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AN A PRIORI ERROR ANALYSIS OF A
STRAIN GRADIENT MODEL USING C0

INTERIOR PENALTY METHODS

Jacobo Baldonedo1 and José R. Fernández2,†

Abstract In this work we study, from the numerical point of view, a strain
gradient model. It can be written as a linear fourth-order in space and second-
order in time partial differential equation which leads to a parabolic variational
equation in terms of the velocity field. Then, a fully discrete approximation is
provided by using the implicit Euler scheme to discretize the time derivatives
and the so-called C0 interior penalty method for the spatial approximation. A
priori error estimates are obtained, and from them it follows the convergence of
the approximations (under suitable regularity conditions). Finally, some two-
dimensional numerical simulations are shown to demonstrate the numerical
behaviour.
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1. Introduction
Since the first results obtained by Toupin [21] and Mindlin [20] the strain gradient
theory has been studied in depth. Its main idea is to include higher gradients of
displacement in the basic postulates of the elasticity theory. In [21] the nonlinear
form was considered, and its linear version was studied in [20]. It is well-known that
this strain gradient theory of elasticity is adequate to deal with problems related
to the size effects. Some classical examples are, for instance, auxetic materials,
bones, honeycomb structures as well as some types of composites. The number of
contributions published over the last fifty years is really huge (see, e.g., [1, 3, 7, 9–
11,14,16–18] and the references cited therein).

In this work, we continue the research started in [17], where the thermal effects
and the microtemperatures were considered. Here, our aim is to consider the finite
element approximation using the so-called C0 interior penalty formulation provided
in [4] (and used later for many other problems as [2,8,12]). So, in order to simplify
the calculations and the analysis, we restrict ourselves to the simpler case of the
strain gradient elasticity.
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The paper is structured as follows. The mechanical problem and its weak form
are presented in Section 2. Then, the fully discrete approximations are introduced
in Section 3 by using the implicit Euler scheme and a C0 interior penalty method
to approximate the time derivatives and the spatial variable, respectively. A priori
error estimates and a convergence order are shown. Finally, some numerical simu-
lations are presented in Section 4 to demonstrate the accuracy of the finite element
approximation.

2. The mechanical problem and its variational for-
mulation

Let B be a two-dimensional polygonal domain with boundary ∂B and outward
unit normal vector n = (ni)

2
i=1. We assume that the body occupying the set B is

being acted upon by a volume force of density f = (fi)
2
i=1. The spatial variable

is represented by x and the time variable by t; being the final time denoted by T ,
although the dependence of the functions on these variables is omitted for the sake
of clarity. As usual, a subscript after a comma represents its spatial derivative with
respect to that variable, i.e. fi,j =

∂fi
∂xj

, and the time derivatives are represented

as a dot over each variable for the first order or two dots for the second order.
Moreover, the repeated index notation is used to indicate summation.

If we denote by u = (u1, u2) the displacement field, the corresponding mechani-
cal problem that we will numerically study in this paper is the following.
Problem P. Find the displacement field u : B̄× [0, T ] → R2 such that, for i = 1, 2,

(µ− ν1∆)∆ui + (λ+ µ− ν2∆)uj,ji + ρfi = ρüi in B × (0, T ), (2.1)

ui =
∂ui

∂n
= 0 on ∂B × (0, T ), (2.2)

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0i (x) for a.e. x ∈ B. (2.3)

Here, ρ denotes the material density (from now on, in order to simplify the writing,
we assume that it is equal to one), λ and µ are the Lame’s parameters, ν1 and ν2
are constitutive coefficients related to the strain gradient model and ∆ represents
the Laplacian operator. Finally, u0 = (u0

i )
2
i=1 and v0 = (v0i )

2
i=1 are the initial

conditions for the displacement and velocity fields.
In order to provide the numerical analysis of this problem in the next section,

we will assume the following conditions on the constitutive parameters:
λ > 0, µ > 0, ν1 > 0, ν2 > 0. (2.4)

We note that these conditions are slightly more restrictive that those imposed in [17];
however, we used them for the sake of simplicity.

Now, we obtain the variational form of Problem P. Therefore, we denote by
Y = L2(B), H = [L2(B)]2, Q = [L2(B)]2×2 and V = [H2

0 (B)]2.
By using Green’s formula and boundary conditions (2.2), we write the variational

formulation of Problem P in terms of the velocity field v = u̇.
Problem VP. Find the velocity field v : [0, T ] → V such that, for a.e. t ∈ (0, T )
and for all w ∈ V ,(

v̇(t), w
)
H
+ ν1

(
∆u(t), ∆w

)
H
+ ν2

(
∇divu(t), ∇divw

)
H
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+µ(∇u(t),∇w)Q + (λ+ µ)(divu(t),divw)Y =
(
f(t), w

)
H
. (2.5)

The following theorem which states the existence of a unique solution to Problem
VP was proved in [15].

Theorem 2.1. Under the assumptions (2.4) there exists a unique solution to Prob-
lem VP with the following regularity:

u ∈ C2([0, T ];H) ∩ C1([0, T ];V ).

We omit the details for the sake of clarity because it is not the aim of this work.

3. Fully discrete approximation by using C0 interior
penalty methods

In this section, we now consider a fully discrete approximation of Problem V P .
This is done in two steps. First, we denote by T h a regular triangulation of B in
the sense of [6]. Thus, according to [4] we construct the finite dimensional space
V h given by

V h = {wh ∈ [C(B)]2 ∩ [H1
0 (B)]2 ; wh

|Tr ∈ [P2(Tr)]
2 ∀Tr ∈ T h},

where P2(Tr) represents the space of polynomials of degree less or equal to two in
the element Tr. Here, h > 0 denotes the spatial discretization parameter. Moreover,
we assume that the discrete initial conditions, denoted by uh

0 and vh
0 , are given by

uh
0 = Phu0, vh

0 = Phv0, (3.1)

where Ph is the classical finite element interpolation operator over V h (see, e.g., [6]).
We will also use the following notations:

• hTr
: diameter of element Tr (so, h = max

hTr∈T h
hTr

).

• Eh
i : set of all interior edges of T h.

• Eh
b : set of all boundary edges of T h.

• Eh: set of all edges of T h (that is, Eh = Eh
i ∪ Eh

b ).

Let e ∈ Eh
i be the edge shared by two neighboring triangles Tr+ and Tr− (i.e.

e ∈ ∂Tr+ ∩ ∂Tr−). Moreover, let us denote by n+ the unit normal vector of e
pointing from Tr+ to Tr−, and n− the unit normal vector of e pointing from Tr− to
Tr+ (which implies that n+ = −n−). For any scalar valued function f ∈ H2(Tr),
we define the jumps J·K and the averages {{·}} across the edge e as follows:s

∂f

∂n

{
=

∂f+
∂ne

− ∂f−
∂ne

,

{{
∂2f

∂n2

}}
=

1

2

(
∂2f+
∂n2

e

+
∂2f−
∂n2

e

)
.

If e ∈ Eh
b (that is, e is part of the boundary of B), then the jumps and the

averages are given by (ne represents now the unit normal vector pointing outside
B): s

∂f

∂n

{
= − ∂f

∂ne
,

{{
∂2f

∂n2

}}
=

∂2f

∂n2
e

.
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Secondly, we consider a partition of the time interval [0, T ], denoted by 0 = t0 <
t1 < · · · < tN = T . In this case, we use a uniform partition with step size k = T/N
and nodes tn = nk for n = 0, 1, . . . , N . For a continuous function z(t), we use the
notation zn = z(tn).
Problem VPhk. Find the discrete velocity field vhk = {vhk

n }Nn=0 ⊂ V h such that,
for n = 1, 2, . . . , N and for all wh ∈ V h,(

(vhk
n − vhk

n−1)/k,w
h
)
H
+Ah(uhk

n ,wh) =
(
fn,w

h
)
H
, (3.2)

where the discrete displacement field uhk
n is obtained as

uhk
n = k

n∑
j=1

vhk
j + uh

0 .

In equation (3.2) the bilinear form Ah(·, ·) is given by

Ah(u,w) =
∑

Tr∈T h

∫
Tr

ν1∆u ·∆w + ν2∇divu · ∇divw + µ∇u : ∇w

+(λ+ µ)divudivw dx+
∑
e∈Eh

α

|e|

∫
e

s
∂u

∂n

{ s
∂w

∂n

{
dσ

+
∑
e∈Eh

b

∫
e

{{
∂2w

∂n2

}} s
∂u

∂n

{
+

{{
∂2u

∂n2

}} s
∂w

∂n

{
dσ,

where |e| denotes the measure of e and α represents a penalty parameter.

Remark 3.1. This problem is solved using the finite element framework FEniCS
[13, 19]. The computations are performed in a 3.30Ghz PC with 16Gb of RAM
memory, where a typical run with h = k = 0.015 takes around 29 seconds of CPU
time.

In [4] the authors proved that the bilinear form Ah(·, ·) is continuous and, if
the penalty parameter α is assumed sufficiently large, coercive on the finite element
space V h with respect to the discrete norm ∥ · ∥h defined as

∥w∥2h =
∑

Tr∈T h

(
|w|2[H2(Tr)]2

+ |w|2[H1(Tr)]2

)
+

∑
e∈Eh

|e|
∥∥∥∥{{∂w2

∂n2

}}∥∥∥∥2
L2(e)

+
∑
e∈Eh

|e|−1

∥∥∥∥s
∂w

∂n

{∥∥∥∥2
L2(e)

.

That is, if α is assumed large enough then there exist two positive constants C1 and
C2 such that

|Ah(u,w)| ≤ C1∥u∥h∥w∥h, Ah(w,w) ≥ C2∥w∥2h.

We note that this norm ∥ · ∥h is equivalent to the seminorm | · |H2(B,T h) given
by

|w|2[H2(B,T h)]2 =
∑

Tr∈T h

|w|2[H2(Tr)]2
+

∑
e∈Eh

|e|−1

∥∥∥∥s
∂w

∂n

{∥∥∥∥2
L2(e)

.
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Moreover, as it is pointed out in [4], the size of the penalty parameter α depends
only on the shape regularity of T h.

In the rest of this section we assume that conditions (2.4) hold.
Now, we will obtain some a priori error estimates. First, proceeding as in [4] we

find that the solution to Problem VP satisfies the following variational equation:(
v̇n,w

h
)
H
+Ah(un,w

h) =
(
fn,w

h
)
H
. (3.3)

Subtracting variational (3.3) and (3.2) it follows that(
v̇n − (vhk

n − vhk
n−1)/k,w

h
)
H
+Ah(un − uhk

n ,wh) = 0,

and so we have, for all wh ∈ V h,(
v̇n − (vhk

n − vhk
n−1)/k,vn − vhk

n

)
H
+Ah(un − uhk

n ,vn − vhk
n )

=
(
v̇n − (vhk

n − vhk
n−1)/k,vn −wh

)
H
+Ah(un − uhk

n ,vn −wh).

Taking into account that(
v̇n−(vhk

n −vhk
n−1)/k,vn−vhk

n

)
H

=
(
v̇n − (vn − vn−1)/k,vn − vhk

n

)
H

+
(
(vn−vn−1−(vhk

n −vhk
n−1))/k,vn−vhk

n

)
H
,(

(vn−vn−1−(vhk
n −vhk

n−1))/k,vn−vhk
n

)
H
≥ 1

2k

[
∥vn−vhk

n ∥2H−∥vn−1−vhk
n−1∥2H

]
,

Ah(un − uhk
n ,vn − vhk

n ) =Ah(un − uhk
n , u̇n − (un − un−1)/k)

+Ah(un − uhk
n , (un − uhk

n − (un−1 − uhk
n−1))/k),

Ah(un−uhk
n , (un−uhk

n −(un−1−uhk
n−1))/k)≥

1

2k

[
∥un−uhk

n ∥2h−∥un−1−uhk
n−1∥2h

]
,

using several times Cauchy’s inequality ab ≤ ϵa2 +
1

4ϵ
b2, a, b, ϵ ∈ R with ϵ > 0, it

follows that

1

2k

[
∥vn − vhk

n ∥2H − ∥vn−1 − vhk
n−1∥2H

]
+

1

2k

[
∥un − uhk

n ∥2h − ∥un−1 − uhk
n−1∥2h

]
≤C

(
∥v̇n − (vn − vn−1)/k∥2H + ∥u̇n − (un − un−1)/k∥2h + ∥vn −wh∥2H

+ ∥vn −wh∥2h + ∥vn − vhk
n ∥2H + ∥un − uhk

n ∥2h
+
(
(vn − vn−1 − (vhk

n − vhk
n−1))/k,vn −wh

)
H

)
.

Summing up to n we have

∥vn − vhk
n ∥2H + ∥un − uhk

n ∥2h

≤Ck

n∑
j=1

(
∥v̇j − (vj − vj−1)/k∥2H + ∥vj −wh

j ∥2H

+ ∥u̇j − (uj − uj−1)/k∥2h + ∥vj −wh
j ∥2h + ∥vj − vhk

j ∥2H + ∥uj − uhk
j ∥2h

+
(
(vj − vj−1 − (vhk

j − vhk
j−1))/k,vj −wh

j

)
H

)
+ C(∥v0 − vh

0∥2H + ∥u0 − uh
0∥2h).
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Now, keeping in mind that

k

n∑
j=1

(
(vj − vj−1 − (vhk

j − vhk
j−1))/k,vj −wh

j

)
H

=(v0 − vh
0 ,vn −wh

n)H + (vh
0 − v0,v1 −wh

1 )H

+

n−1∑
j=1

(vj − vhk
j ,vj −wh

j − (vj+1 −wh
j+1))H ,

applying a discrete version of Gronwall’s inequality (see [5] for details) we have the
following.

Theorem 3.1. Let the assumptions (2.4) hold. If we denote by v and vhk the
respective solutions to problems V P and V Phk, then we have the following a priori
error estimates, for all wh = {wh

j }Nj=0 ⊂ V h,

max
0≤n≤N

{
∥vn − vhk

n ∥2H + ∥un − uhk
n ∥2h

}
≤Ck

N∑
j=1

(
∥v̇j−(vj−vj−1)/k∥2H+∥vj−wh

j ∥2H+∥u̇j−(uj−uj−1)/k∥2h+∥vj−wh
j ∥2h

)

+ C max
0≤n≤N

∥vn −wh
n∥2H +

C

k

N−1∑
j=1

∥vj −wh
j − (vj+1 −wh

j+1)∥2H

+ C
(
∥v0 − vh

0∥2H + ∥u0 − uh
0∥2h

)
, (3.4)

where C > 0 is a positive constant assumed to be independent of the discretization
parameters h and k.

Now, assume that the solution to Problem V P has the additional regularity:

v ∈ C1([0, T ];H) ∩ C([0, T ]; [H2+r(B)]2) ∩H1(0, T ; [H1(B)]2), (3.5)

where we denote by r ∈ (1/2, 1] the index of elliptic regularity (see [4]), then from
estimates (3.4) we have the following result which shows the convergence order.

Corollary 3.1. Let the assumptions of Theorem 3.1 and the additional regularity
(3.5) hold. Then, there exists a positive constant C, independent of the discretization
parameters h and k such that

max
0≤n≤N

{
∥vn − vhk

n ∥H + ∥un − uhk
n ∥h

}
≤ Chr + k.

4. Numerical results
We consider in all the numerical experiments the domain B = [0, 1]× [0, 1], and we
denote the spatial coordinates as x = (x, y).

To check the numerical convergence we define an exact solution as follows:

u(x, t) = (10t2 (−x+ 1)
3
(−y + 1)

3
etx3y3, 10t2 (−x+ 1)

3
(−y + 1)

3
etx3y3),

and the source function f is obtained from equation (2.1).
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4.1. Penalty parameter
Since there is no way of determining the optimal parameter α of the interior penalty
method, we perform a parametric study. Thus, we solve Problem VPhk in the
domain B given above, with the source function defined from the previous exact
solution, and for a final time T = 1. The discretization parameters used in this
example are: k = 0.00390625 and h = 0.00552427. We compare the numerical
solution with the exact one, computing the total error Err from several terms:

Err = max
0≤n≤N

{
∥vn − vhk

n ∥H + ∥un − uhk
n ∥h

}
.

We obtain the results presented in Figure 1, showing that the error stabilizes for
values of α above 150, approximately. From now on, we consider the value of 250
for this parameter, ensuring that it has no influence on the error. We recall that
the theoretical value should be large enough.

0 100 200 300 400 500
α

0.0

0.2

0.4

0.6

0.8

Er
r

Figure 1. Evolution of the error with respect to parameter α.

4.2. Numerical convergence
As a second example, in order to show the convergence of the discrete solution with
a numerical example, we solve the discrete problem in the unit square with the
source function defined previously. The final time is considered T = 1 again.

In Table 1 we show the error for some values of the discretization parameters h
and k. In Figure 2 we show the evolution of the error with respect to parameter
h+k. We observe that the algorithm converges although the numerical convergence
seems to be quadratic.

4.3. Numerical example
In this final example, we will show the solution of the aforementioned problem. We
consider the same spatial domain as before and final time T = 1. The discretization
parameters for this case are h = 0.01104 and k = 0.00195. In Figure 3 we show
the solution for the first components of the velocity and displacement fields at final
time. We can see both variables have the same shape, because the time derivative
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Table 1. Numerical errors for some discretization parameters.
h ↓ k → 2−2 2−4 2−6 2−7 2−8 2−9 2−10

7.071e− 01 6.36003 6.31253 6.30359 6.29637 6.29422 6.29232 6.29093
3.536e− 01 1.57240 1.43045 1.41183 1.40150 1.40019 1.39958 1.39930
1.768e− 01 1.30932 1.14905 1.12077 1.10044 1.09723 1.09568 1.09494
8.839e− 02 0.67034 0.49520 0.46257 0.43866 0.43501 0.43329 0.43247
4.419e− 02 0.42573 0.24647 0.21259 0.18673 0.18259 0.18069 0.17983
2.210e− 02 0.33152 0.14850 0.11394 0.08733 0.08289 0.08077 0.07992
1.105e− 02 0.29300 0.10887 0.07393 0.04695 0.04239 0.04019 0.03949
5.524e− 03 0.27532 0.09101 0.05605 0.02907 0.02451 0.02231 0.02176
3.536e− 03 0.27001 0.08502 0.05000 0.02299 0.01843 0.01623 0.01573

0.00 0.05 0.10 0.15 0.20 0.25
h+ k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Er
r

Figure 2. Numerical convergence of the approximation.
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Figure 3. First components of the velocity (left) and displacement (right) fields.
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of the theoretical solution has the same spatial dependence. Since the borders of
the plate are fixed, the maximum deformation appears in the center as expected.
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