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Abstract We examine the limiting dynamics of a class of non-autonomous
stochastic Ginzburg-Landau equations driven by multiplicative noise and de-
terministic non-autonomous terms defined on thin domains. The existence
and uniqueness of tempered pullback random attractors are established for
the stochastic Ginzburg-Landau systems defined on (n + 1)-dimensional nar-
row domain. In addition, the upper semicontinuity of these attractors is ob-
tained when a family of (n + 1)-dimensional thin domains collapses onto an
n-dimensional domain.
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1. Introduction
The Ginzburg-Landau equation is an important nonlinear evolution equation, which
is used to simplify mathematical models for pattern formation in mechanics, physics
and chemistry (see [2,5,8] for more details, particularly, physical backgrounds). For
the deterministic Ginzburg-Landau equation, the long time behavior of solutions
was investigated in [15, 16, 27]. For the stochastic Ginzburg-Landau equation, the
study of the random attractor can be found in [17,26,28]. Our main interest in this
work is to study the dynamics of the stochastic system (1.1) defined on the thin
domain Oε for small ε and explore the limiting behavior of the system as ε→ 0.

In this paper, we investigate the asymptotic behavior of solutions of the follow-
ing non-autonomous stochastic Ginzburg-Landau equations driven by multiplicative
noise on Oε for t > τ with τ ∈ R

dûε − (1 + iµ)∆ûεdt+ ρûεdt = (f(t, x, ûε) +G(t, x)) dt+ ûε ◦ dW, x ∈ Oε,

∂ûε

∂νε
= 0, x ∈ ∂Oε,

(1.1)
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with initial condition
ûε(τ, x) = ûετ (x), x ∈ Oε, (1.2)

where ûε(t, x) is a complex-valued function on R×Oε. In (1.1), i is the imaginary
unit, µ, ρ are real constants and ρ > 0. νε is the unit outward normal vector to ∂Oε.
W is a two-sided real-valued Wiener process on a probability space, the symbol ◦
indicates that the equation is understood in the sense of Stratonovich integration.
The so-called thin domain Oε is given by

Oε = {x = (x∗, xn+1)| x∗ = (x1, x2, · · · , xn) ∈ Q, 0 < xn+1 < εg(x∗)}

with 0 < ε ≤ 1 and g ∈ C2(Q, (0,+∞)), where Q is a smooth bounded domain in
Rn. Since g ∈ C2(Q, (0,+∞)), there exist two positive constants β1 and β2 such
that

β1 ≤ g(x∗) ≤ β2, ∀ x∗ ∈ Q. (1.3)

Denote O = Q× (0, 1) and Õ = Q× (0, β2) which contains Oε for 0 < ε ≤ 1. The
nonlinearity f and the body force G satisfy some conditions which will be specified
later.

As ε → 0, the thin domain Oε collapses to an n-dimensional domain. In this
paper, we will see that the limiting behavior of the equation is determined by the
following system on the lower dimensional spatial domain Q, for t > τ with τ ∈ R
and y∗ = (y1, · · · , yn) ∈ Q,

du0−(1+iµ)1
g

n∑
i=1

(gu0yi
)yi
dt+ρu0dt =

(
f(t, y∗, 0, u0) +G(t, y∗, 0)

)
dt+ u0 ◦ dW,

∂u0

∂ν0
= 0, y∗ ∈ ∂Q,

(1.4)
with initial condition

u0(τ, y∗) = u0τ (y
∗), y∗ ∈ Q, (1.5)

where ν0 is the unit outward normal vector to ∂Q. Note that u0yi
means ∂u0

∂yi
in

(1.4) and similar notation will be used throughout this paper.
The study of the asymptotic behavior of deterministic PDEs defined in thin

domains was first initiated by Hale and Raugel [9, 10]. Then their results were
extended to various problem, see for instance, [1, 4, 7, 12,13,18–22].

The Ginzburg-Landau equation is an important nonlinear evolution equation,
which is used to simplify mathematical models for pattern formation in mechan-
ics, physics and chemistry. For the deterministic Ginzburg-Landau equation, the
long time behavior of solutions was investigated in [15, 16, 27]. For the stochastic
Ginzburg-Landau equation, some recent studies can be found in [6,11,17,23,26,28].
Particularly, in [14], the authors studied the stochastic Ginzburg-Landau equation
on thin domain Oε ⊂ R2. Our main interest in this work is to study the dynamics of
the stochastic system (1.1) defined on the thin domain Oε ⊂ Rn+1 for small ε with
an additional nonlinear term f(t, x, ûε) under some further restrictions, and explore
the limiting behavior of the system as ε → 0. Our study is a natural extension of
the work done in [14] and provides complementary understanding of the dynamics
of the stochastic Ginzburg-Landau equation.

We organize the paper as follows. In Section 2, we establish the existence of a
continuous cocycle in L2(O) for the stochastic equation defined on the fixed domain
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O, which is converted from (1.1) and (1.2). We also describe the existence of a
continuous cocycle in L2(Q) for the stochastic equation (1.4) and (1.5). In Section
3, we deduce all necessary uniform estimates of the solutions. In Section 4, we prove
the existence and uniqueness of tempered attractors for the stochastic equation.
Section 5 deals with the upper semicontinuity of these attractors.

2. Cocycles for stochastic Ginzburg-Landau systems

In this section, we will defined a continuous cocycle for the following non-autonomous
Ginzburg-Landau systems deriven by multiplicative white noise for x = (x∗, xn+1) ∈
Oε and t > τ ,


dûε − (1 + iµ)∆ûεdt+ ρûεdt = (f(t, x, ûε) +G(t, x)) dt+ ûε ◦ dW,
∂ûε

∂νε
= 0, x ∈ ∂Oε,

ûε(τ, x) = ûετ (x),

(2.1)

where τ ∈ R, µ, ρ > 0 are constants, G ∈ L2
loc(R, L∞(Õ)). W is a two-sided real-

valued Wiener process defined on the metric dynamical system (Ω,F ,P, {θt}t∈R),
where Ω = {ω ∈ C(R,R) : ω(0) = 0} equipped with the compact-open topology,
F = B(Ω) is the Borel sigma-algebra of Ω, P is the Wiener measure, and {θt}t∈R is
the measure-preserving transformation group on Ω given by θtω(·) = ω(·+ t)−ω(t)
for all (ω, t) ∈ Ω × R. In this paper, f is a nonlinear function, and in the various
lemmas that follow we assume f satisfies the following conditions: for all x ∈ Õ,
u ∈ C and t, s ∈ R,

Ref(t, x, u)ū ≤ −γ|u|p + ψ1(t, x), (2.2)∣∣∣∣∂f(t, x, u)∂u

∣∣∣∣ ≤ β, (2.3)∣∣∣∣∂f∂x (t, x, u)
∣∣∣∣ ≤ ψ2(t, x), (2.4)

where p ≥ 2, ψ1 ∈ L1
loc(R, L∞(Õ)), ψ2 ∈ L2

loc(R, L∞(Õ)), γ and β are positive
constants, . In particular, those conditions also hold for the well-known non-gauge
interaction function f = (α+iβ)|u|2u (or f = (1+iµ)|u|2σu with σ > 0, particularly
for σ = 1, for many related works), which is widely used for Ginzburg-Landau
equations (see [2, 5, 8] for example). In the function f , α represents the nonlinear
saturation, which is required to be positive, while β represents the strength of
nonlinear dispersion effects.

Next, we transfer the problem (2.1) into a boundary value problem on the
fixed domain O. For 0 < ε ≤ 1, we define a transformation Tε : Oε → O
by Tε(x

∗, xn+1) = (x∗, xn+1

εg(x∗) ) for x = (x∗, xn+1) ∈ Oε. Let y = (y∗, yn+1) =

Tε(x
∗, xn+1). Then we have x∗ = y∗, xn+1 = εg(y∗)yn+1. By some calculations, we
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find that the Jacobian matrix of Tε is given by

J =
∂(y1, · · · , yn+1)

∂(x1, · · · , xn+1)
=



1 0 · · · 0 0

0 1 · · · 0 0

...

0 0 · · · 1 0

−yn+1

g gy1
−yn+1

g gy2
· · · −yn+1

g gyn

1
εg(y∗)


.

The determinant of J is |J | = 1
εg(y∗) . Let J∗ be the transport of J . Then we have

JJ∗ =



1 0 · · · 0 −yn+1

g gy1

0 1 · · · 0 −yn+1

g gy2

...
... . . . ...

...

0 0 · · · 1 −yn+1

g gyn

−yn+1

g gy1
−yn+1

g gy2
· · · −yn+1

g gyn

n∑
i=1

(
yn+1

g gyi

)2

+
(

1
εg(y∗)

)2


.

It follows from [9] that the gradient operator and the Laplace operator in the original
variable x ∈ Oε and the new variable y ∈ O are related by

∇xû(x) = J∗∇yu(y) and △xû(x) = |J |divy(|J |−1JJ∗∇yu(y)) =
1

g
divy(Pεu(y)),

where û(x) = u(y), ∇x is the gradient operator in x ∈ Oε, △x is the Laplace
operator in x ∈ Oε, divy is the divergence operator, ∇y is the gradient operator in
y ∈ O, and Pε is the operator given by

Pεu(y) =



guy1
− gy1

yn+1uyn+1

...

guyn
− gyn

yn+1uyn+1

−
n∑

i=1

yn+1gyi
uyi

+ 1
ε2g

(
1 +

n∑
i=1

(εyn+1gyi
)
2

)
uyn+1


.

In the sequel, for x = (x∗, xn+1) ∈ Oε, y = (y∗, yn+1) ∈ O and t, s ∈ R, we
denote by

uε(y) = ûε(x), f(t, x, s) = f(t, x∗, xn+1, s),

fε(t, y
∗, yn+1, s) = f(t, y∗, εg(y∗)yn+1, s), f0(t, y

∗, s) = f(t, y∗, 0, s),

Gε(t, y
∗, yn+1) = G(t, y∗, εg(y∗)yn+1), G0(t, y

∗) = f(t, y∗, 0).

Then, the problem (2.1) is equivalent to the following system for y = (y∗, yn+1) ∈ O
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and t > τ ,
duε − (1 + iµ)1

g
divy(Pεu

ε)dt+ ρuεdt = (f(t, y, uε) +Gε(t, y)) dt+ uε ◦ dW,

Pεu
ε · ν = 0, y ∈ ∂O,

uε(τ, y) = uετ (y) = ûετ (T
−1
ε (y)),

(2.5)
where ν is the unit outward normal vector to ∂O.

To write the problem (2.5) as an abstract system, we introduce an inner product
(·, ·)Hg(O) on L2(O) by

(u, v)Hg(O) =

∫
O
guv̄dy, for all u, v ∈ L2(O)

and denote by Hg(O) the space equipped with this inner product. Since g is a
continuous function on Q and satisfies (1.3), one can easily show that Hg(O) is a
Hilbert space with norm equivalent to the natural norm of L2(O). For 0 < ε ≤ 1,
we introduce a bilinear form aε(·, ·) : H1(O)×H1(O) → C, given by

aε(u, v) = (J∗∇yu, J
∗∇yv)Hg(O) for u, v ∈ H1(O), (2.6)

where

J∗∇yu =

(
uy1

− gy1

g
yn+1uyn+1

, · · · , uyn
− gyn

g
yn+1uyn+1

,
1

εg
uyn+1

)
.

Let H1
ε (O) be the space H1(O) endowed with norm

∥u∥H1
ε (O) =

(
∥u∥2H1(O) +

1

ε2
∥uyn+1∥2L2(O)

) 1
2

. (2.7)

It yields from [9] that there exist positive constants ε0, η1 and η2 such that for all
0 < ε < ε0 and u ∈ H1(O),

η1∥u∥2H1
ε (O) ≤ aε(u, u) + ∥u∥2L2(O) ≤ η2∥u∥2H1

ε (O). (2.8)

Denote by Aε the linear self-adjoint operator

Aεu = −1

g
divy(Pεu), u ∈ D(Aε) =

{
u ∈ H2(O) : Pεu · ν = 0 on ∂O

}
.

Then, we have

aε(u, v) = (Aεu, v)Hg(O), ∀u ∈ D(Aε), ∀v ∈ H1(O). (2.9)

Note that system (2.5) can be rewritten as, for y ∈ O, t > τ,
duε

dt
+ (1 + iµ)Aεu

ε + ρuε = fε(t, y, u
ε) +Gε(t, y) + uε ◦ dW

dt
,

uε(τ) = uετ .
(2.10)

For system (1.4)-(1.5), we introduce an inner product (·, ·)Hg(Q) on L2(Q) by

(u, v)Hg(Q) =

∫
Q
guv̄dy∗, for all u, v ∈ L2(Q)
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and denote by Hg(Q) the space L2(Q) equipped with this product. Let a0(·, ·) :
H1(Q)×H1(Q) → C be a bilinear form given by

a0(u, v) =

∫
Q
g∇u · ∇v̄dy∗.

Denote by A0 the unbounded operator on Hg(Q) with domain D(A0) = {u ∈
H2(Q), ∂u

∂ν0
= 0 on ∂Q} as defined by

A0u = −1

g

n∑
i=1

(guyi)yi , u ∈ D(A0).

Then, we have a0(u, v) = (A0u, v)Hg(Q), ∀u ∈ D(A0), ∀v ∈ H1(Q). Therefore,
system (1.4)-(1.5) can be rewritten as, for y∗ ∈ Q, t > τ,

du0

dt
+ (1 + iµ)A0u

0 + ρu0 = f0(t, y
∗, u0) +G0(t, y

∗) + u0 ◦ dW
dt

,

u0(τ) = u0τ .

(2.11)

In the rest of this paper, we consider the probability space (Ω,F ,P) where
Ω = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borel σ-algebra induced by the compact-
open topology of Ω, and P is the corresponding Wiener measure on (Ω,F). Define
the time shift by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (2.12)

Then (Ω,F ,P, {θt}t∈R) is a metric dynamical system. It follows from [3] that there
exists a {θt}t∈R-invariant subset of full measure (still denoted by Ω) such that

lim
t→±∞

ω(t)

t
= 0 for every ω ∈ Ω. (2.13)

We now convert the stochastic system into a deterministic non-autonomous one.
Let vε(t, τ, ω, vετ ) = z(t, ω)uε(t, τ, ω, uετ ) with z(t, ω) = e−ω(t). Then vε satisfies, for
y ∈ O, t > τ,

dvε

dt
+ (1 + iµ)Aεv

ε + ρvε = z(t, ω)fε(t, y, z
−1(t, ω)vε) + z(t, ω)Gε(t, y),

vε(τ) = vετ .
(2.14)

Since (2.14) is a deterministic equation which is parametrized by ω ∈ Ω, by a
Galerkin method, one can show that if f satisfies (2.2)–(2.4), then for every ω ∈
Ω, τ ∈ R and vετ ∈ L2(O), system (2.14) has a unique solution vε(·, τ, ω, vετ ) ∈
C([τ,∞), L2(O)) ∩ L2((τ, τ + T ),H1(O)) for every T > 0. Furthermore, one may
show that vε(t, τ, ω, vετ ) is (F ,B(L2(O)))-measure in ω ∈ Ω and continuous in vετ
with respect to the norm of L2(O). We now define a mapping Ψε : R+ × R× Ω×
L2(O) → L2(O) for problem (2.10). Given t ∈ R+, τ ∈ R, ω ∈ Ω and vετ ∈ L2(O).
Let

Ψε(t, τ, ω, u
ε
τ ) = uε(t+τ, τ, θ−τω, u

ε
τ ) =

1

z(t+ τ, θ−τω)
vε(t+τ, τ, θ−τω, v

ε
τ ), (2.15)
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where vετ = z(τ, θ−τω)u
ε
τ . As stated in [24], the mapping Ψε is a continuous cocycle

on L2(O) over (Ω,F ,P, {θt}t∈R).
Let Rε : L2(Oε) → L2(O) be an affine mapping of the form (Rεû(y)) =

û(T−1
ε y), ∀û ∈ L2(Oε). Given t ∈ R+, τ ∈ R, ω ∈ Ω and ûετ ∈ L2(Oε), we can

define a continuous cocycle Ψ̂ε for problem (2.1) by the formula Ψ̂ε(t, τ, ω, u
ε
τ ) =

R−1
ε Ψε(t, τ, ω,Rεu

ε
τ ), where Ψε is the continuous cocycle for problem (2.10) on

L2(O).
Similarly, let v0(t, τ, ω, v0τ ) = z(t, ω)u0(t, τ, ω, u0τ ). Then system (2.11) can be

transformed into the following equation on Q with y∗ ∈ Q, t > τ,
dv0

dt
+ (1 + iµ)A0v

0 + ρv0 = z(t, ω)f0(t, y
∗, z−1(t, ω)v0) + z(t, ω)G0(t, y

∗),

v0(τ) = v0τ .
(2.16)

It follows from above arguments that system (2.11) generates a continuous cocycle
Ψ0(t, τ, ω, u

0
τ ) in the space L2(Q).

Denote by Xε = L2(Oε), X0 = L2(Q) and X1 = L2(O). For each i = ε, 0
or 1, let Di = {Di(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of nonempty subsets of
Xi. Then, Di is called tempered (or subexponentially growing) if for every c >
0, lim

t→−∞
ect∥Di(τ + t, θtω)∥Xi = 0 holds, where ∥Di∥Xi = supx∈Di

∥x∥Xi . This
definition is a straightforward extension of the concept of tempered random subsets
for autonomous random dynamical systems. We also denote by Di the collection of
all families of tempered nonempty subsets of Xi, i.e.,

Di = {Di = {Di(τ, ω) : τ ∈ R, ω ∈ Ω} : Di is tempered in Xi}.

The following condition will be needed when deriving uniform estimates of so-
lutions:∫ τ

−∞
e

1
4ρs

(
∥G(s, ·)∥2

L∞(Õ)
+ ∥ψ1(s, ·)∥2L∞(Õ)

)
ds <∞, ∀τ ∈ R. (2.17)

When constructing tempered pullback attractors for the cocycle Ψε, we will assume
for any σ > 0,

lim
r→−∞

eσr
∫ 0

−∞
e

1
4ρs

(
∥G(s+ r, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ r, ·)∥2

L∞(Õ)

)
ds = 0. (2.18)

3. Uniform estimates of solutions
In this section, we derive uniform estimates of solutions for system (2.14). We first
derive the estimates of solutions for problem (2.14) in Hg(O).

Lemma 3.1. Assume (2.2) and (2.17) hold. There exists ε0 > 0 such that for every
0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists
T = T (τ, ω,D1) > 0, independent of ε, such that for all t ≥ T , the solution vε of
system (2.14) with ω replaced by θ−τω satisfies

∥vε(τ, τ − t, θ−τω, v
ε
τ−t)∥2Hg(O)

≤Mz−2(−τ, ω)
∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1+∥G(s+ τ, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ τ, ·)∥2

L∞(Õ)

)
ds

(3.1)
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and∫ τ

τ−t

e
1
2ρ(s−τ)

(
∥vε(s, τ−t, θ−τω, v

ε
τ−t)∥2H1

ε (O)

+ z2(s, θ−τω)∥uε(s, τ−t, θ−τω, u
ε
τ−t)∥

p
Lp(O)

)
ds

≤Mz−2(−τ, ω)
∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1+∥G(s+ τ, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ τ, ·)∥2

L∞(Õ)

)
ds,

(3.2)

where vετ−t ∈ D1(τ − t, θ−tω) and M is a positive constant depending on ρ, but
independent of τ, ω, ε and D1.

Proof. Taking the inner product of (2.14) with vε in Hg(O) and taking the real
part, we obtain

1

2

d

dt
∥vε∥2Hg(O) + Re(1 + iµ)(Aεv

ε, vε)Hg(O) + ρ∥vε∥2Hg(O)

=z(t, ω)Re(fε(t, y, z−1(t, ω)vε), vε)Hg(O) + z(t, ω)Re(Gε(t, y), v
ε)Hg(O). (3.3)

For the second term on the left-hand side of (3.3), applying (2.9), we have that

Re(1 + iµ)(Aεv
ε, vε)Hg(O) = aε(v

ε, vε). (3.4)

For the first term on the right-hand side of (3.3), using (2.2) and (1.3), we obtain
that

z(t, ω)Re(fε(t, y, z−1(t, ω)vε), vε)Hg(O)

=z(t, ω)Re
∫
O
gfε(t, y, z

−1(t, ω)vε)vεdy

=z2(t, ω)Re
∫
O
gfε(t, y

∗, εg(y∗)yn+1, u
ε)uεdy

≤− γz2(t, ω)

∫
O
g|uε|pdy + z2(t, ω)

∫
O
gψ1(t, y

∗, εg(y∗)yn+1)dy

≤− γβ1z
2(t, ω)

∫
O
|uε|pdy + cz2(t, ω)∥ψ1(t, ·)∥L∞(Õ). (3.5)

Applying Hölder inequality and Young inequality, the last term on the right-hand
side of (3.3) is bounded by

z(t, ω)Re(Gε(t, y), v
ε)Hg(O) ≤ z(t, ω)∥Gε(t, y)∥Hg(O)∥vε∥Hg(O)

≤ 1

2
ρ∥vε∥2Hg(O) +

1

2ρ
z2(t, ω)∥Gε(t, y)∥2Hg(O)

≤ 1

2
ρ∥vε∥2Hg(O) + cz2(t, ω)∥G(t, y)∥2

L∞(Õ)
. (3.6)

By (3.3)–(3.6), we obtain

d

dt
∥vε∥2Hg(O) + ρ∥vε∥2Hg(O) + 2aε(v

ε, vε) + 2γβ1z
2(t, ω)

∫
O
|uε|pdy

≤cz2(t, ω)
(
∥G(t, ·)∥2

L∞(Õ)
+ ∥ψ1(t, ·)∥L∞(Õ)

)
. (3.7)
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Multiplying (3.7) by e 1
2ρt and integrating the resulting inequality on (τ − t, τ) with

τ ≥ 0, we obtain, for every ω ∈ Ω,

∥vε(τ, τ − t, ω, vετ−t)∥2Hg(O)

+ 2

∫ τ

τ−t

e
1
2ρ(s−τ)aε(v

ε(s, τ − t, ω, vετ−t), v
ε(s, τ − t, ω, vετ−t))ds

+
1

2
ρ

∫ τ

τ−t

e
1
2ρ(s−τ)∥vε(s, τ − t, ω, vετ−t)∥2Hg(O)ds

+ 2γβ1

∫ τ

τ−t

e
1
2ρ(s−τ)z2(s, ω)∥uε(s, τ − t, ω, uετ−t)∥

p
Lp(O)ds

≤e− 1
2ρt∥vετ−t∥2Hg(O)+ce

− 1
2ρτ

∫ τ

−∞
e

1
2ρsz2(s, ω)

(
∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥L∞(Õ)

)
ds.

(3.8)

Now, replacing ω by θ−τω in (3.8), we get

∥vε(τ, τ − t, θ−τω, v
ε
τ−t)∥2Hg(O)

+ 2

∫ τ

τ−t

e
1
2ρ(s−τ)aε(v

ε(s, τ − t, θ−τω, v
ε
τ−t), v

ε(s, τ − t, θ−τω, v
ε
τ−t))ds

+
1

2
ρ

∫ τ

τ−t

e
1
2ρ(s−τ)∥vε(s, τ − t, θ−τω, v

ε
τ−t)∥2Hg(O)ds

+ 2γβ1

∫ τ

τ−t

e
1
2ρ(s−τ)z2(s, θ−τω)∥uε(s, τ − t, θ−τω, u

ε
τ−t)∥

p
Lp(O)ds

≤ e−
1
2ρt∥vετ−t∥2Hg(O)

+ ce−
1
2ρτ

∫ τ

−∞
e

1
2ρsz2(s, θ−τω)

(
∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥L∞(Õ)

)
ds

≤ e−
1
2ρt∥vετ−t∥2Hg(O)+ cz−2(−τ, ω)

∫ 0

−∞
e

ρs
2 z2(s, ω)

(
∥G(s+ τ, y)∥2

L∞(Õ)

+ ∥ψ1(s+ τ, ·)∥L∞(Õ)

)
ds. (3.9)

Note that vετ−t ∈ D1(τ − t, θ−tω) and D1 is tempered. It follows that there exists
T = T (τ, ω,D1) > 0 such that for all t ≥ T ,

e−
1
2ρt∥vετ−t∥2Hg(O) ≤ e−

1
2ρt∥D1(τ−t, θ−tω)∥2Hg(O) ≤ z−2(−τ, ω)

∫ 0

−∞
e

1
2ρsz2(s, ω)ds.

The lemma then follows immediately from (2.8) and (3.9).
As a consequence of Lemma 3.1, we obtain the following inequality which is

useful for deriving the uniform estimates of solutions in H1
ε (O).

Lemma 3.2. Assume that (2.2) and (2.17) hold. Then, there exists ε0 > 0 such
that for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,
there exists T = T (τ, ω,D1) ≥ 1, independent of ε, such that for all t ≥ T , the
solution vε of system (2.14) with ω replaced by θ−τω satisfies∫ τ

τ−1

∥vε(s, τ−t, θ−τω, v
ε
τ−t)∥2H1

ε (O)+z
2(s, θ−τω)∥uε(s, τ−t, θ−τω, u

ε
τ−t)∥

p
Lp(O)ds
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≤Mz−2(−τ, ω)
∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1+∥G(s+ τ, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ τ, ·)∥2

L∞(Õ)

)
ds,

(3.10)

where vετ−t ∈ D1(τ − t, θ−tω) and M is a positive constant depending on ρ, but
independent of τ, ω, ε and D1.

Proof. Since e 1
2ρ(τ−1) ≤ e

1
2ρs ≤ e

1
2ρτ for all τ − 1 ≤ s ≤ τ , we have, for t ≥ 1,

e−
ρ
2

∫ τ

τ−1

∥vε(s, τ−t, θ−τω, v
ε
τ−t)∥2H1

ε (O)+z
2(s, θ−τω)∥uε(s, τ−t, θ−τω, u

ε
τ−t)∥

p
Lp(O)ds

≤
∫ τ

τ−1

e
1
2ρ(s−τ)

(
∥vε(s, τ−t, θ−τω, v

ε
τ−t)∥2H1

ε (O)

+z2(s, θ−τω)∥uε(s, τ−t, θ−τω, u
ε
τ−t)∥

p
Lp(O)

)
ds

≤
∫ τ

τ−t

e
1
2ρ(s−τ)

(
∥vε(s, τ−t, θ−τω, v

ε
τ−t)∥2H1

ε (O)

+z2(s, θ−τω)∥uε(s, τ−t, θ−τω, u
ε
τ−t)∥

p
Lp(O)

)
ds.

Together with Lemma 3.1, the desired result follows.
We need the following inequality to deduce uniform estimates of solutions vε in

H1
ε (O).

Lemma 3.3. Assume that (2.2)–(2.4) hold. Then we have for u ∈ D(Aε)

Re(fε(t, y, u), Aεu)Hg(O) ≤M
(
aε(u, u) + ∥ψ2∥2L∞(Õ)

)
,

where M is a positive constant independent of ε.

Proof. By (2.6) and (2.9), we infer that

Re (fε(t, y, u), Aεu)Hg(O) = Re aε (fε(t, y, u), u)

=Re
n∑

i=1

∫
O

(
fεyi

+fεuuyi
−gyi

g
yn+1(fεyn+1

+fεuuyn+1
)
)(
ūyi

−gyi

g
yn+1ūyn+1

)
gdy

+ Re
∫
O

1

ε2g
(fεyn+1(t, y, u) + fεu(t, y, u)uyn+1)ūyn+1dy

=

n∑
i=1

∫
O
fεu(t, y, u)

∣∣∣uyi
−gyi

g
yn+1uyn+1

∣∣∣2gdy
+ Re

n∑
i=1

∫
O

(
fεyi

(t, y, u)− gyi

g
yn+1fεyn+1

(t, y, u)
)(
ūyi

− gyi

g
yn+1ūyn+1

)
gdy

+ Re
∫
O

1

ε2g
fεyn+1

(t, y, u)ūyn+1
dy +

∫
O

1

ε2g2
fεu(t, y, u)|uyn+1

|2gdy.

Together with (2.3) and (2.4), one has

Re (fε(t, y, u), Aεu)Hg(O) = Reaε (fε(t, y, u), u)
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≤β aε(u, u) +
∫
O

1

ε2g

∣∣fεyn+1
(t, y, u)

∣∣ ∣∣uyn+1

∣∣ dy
+

n∑
i=1

∫
O

∣∣∣fεyi
(t, y, u)− gyi

g
yn+1fεyn+1

(t, y, u)
∣∣∣∣∣∣uyi

− gyi

g
yn+1uyn+1

∣∣∣gdy
≤β aε(u, u) +

1

2
aε(u, u) +

1

2

∫
O

1

ε2g2
f2εyn+1

(t, y, u)gdy

+
1

2

n∑
i=1

∫
O

(
fεyi

(t, y, u)− gyi

g
yn+1fεyn+1

(t, y, u)
)2

gdy

≤
(
β +

1

2

)
aε(u, u) + c∥ψ2∥2L∞(Õ)

.

This completes the proof.

Lemma 3.4. Assume that (2.2)–(2.4) and (2.17) hold. Then, there exists ε0 > 0
such that for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈
D, there exists T = T (τ, ω,D1) ≥ 1, independent of ε, such that for all t ≥ T , the
solution vε of system (2.14) with ω replaced by θ−τω satisfies

∥vε(τ, τ − t, θ−τω, v
ε
τ−t)∥2H1

ε (O)

≤ Mz−2(−τ, ω)
∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1 + ∥G(s+ τ, ·)∥2

L∞(Õ)

+∥ψ1(s+ τ, ·)∥2
L∞(Õ)

+ ∥ψ2(s+ τ, ·)∥2
L∞(Õ)

)
ds, (3.11)

where vετ−t ∈ D1(τ − t, θ−tω) and M is a positive constant depending on ρ, but
independent of τ, ω, ε and D1.

Proof. Taking the inner product of (2.14) with Aεv
ε in Hg(O) and taking the

real part, we obtain

1

2

d

dt
aε(v

ε, vε) + ∥Aεv
ε∥2Hg(O) + ρ aε(v

ε, vε)

= z(t, ω)Re(fε(t, y, z−1(t, ω)vε), Aεv
ε)Hg(O)

+ z(t, ω)Re(Gε(t, y), Aεv
ε)Hg(O). (3.12)

For the first term of the right-hand side of (3.12), by Lemma 3.3, we have

z(t, ω)Re(fε(t, y, z−1(t, ω)vε), Aεv
ε)Hg(O)

=z2(t, ω)Re(fε(t, y, uε), Aεu
ε)Hg(O)

≤cz2(t, ω)
(
aε(u

ε, uε) + ∥ψ2(t, ·)∥2L∞(Õ)

)
=caε(v

ε, vε) + cz2(t, ω)∥ψ2(t, ·)∥2L∞(Õ)
. (3.13)

For the second term of the right-hand side of (3.12), applying Young’s inequality,
we get

z(t, ω)Re(Gε(t, y), Aεv
ε)Hg(O) ≤

1

2
∥Aεv

ε∥2Hg(O) +
1

2
z2(t, ω)∥Gε(t, y)∥2Hg(O)

≤ 1

2
∥Aεv

ε∥2Hg(O) + cz2(t, ω)∥G(t, ·)∥2
L∞(Õ)

. (3.14)
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By (3.12)–(3.14), we deduce

d

dt
aε(v

ε, vε) + ∥Aεv
ε∥2Hg(O) + 2ρaε(v

ε, vε)

≤caε(vε, vε) + cz2(t, ω)
(
∥ψ2(t, ·)∥2L∞(Õ)

+ ∥G(t, ·)∥2
L∞(Õ)

)
, (3.15)

which implies that

d

dt
aε(v

ε, vε) ≤ caε(v
ε, vε) + cz2(t, ω)

(
∥ψ2(t, ·)∥2L∞(Õ)

+ ∥G(t, ·)∥2
L∞(Õ)

)
. (3.16)

Given t ∈ R+, τ ∈ R and s ∈ (τ −1, τ), by integrating (3.16) on (s, τ) we know that

aε
(
vε(τ, τ − t, ω, vετ−t), v

ε(τ, τ − t, ω, vετ−t)
)

≤aε
(
vε(s, τ − t, ω, vετ−t), v

ε(s, τ − t, ω, vετ−t)
)

+ c

∫ τ

s

aε
(
vε(ξ, τ − t, ω, vετ−t), v

ε(ξ, τ − t, ω, vετ−t)
)
dξ

+ c

∫ τ

s

z2(ξ, ω)
(
∥ψ2(ξ, ·)∥2L∞(Õ)

+ ∥G(ξ, ·)∥2
L∞(Õ)

)
dξ.

We now integrate the above with respect to s on (τ − 1, τ) to obtain

aε
(
vε(τ, τ − t, ω, vετ−t), v

ε(τ, τ − t, ω, vετ−t)
)

≤
∫ τ

τ−1

aε
(
vε(s, τ − t, ω, vετ−t), v

ε(s, τ − t, ω, vετ−t)
)
ds

+ c

∫ τ

τ−1

aε
(
vε(s, τ − t, ω, vετ−t), v

ε(s, τ − t, ω, vετ−t)
)
ds

+ c

∫ τ

τ−1

z2(s, ω)
(
∥ψ2(s, ·)∥2L∞(Õ)

+ ∥G(s, ·)∥2
L∞(Õ)

)
ds.

Replacing ω by θ−τω, we obtain that

aε
(
vε(τ, τ − t, θ−τω, v

ε
τ−t), v

ε(τ, τ − t, θ−τω, v
ε
τ−t)

)
≤(c+ 1)

∫ τ

τ−1

aε
(
vε(s, τ − t, θ−τω, v

ε
τ−t), v

ε(s, τ − t, θ−τω, v
ε
τ−t)

)
ds

+ c

∫ τ

τ−1

z2(s, θ−τω)
(
∥ψ2(s, ·)∥2L∞(Õ)

+ ∥G(s, ·)∥2
L∞(Õ)

)
ds. (3.17)

Note that for every τ ∈ R and ω ∈ Ω,∫ τ

τ−1

z2(s, θ−τω)
(
∥ψ2(s, ·)∥2L∞(Õ)

+ ∥G(s, ·)∥2
L∞(Õ)

)
ds

=z−2(−τ, ω)
∫ τ

τ−1

z2(s− τ, ω)
(
∥ψ2(s, ·)∥2L∞(Õ)

+ ∥G(s, ·)∥2
L∞(Õ)

)
ds

=z−2(−τ, ω)
∫ 0

−1

z2(s, ω)
(
∥ψ2(s+ τ, ·)∥2

L∞(Õ)
+ ∥G(s+ τ, ·)∥2

L∞(Õ)

)
ds

≤e 1
2ρz−2(−τ, ω)

∫ 0

−1

e
1
2ρsz2(s, ω)

(
∥ψ2(s+ τ, ·)∥2

L∞(Õ)
+ ∥G(s+ τ, ·)∥2

L∞(Õ)

)
ds
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≤e 1
2ρz−2(−τ, ω)

∫ 0

−∞
e

1
2ρsz2(s, ω)

(
∥ψ2(s+ τ, ·)∥2

L∞(Õ)
+ ∥G(s+ τ, ·)∥2

L∞(Õ)

)
ds.

Let T = T (τ, ω,D1) ≥ 1 be the positive number established in Lemma 3.2. Then it
follows from (3.17), (3.17) and Lemma 3.2 that, for all t ≥ T and for all ω ∈ Ω,

aε
(
vε(τ, τ − t, θ−τω, v

ε
τ−t), v

ε(τ, τ − t, θ−τω, v
ε
τ−t)

)
≤cz−2(−τ, ω)

∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1 + ∥G(s+ τ, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ τ, ·)∥2

L∞(Õ)

+ ∥ψ2(s+ τ, ·)∥2
L∞(Õ)

)
ds,

which, together with Lemma 3.1, completes the proof.

4. Existence of pullback random attractors
In this section, we establish the existence of D1-pullback attractor for the cocycle
Ψε associated with the stochastic problem (2.10) and D0-pullback attractor for the
cocycle Ψ0 associated with the stochastic problem (2.11), respectively. We first
show that problem (2.10) has tempered pullback absorbing set as stated below.

Lemma 4.1. Suppose that (2.2)–(2.4), (2.17) and (2.18) hold. Then, there exists
ε0 > 0 such that for every 0 < ε < ε0, the continuous cocycle Ψε associated with
problem (2.10) has a closed measurable D1-pullback absorbing set K ∈ D1 which is
given by, for every τ ∈ R and ω ∈ Ω K(τ, ω) =

{
u ∈ L2(O) : ∥u∥2L2(O) ≤ L(τ, ω)

}
,

where

L(τ, ω) =M

∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1+∥G(s+τ, ·)∥2

L∞(Õ)
+∥ψ1(s+τ, ·)∥2L∞(Õ)

+ ∥ψ2(s+τ, ·)∥2L∞(Õ)

)
ds

and M is a positive constant depending on ρ, but independent of τ , ω, ε and D1.

Proof. Given D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, define a new family D̃1 for
D1 as

D̃1 =
{
D̃1(τ, ω) : D̃1(τ, ω) = {v ∈ L2(O) : ∥v∥L2(O) ≤ z−1(−τ, ω)∥D1(τ, ω)∥L2(O)},

τ ∈ R, ω ∈ Ω
}
.

For any D1 ∈ D1, by (2.13) one can check that D̃1 also belongs to D1, i.e., D̃1 is
tempered. For any uετ−t ∈ D1(τ − t, θ−tω), we find that vετ−t = z(τ − t, θ−τω)u

ε
τ−t

satisfies
∥vετ−t∥L2(O) = ∥z(τ − t, θ−τω)u

ε
τ−t∥L2(O)

≤ z−1(t− τ, θ−tω)∥D1(τ − t, θ−tω)∥L2(O).
(4.1)

By (4.1), we obtain that vετ−t ∈ D̃1(τ − t, θ−tω). Since D̃1 ∈ D1, by Lemma 3.4,
there exists T = T (τ, ω,D1) ≥ 1 such that for all t ≥ T ,

∥vε(τ, τ − t, θ−τω, v
ε
τ−t)∥2H1

ε (O)
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≤Mz−2(−τ, ω)
∫ 0

−∞
e

1
2ρsz2(s, ω)

(
1 + ∥G(s+ τ, ·)∥2

L∞(Õ)

+∥ψ1(s+ τ, ·)∥2
L∞(Õ)

+ ∥ψ2(s+ τ, ·)∥2
L∞(Õ)

)
ds. (4.2)

Notice that vε(t, τ, ω, vετ ) = z(t, ω)uε(t, τ, ω, uετ ). This implies

vε(τ, τ − t, θ−τω, v
ε
τ−t) = z(τ, θ−τω)u

ε(τ, τ − t, θ−τω, u
ε
τ−t)

= z−1(−τ, ω)uε(τ, τ − t, θ−τω, u
ε
τ−t),

which along with (4.2) implies that for uετ−t ∈ D1(τ − t, θ−tω)

∥uε(τ, τ − t, θ−τω, u
ε
τ−t)∥2H1

ε (O) ≤ L(τ, ω). (4.3)

Therefore, for every τ ∈ R, ω ∈ Ω and D1 ∈ D1, there exists T = T (τ, ω,D1) ≥ 1,
independent of ε, such that for all t ≥ T , Ψε(t, τ−t, θ−tω,D1(τ−t, θ−tω)) ⊆ K(τ, ω).

Next, we prove K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered. Given σ > 0, τ ∈ R
and ω ∈ Ω, we deduce

eσr∥K(τ + r, θrω)∥L2(O) ≤ eσrL(τ + r, θrω)

=Meσr
∫ 0

−∞
e

1
2ρsz2(s, θrω)

(
1 + ∥G(s+ τ + r, ·)∥2

L∞(Õ)

+∥ψ1(s+ τ + r, ·)∥2
L∞(Õ)

+ ∥ψ2(s+ τ + r, ·)∥2
L∞(Õ)

)
ds

=Meσr
∫ 0

−∞
e

1
2ρse2(ω(r)−ω(r+s))

(
1 + ∥G(s+ τ + r, ·)∥2

L∞(Õ)

+∥ψ1(s+ τ + r, ·)∥2
L∞(Õ)

+ ∥ψ2(s+ τ + r, ·)∥2
L∞(Õ)

)
ds.

Let 0 < c < min{ρ/8, σ/4}. By (2.13), for every ω ∈ Ω, there exists T1 = T1(ω) <
0 such that for all r ≤ T1 and s < 0, |ω(r)| ≤ −cr, |ω(r + s)| ≤ −c(r + s).
Consequently, we infer that for every τ ∈ R and ω ∈ Ω

lim sup
r→−∞

eσr∥K(τ + r, θrω)∥L2(O)

≤M lim sup
r→−∞

e(σ−4c)r

∫ 0

−∞
e(

1
2ρ−2c)s

(
1 + ∥G(s+ τ + r, ·)∥2

L∞(Õ)

+ ∥ψ1(s+ τ + r, ·)∥2
L∞(Õ)

+ ∥ψ2(s+ τ + r, ·)∥2
L∞(Õ)

)
ds

≤M lim sup
r→−∞

e(σ−4c)r
∫ 0

−∞
e

1
4ρs

(
1+∥G(s+τ+r, ·)∥2

L∞(Õ)
+∥ψ1(s+τ+r, ·)∥2L∞(Õ)

+ ∥ψ2(s+ τ + r, ·)∥2
L∞(Õ)

)
ds

≤Me−
1
4ρτ lim sup

r→−∞
e(σ−4c)r

∫ τ

−∞
e

1
4ρs

(
1 + ∥G(s+ r, ·)∥2

L∞(Õ)
+ ∥ψ1(s+ r, ·)∥2

L∞(Õ)

+ ∥ψ2(s+ r, ·)∥2
L∞(Õ)

)
ds.
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from which, together with (2.17) and (2.18), we deduce that

lim
r→−∞

eσr∥K(τ + r, θrω)∥L2(O) = 0

and hence K(τ, ω) is tempered in L2(O). On the other hand, it is evident that, for
every τ ∈ R, L(τ, ·) : Ω → R is (F ,B(R))-measurable. Consequently, K is a closed
measurable D1-pullback absorbing set for Ψε in D1.

Theorem 4.1. Suppose that (2.2)–(2.4), (2.17) and (2.18) hold. Then there exists
ε0 > 0 such that for every 0 < ε < ε0, the continuous cocycle Ψε has a unique
D1-pullback attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O). In addition,
if G, f, ψ1, ψ2 are T -periodic with respect to t with T > 0, then the attractor Aε is
also T -periodic.

Proof. From Lemma 4.1, we know that Ψε has a closed measurable D1-pullback
absorbing set K. Applying (4.3) and the compact embedding H1(O) ↪→ L2(O),
we get that Ψε is D1-pullback asymptotically compact in L2(O). Hence, we ob-
tain the existence of a unique D1-pullback attractor for the cocycle Ψε following
from [25] immediately. If G, f, ψ1, ψ2 are T -periodic with respect to t, then the
continuous cocycle Ψε and the absorbing set K are also T -periodic, which implies
the T -periodicity of the attractor.

Similar results also hold for the solutions of the problem (2.11), more precisely,
we have

Theorem 4.2. Suppose that (2.2)–(2.4), (2.17) and (2.18) hold. Then the contin-
uous cocycle Ψ0 has a unique D0-pullback attractor A0 = {A0(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D0 in L2(O). In addition, if G, f, ψ1, ψ2 are T -periodic with respect to t with
T > 0, then the attractor A0 is also T -periodic.

5. Upper-semicontinuity of random attractors
In this section, we establish the upper semicontinuity of the random attractor Aε.
To get started, we derive the uniform estimates of solutions.

Lemma 5.1. Suppose that (2.2)–(2.4) hold. Then there exists ε0 > 0 such that for
every 0 < ε < ε0, τ ∈ R, ω ∈ Ω, T > 0 and vετ ∈ Hg(O), the solution vε of (2.14)
satisfies, for all t ∈ [τ, τ + T ],∫ t

τ

∥vε(s, τ, ω, vετ )∥2H1
ε (O)ds

≤M∥vετ∥2Hg(O) +M

∫ τ+T

τ

(
∥G(s, ·)∥2

L∞(Õ)
+ ∥ψ1(s, ·)∥2L∞(Õ)

)
ds,

where M is a positive constant depending on τ, ω, ρ and T , but independent of ε.

Proof. Multiplying (3.7) by e 1
2ρt and then integrating the resulting inequality on

(τ, t), we deduce that for every ω ∈ Ω and t ∈ [τ, τ + T ],

∥vε(t, τ, ω, vετ )∥2Hg(O) + 2

∫ t

τ

e
1
2ρ(s−t)aε(v

ε(s, τ, ω, vετ ), v
ε(s, τ, ω, vετ ))ds

+
1

2
ρ

∫ t

τ

e
1
2ρ(s−t)∥vε(s, τ, ω, vετ )∥2Hg(O)ds
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+ 2γβ1

∫ t

τ

e
1
2ρ(s−t)z2(s, ω)∥uε(s, τ, ω, uετ )∥

p
Lp(O)ds

≤e− 1
2ρ(t−τ)∥vετ∥2Hg(O)+c

∫ t

τ

e
1
2ρ(s−t)z2(s, ω)

(
∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥L∞(Õ)

)
ds

≤∥vετ∥2Hg(O) + c

∫ τ+T

τ

z2(s, ω)
(
∥G(s, ·)∥2

L∞(Õ)
+ ∥ψ1(s, ·)∥L∞(Õ)

)
ds

≤∥vετ∥2Hg(O) + c max
τ≤s≤τ+T

z2(s, ω)

∫ τ+T

τ

(
∥G(s, ·)∥2

L∞(Õ)
+ ∥ψ1(s, ·)∥L∞(Õ)

)
ds,

(5.1)

which along with the same argument as Lemma 3.2 completes the proof.
Similarly, we can obtain the following estimates.

Lemma 5.2. Suppose that (2.2)–(2.4) hold. Then for every τ ∈ R, ω ∈ Ω, T > 0
and v0τ ∈ Hg(O), the solution v0 of (2.16) satisfies, for all t ∈ [τ, τ + T ],∫ t

τ

∥v0(s, τ, ω, v0τ )∥2H1(O)ds

≤M∥v0τ∥2Hg(O) +M

∫ τ+T

τ

(
∥G(s, ·)∥2

L∞(Õ)
+ ∥ψ1(s, ·)∥2L∞(Õ)

)
ds,

where M is a positive constant depending on τ, ω, ρ and T , but independent of ε.

Given u ∈ L2(O), let Mu be the average function of u in yn+1 as defined by

Mu =

∫ 1

0

u(y∗, yn+1)dyn+1.

Then following result on the average function can be found in [9].

Lemma 5.3. If u ∈ H1(O), then Mu ∈ H1(Q) and ∥u−Mu∥Hg(O) ≤ cε∥u∥H1
ε (O),

which c is a constant, independent of ε.

In the sequel, we further assume the functions f and G satisfy

∥fε(t, ·, s)− f0(t, ·, s)∥L2(O) ≤ ϕ1(t)ε, for all t, s ∈ R, (5.2)
∥Gε(t, ·)−G0(t, ·)∥L2(O) ≤ ϕ2(t)ε, for all t ∈ R, (5.3)

where ϕ1(t), ϕ2(t) ∈ L2
loc(R). Since L2(Q) can be embedded naturally into L2(O)

as the subspace of functions independent of yn+1, we can consider the cocycle Ψ0

as a mapping from L2(Q) into L2(O). In this sense, we can compare Ψ0 and Ψε.

Theorem 5.1. Suppose that (2.2)–(2.4) and (5.2)–(5.3) hold. Given τ ∈ R, ω ∈ Ω
and a positive number η(τ, ω), if uετ ∈ H1

ε (O)such that ∥uετ∥H1
ε (O) ≤ η(τ, ω), then,

for any t ≥ τ ,

lim
ε→0

∥Ψε(t, τ, ω, u
ε
τ )−Ψ0(t, τ, ω,Muετ )∥L2(O) = 0.

Proof. Taking the inner product of (2.16) with gφ, where φ ∈ H1(Q), we infer
that ∫

Q
g
dv0

dt
φ̄dy∗ + (1 + iµ)

n∑
i=1

∫
Q
gv0yi

φ̄yidy
∗ + ρ

∫
Q
gv0φ̄dy∗



Dynamics of stochastic Ginzburg-Landau equations 2329

=z(t, ω)

∫
Q
gf(t, y∗, 0, z−1(t, ω)v0)φ̄dy∗ + z(t, ω)

∫
Q
gG(t, y∗, 0)φ̄dy∗.

If ξ ∈ H1(O), then
∫ 1

0
ξ(y∗, yn+1)dyn+1 ∈ H1(Q). So for any ξ ∈ H1(O), we have(

dv0

dt
, ξ

)
Hg(O)

+ (1 + iµ)
n∑

i=1

(
v0yi
, ξyi

)
Hg(O)

+ ρ
(
v0, ξ

)
Hg(O)

=z(t, ω)
(
f(t, y∗, 0, z−1(t, ω)v0), ξ

)
Hg(O)

+ z(t, ω) (G(t, y∗, 0), ξ)Hg(O) .

Since v0 is independent of yn+1, the above equality gives, for any ξ ∈ H1(O) and
0 < ε ≤ 1,(

dv0

dt
, ξ

)
Hg(O)

+ (1 + iµ)aε
(
v0, ξ

)
+ ρ

(
v0, ξ

)
Hg(O)

=z(t, ω)
(
f(t, y∗, 0, z−1(t, ω)v0), ξ

)
Hg(O)

+ z(t, ω) (G(t, y∗, 0), ξ)Hg(O) − (1 + iµ)
n∑

i=1

(
gyi

g
v0yi
, yn+1ξyn+1

)
Hg(O)

.

(5.4)

Due to (5.4) and (2.14), we obtain for any ξ ∈ H1(O)(
dvε

dt
− dv0

dt
, ξ

)
Hg(O)

+ (1 + iµ)aε
(
vε − v0, ξ

)
+ ρ

(
vε − v0, ξ

)
Hg(O)

=z(t, ω)
(
fε(t, y

∗, yn+1, z
−1(t, ω)vε)− f(t, y∗, 0, z−1(t, ω)v0), ξ

)
Hg(O)

+ z(t, ω) (Gε(t, y
∗, yn+1)−G(t, y∗, 0), ξ)Hg(O)

+ (1 + iµ)
n∑

i=1

(
gyi

g
v0yi
, yn+1ξyn+1

)
Hg(O)

.

(5.5)

Setting ξ = vε − v0, then taking the real part, (5.5) becomes

1

2

d

dt
∥vε − v0∥2Hg(O) + aε

(
vε − v0, vε − v0

)
+ ρ∥vε − v0∥2Hg(O)

=z(t, ω)Re
(
fε(t, y

∗, yn+1, z
−1(t, ω)vε)− f(t, y∗, 0, z−1(t, ω)v0), vε − v0

)
Hg(O)

+ z(t, ω)Re
(
Gε(t, y

∗, yn+1)−G(t, y∗, 0), vε − v0
)
Hg(O)

+ Re(1 + iµ)
n∑

i=1

(
gyi

g
v0yi
, yn+1(v

ε
yn+1

− v0yn+1
)

)
Hg(O)

. (5.6)

By (2.3) and (5.2), we have

z(t, ω)Re
(
fε(t, y

∗, yn+1, z
−1(t, ω)vε)− f(t, y∗, 0, z−1(t, ω)v0), vε − v0

)
Hg(O)

=z(t, ω)Re
(
F1, v

ε − v0
)
Hg(O)

+ z(t, ω)Re
(
F2, v

ε − v0
)
Hg(O)

≤β∥vε − v0∥2Hg(O) + cεϕ2
1(t) + cεz2(t, ω)

(
∥vε∥2Hg(O) + ∥v0∥2Hg(O)

)
, (5.7)

where

F1 =f(t, y∗, εg(y∗)yn+1, z
−1(t, ω)vε)− f(t, y∗, εg(y∗)yn+1, z

−1(t, ω)v0),
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F2 =f(t, y∗, εg(y∗)yn+1, z
−1(t, ω)v0)− f(t, y∗, 0, z−1(t, ω)v0).

By (5.3), we obtain

z(t, ω)Re
(
Gε(t, y

∗, yn+1)−G(t, y∗, 0), vε − v0
)
Hg(O)

≤z(t, ω)∥Gε(t, y
∗, yn+1)−G(t, y∗, 0)∥Hg(O)∥vε − v0∥2Hg(O)

≤cϕ2(t)εz(t, ω)∥vε − v0∥2Hg(O)

≤cεϕ2
2(t) + cεz2(t, ω)

(
∥vε∥2Hg(O) + ∥v0∥2Hg(O)

)
. (5.8)

Finally, by (2.7), we get

Re(1 + iµ)
n∑

i=1

(
gyi

g
v0yi
, yn+1(v

ε
yn+1

− v0yn+1
)

)
Hg(O)

=Re(1 + iµ)
n∑

i=1

(
gyi
v0yi
, yn+1(v

ε
yn+1

− v0yn+1
)
)
L2(O)

≤cε∥v0∥H1(Q)∥vε − v0∥2H1
ε (O)

≤cε
(
∥vε∥2H1

ε (O) + ∥v0∥2H1(Q)

)
. (5.9)

From (5.6)–(5.9), we obtain that, for t ≥ τ ,

d

dt
∥vε − v0∥2Hg(O) ≤ 2β∥vε − v0∥2Hg(O)+cε

(
∥vε∥2H1

ε (O)+∥v0∥2H1(Q)

)
+ cε

(
ϕ2
1(t)+ϕ

2
2(t)

)
+cεz2(t, ω)

(
∥vε∥2Hg(O)+∥v0∥2Hg(Hg(O))

)
.

(5.10)

Multiplying (5.10) by e−2βt and then integrating the resulting inequality on (τ, t),
we deduce

∥vε(t)− v0(t)∥2Hg(O)

≤ e2β(t−τ)∥vε(τ)− v0(τ)∥2Hg(O) + cεe2β(t−τ)

∫ t

τ

(
∥vε∥2H1

ε (O) + ∥v0∥2H1(Q)

)
ds

+ cεe2β(t−τ)

∫ t

τ

(
ϕ2
1(s) + ϕ2

2(s)
)
ds

+ cεe2β(t−τ) max
τ≤s≤t

z2(s, ω)

∫ t

τ

(
∥vε∥2Hg(O) + ∥v0∥2Hg(Hg(O))

)
ds.

(5.11)

By Lemma 5.1 and Lemma 5.2, we have that there exists a positive constant % =
%(τ, ω, γ, T ) such that for all t ∈ [τ, τ + T ] with T > 0,

∥vε(t)− v0(t)∥2Hg(O)

≤ e2βT ∥vε(τ)− v0(τ)∥2Hg(O) + %εe2βT
[
∥vετ∥2Hg(O) + ∥v0τ∥2Hg(Q)

+

∫ τ+T

τ

(
ϕ2
1(s)+ϕ

2
2(s)

)
ds+

∫ τ+T

τ

(
1+∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥2L∞(Õ)

)
ds

]
.
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Together with Lemma 5.3, for all t ∈ [τ, τ + T ], we have

∥uε(t, τ, ω, uετ )− u0(t, τ, ω,Muετ )∥2Hg(O)

= z−2(t, ω)∥vε(t, τ, ω, z(τ, ω)uετ )− v0(t, τ, ω, z(τ, ω)Muετ )∥2Hg(O)

≤ e2βT z−2(t, ω)∥z(τ, ω)uετ − z(τ, ω)Muετ∥2Hg(O)

+ %εe2βT z−2(t, ω)

[
∥z(τ, ω)uετ∥2Hg(O) + ∥z(τ, ω)Muετ∥2Hg(Q)

+

∫ τ+T

τ

(
ϕ2
1(s)+ϕ

2
2(s)

)
ds+

∫ τ+T

τ

(
1+∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥2L∞(Õ)

)
ds

]
≤ cε2z2(τ, ω)z−2(t, ω)∥uετ∥2H1

ε (O) + %εe2βT z−2(t, ω)

[
∥z(τ, ω)uετ∥2Hg(O)

+ ∥z(τ, ω)Muετ∥2Hg(Q) +

∫ τ+T

τ

(
ϕ2
1(s) + ϕ2

2(s)
)
ds

+

∫ τ+T

τ

(
1 + ∥G(s, ·)∥2

L∞(Õ)
+∥ψ1(s, ·)∥2L∞(Õ)

)
ds

]
.

Together with the assumption ∥uετ∥H1
ε (O) ≤ η(τ, ω), we obtain the desired result.

We finally establish the upper semicontinuity of random attractors as ε→ 0.

Theorem 5.2. Suppose that (2.2)–(2.4), (2.17), (2.18) and (5.2)–(5.3) hold. Then,
for every τ ∈ R and ω ∈ Ω, lim

ε→0
distL2(O)

(
Aε(τ, ω),A0(τ, ω)

)
= 0.

Proof. Given τ ∈ R and ω ∈ Ω, by the invariance of Aε and (4.3), we find that
there exists ε0 > 0 such that

∥u∥2H1
ε (O) ≤ L(τ, ω) for all 0 < ε < ε0 and u ∈ Aε(τ, ω), (5.12)

where L(τ, ω) is the positive constant in (4.3), which is independent of ε. Let
K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} be the D1-pullback absorbing set of Ψε obtained in
Lemma 4.1 and denote by K0 = {K0(τ, ω) : τ ∈ R, ω ∈ Ω} with K0(τ, ω) = {Mu :
u ∈ K(τ, ω)}. Then K0 is tempered in L2(Q), and hence K0 ∈ D0. Since A0 is
the D0-pullback attractor of Ψ0 in L2(Q), given η > 0, we infer that there exists
T = T (η, τ, ω) ≥ 1 such that

distL2(Q)(Ψ0(T, τ − T, θ−Tω,K0(τ − T, θ−Tω)),A0(τ, ω)) <
1

2
η. (5.13)

By the invariance of Aε(τ, ω), we see that for any xε ∈ Aε(τ, ω), there exists yε ∈
Aε(τ − T, θ−Tω) such that

xε = Ψε(T, τ − T, θ−Tω, yε). (5.14)

By (5.12) and Theorem 5.1, we obtain

lim
ε→0

∥Ψε(T, τ − T, θ−Tω, yε)−Ψ0(T, τ − T, θ−Tω,Myε)∥L2(O) = 0,

and hence there exists ε1 ∈ (0, ε0) such that for all ε < ε1,

∥Ψε(T, τ − T, θ−Tω, yε)−Ψ0(T, τ − T, θ−Tω,Myε)∥L2(O) <
1

2
η. (5.15)
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Since yε ∈ Aε(τ − T, θ−Tω) and Aε(τ − T, θ−Tω) ⊆ K(τ − T, θ−Tω), we know
Myε ∈ K0(τ − T, θ−Tω), which along with (5.13) implies

distL2(Q)(Ψ0(T, τ − T, θ−Tω,Myε),A0(τ, ω)) <
1

2
η. (5.16)

By (5.15) and (5.16), we have, for all ε < ε1,

distL2(O)(Ψε(T, τ − T, θ−Tω, yε),A0(τ, ω)) < η. (5.17)

By (5.14) and (5.17), we deduce, for all ε<ε1, distL2(O)(xε,A0(τ, ω))<η, for all xε∈
Aε(τ, ω). This indicates that for all ε<ε1, distL2(O)(Aε(τ, ω),A0(τ, ω))≤η, as de-
sired.
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