v, w) = u2 + v2 + · · · for a
system in family (2.1) is equivalent to existence of a first integral

Ψ(x, y, z) = XY +
∑

j+k+ℓ=3

ψjkℓX
jY kZℓ (2.6)

for the corresponding system in family (2.5).
Let Z denote the vector field on C3 corresponding to system (2.5). It is always

possible to find a function Ψ of the form (2.6) such that

ZΨ(X,Y, Z) = g1(XY )2 + g2(XY )3 + g3(XY )4 + · · · , (2.7)

see, for instance, [13] for more details. The polynomial gk on the right hand side
of (2.7) is called the kth focus quantity of system (2.5). Vanishing of all focus
quantities is necessary and sufficient for existence of a first integral of the form
(2.6).

Recall that the set of common zeros of a collection of polynomials that generate
an ideal I is the variety V(I) of I. The following theorem gives a characterization
of polynomial systems with a center on the center manifold. It is proved in [13] for
the case of a fixed λ and in [14] for general case.

Theorem 2.2. Let (2.1) (with α = 0) be a family of polynomial differential equa-
tions on R3. For any system in the family let X be the corresponding vector field
(2.2) and let W c be a local center manifold through the origin. Then there exists a
variety VC in the space E of admissible coefficients such that the origin is a center
for X|W c if and only if the coefficients of the components of X lie in VC ∩ E.

We call the variety VC the center variety of system (2.1).
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3. The center variety of system (1.6)
The eigenvalues of the Jacobian of system (1.6) at the origin are

κ1 =
1

2

(
b7 −

√
b7

2 − 4

)
, κ2 =

1

2

(√
b7

2 − 4 + b7

)
, κ3 = −1. (3.1)

Thus, the system can have two-dimensional center manifolds passing through E1

and E2 only if b7 = 0. Substituting this value in (1.6) we obtain the system

ẋ =y + xy,

ẏ =− x− x2/2 + b6y
2 + b8z

2,

ż =− z + 2c4x+ c4x
2 + c2y + c6y

2 + c8z
2.

(3.2)

Clearly, the eigenvalues of the linearized system are ±i and −1.
In this section we look for the center variety of system (3.2). To make the

computations feasible we introduce new variables setting

X = x+ iy, X̄ = x− iy, Z = z.

Then system (3.2) takes the form

Ẋ =− iX − 1

4
ib6X

2 +
1

2
ib6XX̄ − 1

4
ib6X̄

2 + ib8Z
2 − 3iX2

8
− iXX̄

4
+
iX̄2

8
,

˙̄X =iX̄ +
1

4
ib6X

2 − 1

2
ib6XX̄ +

1

4
ib6X̄

2 − ib8Z
2 − iX2

8
+
iXX̄

4
+

3iX̄2

8
,

Ż =− Z − ic2X

2
+
ic2X̄

2
+
c4X

2

4
+
c4XX̄

2
+ c4X +

c4X̄
2

4
+ c4X̄

− c6X
2

4
+
c6XX̄

2
− c6X̄

2

4
+ c8Z

2.

(3.3)

From the computational point of view it is more convenient to consider instead
of (3.3) the more general system

Ẋ =X + (1/2 +A4)X
2 − 2A4XY +A4Y

2 −B6Z
2,

Ẏ =− Y −A4X
2 + 2A4XY − (1/2 +A4)Y

2 +B6Z
2,

Ż =− iZ + C1X + C6X
2 + C2Y + C4XY + C6Y

2 + C8Z
2.

(3.4)

Simple calculations show that system (3.2) (equivalently (3.3)) is a subfamily of
(3.4), namely, if we set in (3.4)

x = X, y = X̄, z = Z, A4 =
1

8
(2b6 − 1), B6 = b8, C1 =

1

2
(c2 + 2ic4),

C2 =
1

2
(−c2 + 2ic4), C4 =

1

2
i(c4 + c6). C6 =

1

4
i(c4 − c6), C8 = ic8

(3.5)

and go back to the real phase space we obtain from (3.4) system (3.2) (taking into
account time rescalling dt→ idt).

Theorem 3.1. System (3.2) has an analytic local first integral in a neighborhood
of the origin if one of the following conditions is fulfilled:
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1) c2 + 2c4 = c6 + 2(b6c4 + 4b8c
3
4 + 2c24c8) = 0

2) c6 = b6 + 2 = c2 = −b8 + c28 = − 1
2 + c4c8 = b8c4 − c8

2 = 0,

3) c2 = − b6
2 + c4c8 +

3
4 = b6c4 − c4

2 + c6 = −b6c8 + b8c4 + b8c6 +
c8
2 = b6

2 − 2b6 +

2c6c8+
3
4 = b6b8

2 −b6c82+b8c6c8− 3b8
4 + c8

2

2 = −b6c6c8+ b6
2 +b8c6

2− c6c8
2 − 1

4 =

b6b8c6 − b6c8 − 3b8c6
2 + 2c6c8

2 + c8
2 = 0,

4) c2 − 2c4 = b6
2 + c4c8 = b8c6 − b6c8 = b6c4 − c4 + c6

2 = b6
2 − b6 − c6c8 =

b6b8 − b8 − c8
2 = 0,

5) b8 = 0.

Proof. For system (3.4) using computer algebra system Mathematica we com-
puted 6 first focus quantities g1, . . . , g6 (polynomials on the right hand side of (2.7)
where Z is the vector field defined by (3.4)).

The first two polynomials g1 and g2 are given in Appendix. However the size of
polynomials gi increases exponentially, so we do not present the other polynomials
in the paper, however the interested reader can compute them using an available
computer algebra system. Performing in the focus quantities gi substitution (3.5)
we obtain polynomials

v2i+1 = −gi, (i = 1, . . . , 6), (3.6)

where v2i+1 are real polynomial in variables b8, c2, b6, c4, c6, c8.
Let I be the ideal generated by the polynomials v2i+1, I = ⟨v3, v5, . . . v13⟩.

Computing with the routine minAssGTZ [11, 15] of the computer algebra system
Singular [10] the minimal associate primes of I over the field Z32003

∗ we find that
they are:

I1 = ⟨c2 + 2c4, b8c
3
4 − 16001c24c8 + 8001b6c4 − 12001c6⟩,

I2 = ⟨c6, b6 + 2, c2, c
2
8 − b8, c4c8 + 16001, b8c4 + 16001c8⟩,

I3 = ⟨c2, c4c8 + 16001b6 − 8000, b6c4 + 16001c4 + c6, b8c4 + b8c6 − b6c8 − 16001c8,

b26 + 2c6c8 − 2b6 − 8000, b8c6c8 − b6c
2
8 − 16001b8b6 − 16001c28 + 8000b8,

b8c
2
6 − b6c6c8 + 16001c6c8 − 16001b6 − 8001,

b8b6c6 + 2c6c
2
8 + 16000b8c6 − b6c8 − 16001c8⟩,

I4 = ⟨c2, c4c8 + 16001b6 − 8000, b6c4 − c4 − 16001c6, b8c4 + b8c6 − b6c8 + 16001c8,

b26 + c6c8 + 15999b6 − 16000, b8c6c8 − b6c
2
8 − 16001b8b6 + 16001c28 + 8000b8,

b8c
2
6 − b6c6c8 − c6c8 + b6 − 1, b8b6c6 + c6c

2
8 + 16000b8c6 − 2b6c8 + 2c8⟩,

I5 = ⟨c4 − c6, b6 + 16001, b8c6 + 16001c8, c
2
2c8 + 4c26c8 + 2c6, b8c

2
2 + 2c6c8 + 1⟩,

I6 = ⟨c8, c6, c4, b6 − 1, b8c
2
2 + 3⟩,

I7 = ⟨c2 − 2c4, c4c8 − 16001b6, b8c6 − b6c8, b6c4 − c4 − 16001c6,

b26 − c6c8 − b6, b8b6 − c28 − b8⟩,
I8 = ⟨b8⟩,
I9 = ⟨c2 + 15058c4 + 3766c6, c6c8 − 15999b6 − 4003, c4c8 − 16000b6 − 2,

b6c6 + 14589c4 − 10355c6, b8c6 − 17b6c8 + 24c8, c
2
4 + 13269c4c6 − 3122c26,

b6c4 − 5649c4 + 6589c6, b8c4 − 15999c8, b
2
6 + 15999b6 + 4002,

∗We were not able to complete calculations over the field of rational numbers



2236 Y. Li & V. G. Romanovski

b8b6 + 10666c28 − 10669b8, b6c
2
8 − 5335c28 − 14668b8, c

4
8 + 9601b8c

2
8 + 10401b28⟩.

Performing the rational reconstruction (lifting to the field of characteristic zero)
with the algorithm of [23] we obtain conditions 1)-5) of the theorem and conditions
1)-3) of the proposition below (the reconstruction of the ideal I9 gives a polynomial
ideal with the empty real variety).

We now prove that under each of conditions of the theorem system (3.2) has an
analytic first integral.

1) If the first condition is fulfilled, the system has the form

ẋ =y + xy,

ẏ =− x− x2/2 + b6y
2 + b8z

2,

ż =− z + 2c4x+ c4x
2 − 2c4y − 2(b6c4 + 4b8c

3
4 + 2c24c8)y

2 + c8z
2.

(3.7)

The search for invariant surfaces gives the invariant planes L1 = 2c4y + z and
L2 = 1 + x.

Clearly, L1, that is, z = −2c4y is the center manifold of (3.7). System (3.7)
reduced on the center manifold has the form

ẋ = y + xy, ẏ = −x− x2/2 + b6y
2 + 4b8c

2
4y

2. (3.8)

It has the invariant line l1 = x+1 and the invariant conic l2 = −1−2b6x−8b8c
2
4x−

b6x
2 − 4b8c

2
4x

2 − 2b6y
2 + 2b26y

2 − 8b8c
2
4y

2 + 16b6b8c
2
4y

2 + 32b28c
4
4y

2 which allow to
construct the first integral

Ψ = l−1
1 l

1

2(b6+4b8c24)
2

in the case when b6+4b8c
2
4 ̸= 0. Then by Theorem 2.1 system (3.7) has an analytic

first integral in a neighborhood of the origin.
If b6 +4b8c

2
4 = 0 the system has the integrating factor µ = 1

1+x which yields the
first integral

Ψ =
1

2

(
−1

2
(x+ 1)2 + log(x+ 1)− y2

)
.

2) Note that from the fifth equation of the second case it follows that c8 ̸= 0.
Thus, under conditions of this case the system can be written as

ẋ =y + xy,

ẏ =− x− 1

2
x2 − 2y2 + c28z

2,

ż =(2x+ x2 − 2c8z + 2c28z
2)/(2c8).

(3.9)

Looking for invariant surfaces we find that it has the center manifold defined by

2x+ x2 − 2y − 4xy − 2x2y − 4c8z − 4c8xz − 2c8x
2z + 2c28z

2 = 0. (3.10)

Performing the substitution

X =x,

Y =2x+ x2 − 2y − 4xy − 2x2y − 4c8z − 4c8xz − 2c8x
2z + 2c28z

2,

Z =z
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we obtain the system

Ẋ =
2c28Z

2 − 2c8(X(X + 2) + 2)Z +X2 + 2X − Y

2(X + 1)
,

Ẏ =Y (−1 + 2c8Z),

Ż =− Z +
X2

2c8
+
X

c8
+ c8Z

2

with the center manifold Y = 0. Denoting now X by x and Z by y we see that the
system reduced on the center manifold is written as

ẋ =− −2c28y
2 + 2c8x

2y + 4c8xy + 4c8y − x2 − 2x

2(x+ 1)
= p(x, y),

ẏ =− y +
x2

2c8
+
x

c8
+ c8y

2 = q(x, y).

(3.11)

Simple computation shows that the system

ẋ = p(x, y)(1 + x), ẏ = q(x, y)(1 + x)

is Hamiltonian with the first integral

Ψ = xy +
c8

2y3

3
− x4

8c8
− x3

2c8
− 1

2
c8x

2y2 − x2

2c8
− c8xy

2 − c8y
2 +

x2y

2
,

which is also a first integral of system (3.11). Therefore system (3.9) has a center
on the center manifold (3.10).

3) In this case if c8 ̸= 0 system (3.2) is written as

ẋ =y + xy,

ẏ =− x+
4(1− 2b6)c8

2z2

(3− 2b6)2
+ b6y

2 − x2

2
,

ż =− z −
(
4b6

2 − 8b6 + 3
)
y2

8c8
+

(2b6 − 3)x2

4c8
+

(2b6 − 3)x

2c8
+ c8z

2.

(3.12)

It has the center manifold

z =
−3x+ 2b6x+ 3y − 2b6y

4c8
.

Computations show that system (3.12) reduced on the center manifold has 3 in-
variant straight lines. Thus, as it is well know, it is analytically locally integrable.
Therefore (3.12) has a local analytic integral as well.

If c8 = 0 then the corresponding system is

ẋ =y + xy,

ẏ =− x− z2

2c26
− x2

2
+

3y2

2
,

ż =− z − 2c6x− c6x
2 + c6y

2.

(3.13)
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On the center manifold it has the integrating factor µ = 1
(x+1)2(x−y+1) yielding the

first integral
Ψ =

y − 1

x+ 1
+ log(x− y + 1)− 2 log(x+ 1).

4) If c8 ̸= 0 the system of this case is

ẋ =y + xy,

ẏ =− x+
c28z

2

b6 − 1
+ b6y

2 − x2

2
,

ż =− z − b6x
2

2c8
− b6x

c8
+

(b6 − 1)b6y
2

c8
− b6y

c8
+ c8z

2.

(3.14)

The center manifold is defined by the equation

−2b6x− b6x
2 − 2b6y

2 + 2b26y
2 − 2c8z + 2c28z

2 = 0

and on the manifold system (3.2) is reduced either to

ẋ = y + xy, ẏ =
c8(x+ 1)2 −

√
c82 (2b6x(x+ 2)− 4(b6 − 1)b6y2 + 1)

2(b6 − 1)c8
,

if c8 > 0, or to

ẋ = y + xy, ẏ =

√
c82 (2b6x(x+ 2)− 4(b6 − 1)b6y2 + 1) + c8(x+ 1)2

2(b6 − 1)c8
,

if c8 < 0. Clearly, both systems are unchanged under the transformation y →
−y, t → −t, that means, they are time-reversible with respect to the line x =
0. Thus, the singularity at the origin is a center for both systems, yielding the
local analytic integrability of (3.14). (See e.g. [22] for more details about time-
reversibility.)

If c8 = 0 the system of this case is the same as system (3.13).
5) If b8 = 0 the system is decoupled. The system of the first two equations is

time-reversible and, therefore, has a local analytic first integral.

Remark 3.1. The complexification of system (3.2) was crucial for the proof of the
theorem. Trying to compute function (2.3) for system (3.2) we were ably to find
only three first focus quantities v3, v5, v7 satisfying (2.4), whereas for the complex
system (3.4) using the same computational facilities we have computed the first 6
focus quantities g1, . . . , g6.

Remark 3.2. System (3.8), as well as the system on the center manifold of case
3) are quadratic systems. So, the obtained integrals are particular cases of known
integrals of the quadratic system, see e.g. [20, 22].

Proposition 3.1. System (1.6) has an algebraic center manifold passing through
the origin if one of the following conditions is fulfilled:

1) c2 = − b6
2 + c4c8 +

3
4 = b6c4 − c4 +

c6
2 = −b6c8 + b8c4 + b8c6 − c8

2 = b6
2 − 5b6

2 +

c6c8 +
3
2 = b6b8

2 − b6c
2
8 + b8c6c8 − 3b8

4 − c28
2 = −b6c6c8 + b6 + b8c6

2 − c6c8 − 1 =

b6b8c6 − 2b6c8 − 3b8c6
2 + c6c

2
8 + 2c8 = 0,
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2) c4 − c6 = b6 − 1
2 = b8c6 − c8

2 = c2
2c8 + 4c26c8 + 2c6 = b8c

2
2 + 2c6c8 + 1 = 0,

3) c8 = c6 = c4 = b6 − 1 = b8c
2
2 + 3 = 0.

Proof. 1) In this case if c8 ̸= 0 the system has the form

ẋ =y + xy,

ẏ =− x− 2(2b6 + 1)c28z
2

(3− 2b6)2
+ b6y

2 − x2

2
,

ż =− z −
(
2b26 − 5b6 + 3

)
y2

2c8
+

(2b6 − 3)x2

4c8
+

(2b6 − 3)x

2c8
+ c8z

2,

and admits the center manifold

−18x+24b6x−8b26x−9x2+12b6x
2−4b26x

2+18y−24b6y+8b26y−18y2+42b6y
2

−32b26y
2+8b36y

2−24c8z+16b6c8z+12c8yz−32b6c8yz+16b26c8yz+4c28z
2+8b6c

2
8z

2=0.

If c8 = 0 the corresponding system is the same as system (3.13).
Simple computations yield that in case 2) the center manifold is 2c32x+4c22c6x+

8c2c
2
6x+16c36x+c

3
2x

2+2c22c6x
2+4c2c

2
6x

2+8c36x
2+2c32y−4c22c6y+8c2c

2
6y−16c36y+

c32y
2 + 2c22c6y

2 + 4c2c
2
6y

2 + 8c36y
2 − 4c22z − 16c26z − 2c2z

2 − 4c6z
2 = 0 and in case 3)

it is 2c22x+ c22x
2 + 2c22y + 2c22y

2 − 4c2z + 4c2xz + 2c2x
2z − 6z2 = 0.

Remark 3.3. We believe that under conditions of Proposition 1 system (1.6) has
centers at the center manifold, however there remains an open problem to verify
this claim. To prove it one have to show existence of analytic first integrals for the
corresponding systems. It appears some new methods for proving existence of such
integrals should be developed.

4. Limit cycles in system (1.6)
In this section we study the cyclicity of some centers on the center manifolds found
above. We recall, that the cyclicity of a center or a weak focus is the maximum
number of limit cycles that can bifurcate from it under small perturbations within
a given family of polynomial systems.

Let Fk be a real analytic mapping F : R∗ × Rp → Rk defined by

Fk = (v3, v5, . . . , v2k+1),

where v2s+1 are functions satisfying (2.4) (for each fixed λ ∈ R∗ they are polyno-
mials). We denote by dPFk the k × (p + 1) Jacobian matrix of Fk evaluated at
P ∈ E.

In order to study the cyclicity of centers of system (1.6) we use the following
theorem proven in [14].

Theorem 4.1. Let C be an irreducible component of the center variety VC ⊂ Rp+1 of
a polynomial system (2.1) with α = 0. Suppose k ≤ p+1 and let P = (λ∗;µ∗) ∈ C∩E
be a point such that rank(dPFk) = k, i.e., is maximal. Then letting C also denote
the set (λ;µ; 0) : (λ;µ) ∈ C in Rp+2, the following holds:

(i) There exists a neighborhood U ′ of P ′(λ∗;µ∗; 0) ∈ C ∩ E′ ∈ Rp+2 such that
C ∩ U ′ is a submanifold of Rp+2 of codimension at least k + 1 and there exist
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bifurcations of (2.1) producing k small amplitude limit cycles from the origin for
parameter values with (λ;µ;α) sufficiently close to P ′.

(ii) If moreover the codimension of C in Rp+2 is k+1 then P ′ is a smooth point
of C and the cyclicity of P ′ and also of any point in a relatively dense open subset
of C is exactly k.

From (3.1) we see that in system (1.6) the parameter b7 plays the role of param-
eter α in system (2.1). We do not have the parameter λ in system (1.6) since the
coefficient of z in the third equation of (1.6) is fixed (equal to −1). Thus, in the
case of system (1.6), p = 6, but the space of parameters is the R7 (not R8, since we
do not have the parameter λ).

Theorem 4.2. For generic points of components 1), 2), 3), 4), 5) given in Theorem
3.1 the cyclicity of the origin of the corresponding system (1.6) is 2, 5, 4, 4, 1,
respectively.

Proof. 1) Computing the Jacobian matrix of the map F2 = (v3, v5), where v3 =
−ig1, v5 = −ig2 are polynomials in variables c2, b6, b8, c4, c6, c8, obtained substi-
tuting expressions (3.5) into polynomials g1, g2 given in Appendix we see that its
rank at the generic points of component 1) is 2. In the space of parameters R7 the
component is parametrized by the equations

b7 =0,

c2 =− 2c4,

c6 =− 2(b6c4 + 4b8c
3
4 + 2c24c8).

Thus, the codimension of the component in R7 is 3. Therefore, by (ii) of Theorem
4.1 the cyclicity of a generic point of the component is 2.

2) Computing the Jacobian matrix of the map

F5 = (v3, v5, v7, v9, v11), (4.1)

where v3, . . . , v11 are polynomials defined by (3.6), we obtain that the rank of the
Jacobian at generic points is 5. Since the codimension of the component in the
space of parameters is 6, by (ii) of Theorem 4.1 the cyclicity of a generic point of
the component is 5.

The proofs of other cases is similar.

Remark 4.1. In the statement of Theorem 4.2 only limit cycles appearing from
the origin are mentioned. Due to the symmetry of system (1.6) the same number
of limit cycles bifurcate from the point (−2, 0, 0).

Remark 4.2. Since in case 2) the Jacobian of map (4.1) depends only on one
parameter, the minors of order 5 have simple expressions. Namely, they are

m1 = m2 = m3 = 0,

m4 = (387522942112251489696698503020375c8)/32,

m5 = −(387522942112251489696698503020375/(64c8)),

m6 = −((387522942112251489696698503020375c28)/16).

Thus, from the proof of the previous theorem we see that for any point of component
2) with c8 ̸= 0, there are perturbations of the system yielding 5 small limit cycles in
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a neighborhood of the origin of system (1.6), and, due to the symmetry, five other
limit cycles around the point (−2, 0, 0).

To summarize, we have found 8 necessary conditions for existence of local an-
alytic first integral near the origin and the point (−2, 0, 0) in system (1.6). The
sufficiency of 5 of them is proven in Theorem 3.1, however there remains an open
problem to prove that under 3 other conditions (the ones given in the statement of
Proposition 1) the system has an analytic first integral as well.

The maximal cyclicity of the centers mentioned in Theorem (4.2) is five. In
this connection there remains an open problem to study the maximal cyclicity
of weak foci on the center manifolds. However we can not perform this study
using our computational facilities. Using computations in the polynomial ring
Z32003[c2, b6, b8, c4, c6, c8] we checked that v13 does not vanishes identically on the
variety of the ideal ⟨v3, . . . , v11 in Z6

32003, this indicates that most probably v13 does
not vanishes identically on the variety of the ideal I = ⟨v3, . . . , v11⟩ in C6, so the
order of ”complex” focus of system (1.6) can be 6. However we do not see a way to
check if this property takes place for the case of the real variety of the ideal I, so it
is an open problem to determine the maximal cyclicity of foci of system (1.6).
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Appendix
Two first focus quantities of system (3.4) are:

g1=(1/10 + I/10)B6((14− 8I)A4C
2
1 + (1 + I)C1C2 + (22 + 22I)A4C1C2

− (9− 2I)B6C
3
1C2 − (8− 14I)A4C

2
2 − (11 + 11I)B6C

2
1C

2
2 + (2− 9I)B6C1C

3
2

+ 10C1C4 + (10I)C2C4 − (2− 4I)C1C6 + (4− 2I)C2C6

− (11 + 2I)C2
1C2C8 − (2 + 11I)C1C

2
2C8);

g2=(1/1500)IB6((80 + 80I)A3
4((940 + 1667I)C1 − (940− 1667I)C2)(C1 + IC2)

− (9475−165I)B3
6C

6
1C

2
2+10(150C2

4−15C2C4((14+15I)+B6C2((23+2I)C2

+ (3 + I)C4)) + C2((−48 + 147I) +B6C2((65 + 124I)C2 − (18− 84I)B6C
3
2

− (394 + 68I)C4))C6 + 30C4C6 − 4(−3 + (24 + 38I)B6C
2
2 )C

2
6 )

+ (15 + 15I)C2(C2((−55 + 10I)C4 − (24− 10I)C6) + (94 + 38I)B6C
3
2C6

− (8− 4I)(25C2
4 + (4− 12I)C4C6 + (6 + 4I)C2

6 ))C8 + (1140 + 780I)C3
2C6C

2
8

− (2 + 4I)B2
6C

5
1 ((186 + 48I)C6 + C2((−252 + 639I) + (5472 + 2805I)B6C

2
2

+ (935− 4085I)C2C8)) + (1 + I)B6C
4
1 ((18023− 18023I)B2

6C
4
2

+ 5B6C2((1474+2033I)C2+(1026−1068I)C4+(6−704I)C6)

− (12504 + 2598I)B6C
3
2C8 + 5IC8((3+9I)((−56+17I)C2+(2+32I)C6)

+ (2880 + 769I)C2
2C8)) + (1 + 2I)C2

1 ((−1961 + 3757I)B3
6C

6
2

+ (4+2I)B6(−800IC2
2−(1143+487I)C2C4+(15+45I)C2

4+(718+149I)C2C6
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+ (68 + 394I)C4C6 + (152 + 96I)C2
6 )− (2− 4I)B6C

2
2 ((909 + 1262I)C2

− 3716C4−2022C6)C8−(7871−5187I)B6C
4
2C

2
8

+(1+I)B2
6C

3
2 ((−4981+2592I)C2 − (4946− 3602I)C4 + (2632− 8742I)C6

+ (492 + 5906I)C2
2C8)− (3− 6I)C8((−212 + 145I)C2 + (65− 45I)C4

+ (34− 14I)C6 − 4C2(45C2 + (226− 68I)C4 + (45 + 39I)C6)C8

+ (578 + 150I)C3
2C

2
8 )) + (20 + 20I)A2

4((−421 + 1249I)B6C
4
1

+ C3
1 ((−5706− 8580I)B6C2 + (246 + 716I)C8) + C2

1 ((1367 + 1958I)

+ (4− 4I)C2(3154B6C2 + (374− 359I)C8)) + C2((−3964− 210I)C4

+ (1812 + 1972I)C6 + IC2((−1367 + 1958I) + (421 + 1249I)B6C
2
2

− (246− 716I)C2C8)) + (1 + I)C1((2087 + 1877I)C4 − (1892− 80I)C6

+ C2(3713I + (7143− 1437I)B6C
2
2 + (1436− 1496I)C2C8)))

+ 5C1((612 + 54I)B2
6C

5
2 + 2B6C

4
2 ((1047 + 21I)B6C4 + (355 + 349I)B6C6

+(387−66I)C8)−6C2(17+4B6(25C
2
4+67C4C6+44C2

6 )+178C4C8+28C6C8)

+ 6I((75 + 70I)C4 − (49− 16I)C6 + (2 + 6I)(25C2
4 + (4 + 12I)C4C6

+ (6− 4I)C2
6 )C8) + C2

2 (2B6((487 + 1143I)C4 − (149 + 718I)C6)

+ 3C8((212 + 145I) + (904 + 272I)C4C8 + (180− 156I)C6C8))

+ 2C3
2 ((57 + 39I)C2

8 +B6((149 + 334I) + (1587 + 1161I)C4C8

+ (1341 + 97I)C6C8))) + 2A4((30 + 140I)B2
6C

6
1

+ (5 + 15I)B6C
5
1 ((163− 1174I)B6C2 + (17 + 15I)C8)

+(1+3I)C4
1 (B6((234+883I)+(21438+8684I)B6C

2
2 )−(850+7445I)B6C2C8

+ (20 + 70I)C2
8 ) + C3

1 (−2B6((−3395 + 16800I)C2 + 54433B6C
3
2

+(6175−545I)C4+(620 + 380I)C6) + 5((−125+114I)+(1271+ 4951I)B6C
2
2 )C8

+ (11680− 8460I)C2C
2
8 ) + 5((6− 28I)B2

6C
6
2 + 900C2

4 + 536C4C6 + 224C2
6

− 2C2((1113 + 1384I)C4 + (138− 1078I)C6) + IC3
2 ((−218 + 2470I)B6C4

+ (152 + 248I)B6C6 − (114− 125I)C8)− (28 + 66I)B6C
5
2C8

− (1− I)C2
2 ((−216 + 341I) + (107 + 1747I)C4C8 + (470 + 542I)C6C8)

− (1− I)C4
2 ((83 + 400I)B6 + (6 + 32I)C2

8 )) + C2
1 ((−4614− 72998I)B2

6C
4
2

+ 10B6C2(6265C2 + (1667− 3451I)C4 − (2044− 2988I)C6)

+ (6355− 24755I)B6C
3
2C8 + 5((−125 + 557I) + 2I((820 + 927I)C4

+ (36 + 506I)C6)C8 + C2C8((3275− 2688I) + 5964C2C8)))

+5C1((−2226+2768I)C4−(276+2156I)C6+C2(−1774+(3685+685I)B2
6C

4
2

+ 2B6C2((679 + 3360I)C2 + (1667 + 3451I)C4 − (2044 + 2988I)C6)

+ (4297 + 1999I)B6C
3
2C8 + C8((3275 + 2688I)C2 − 6228C4 − 2008C6

+ (2336 + 1692I)C2
2C8)))) + 2C3

1 ((138 + 13749I)B3
6C

5
2

+(135+75I)C2
8 ((1−2I)(C2+2C6)−(21−20I)C2

2C8)+B
2
6C

2
2 ((−2930+9220I)C4

+ (11797−8319I)C6+C2(−13883−(4953−7551I)C2C8))−5B6((345−30I)C4

− (65−124I)C6+C2((−149+334I)+C8((909−1262I)C2−(1587−1161I)C4
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− (1341− 97I)C6 + 3675C2
2C8))))).
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