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ANALYTICAL SOLUTION FOR THE
TWO-DIMENSIONAL LINEAR

ADVECTION-DISPERSION EQUATION IN
POROUS MEDIA VIA THE FOKAS METHOD∗

Guenbo Hwang†

Abstract We present the analytical solution of the two-dimensional linear
advection-dispersion equation (2-D LAD) in the quarter plane and the semi-
infinite domain for two-dimensional solute transport in a porous medium.
The governing equation includes terms describing advection, longitudinal and
transverse dispersions and linear equilibrium adsorption. The analytical so-
lution in terms of integrals in the complex plane is established by utilizing
the unified transform method, also known as the Fokas method. The method
hinges upon analysis of the divergence form of the governing equation and the
so-called global relation, which is an algebraic relation coupling all known and
unknown initial and boundary values. Particularly, the integral representation
of the solution yields an accurate and fast numerical evaluation of the solution
for the 2-D LAD equation. We demonstrate examples as an application of the
developed solution and compare the analytical solution with numerical results.

Keywords Initial-boundary value problem, advection-dispersion equation,
Fokas method, solute transport, environmental flow.
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1. Introduction
Analysis of contaminant transport problems in various porous media has been exten-
sively studied during past decades. The advection-dispersion equation is commonly
used as governing equation for solute transport of contaminants in porous me-
dia, which is also a long-standing analytical model for advective-diffusive transport
problems in many areas of sciences and engineering such as heat and mass transfer
and chemical or biological pollutant transport in environment [11,21,24,33,36,42].
Thus, a plethora of analytical solutions of the advection-dispersion equation has
been developed for analyzing dispersive transport problems in literatures. There
are a number of analytical solutions for one-dimensional cases [3, 21, 24, 33, 36],
whereas analytical solutions are relatively limited to the two- and three-dimensional
advection-dispersion equation, which are more applicable in many physical circum-
stances [1, 4, 22,30,31].

The literature presents several analytical methods to solve the advection-dispers-
ion equation on semi-infinite or finite domains, including separation of variables,
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Green’s function and certain integral transforms such as the Laplace and Fourier
transforms or a combination of these integral transforms [1]. Particularly, the classic
or generalized integral transform technique has been developed in [22, 23], provid-
ing an efficient and systematic approach to derive generalized analytical solutions
of solute transport problems. Nevertheless, traditional approaches as well as the
generalized integral transform technique may not be generally applicable for solv-
ing boundary value problems of the advection-dispersion equation. For example,
the Fourier transform can provide a solution which is not uniformly convergent at
boundaries [10, 13, 19] and the process of the Fourier and Laplace transforms tech-
nique may require complicated or difficult mathematical manipulations [3,4,22,23].
The generalized integral transform may not be used in solving solute transport
problems in finite or infinite domain subject to time-dependent inlet boundary con-
ditions [3]. Thus, the aim of this study here is to develop a unified approach for
solving the advection-dispersion equation of solute transport problems in various
porous media.

The unified transform method, also known as the Fokas method, has been
successfully used to solve boundary value problems for linear evolution equations
[13, 19]. The Fokas method was developed to analyze boundary value problems
for nonlinear integrable systems as a significant extension of the inverse scatter-
ing transform [14, 17]. Importantly, the method also yields a new approach to
analyze a large class of partial differential equations (PDEs) such as nonlinear in-
tegrable systems, linear evolution equations [15,18,20], linear and nonlinear elliptic
PDEs [8, 9, 16, 38] and linear and nonlinear integrable discrete equations [2, 35].
Recently, the Fokas method has been extended to analyze nonlinear droplet oscil-
lations [40] and non self-adjoint diffusion problems with applications in statistical
estimation [7]. Regarding the advection-dispersion equation, the Fokas method has
been used for analyzing the one- and two-dimensional LAD equations [10,18,26] and
the two-dimensional linear advection-dispersion equations (2-D LAD) in cylindrical
coordinates [27]. In this paper, we focus on studying the two-dimensional solute
transport in a porous medium. More precisely, we will derive an analytical solution
of the 2-D LAD equation posed in the quarter plane and a semi-infinite domain by
utilizing the Fokas method. The governing equation includes terms describing ad-
vection, longitudinal and transverse dispersions and linear equilibrium adsorption.
It should be noted that the LAD equation can be considered as a generalization of
the heat equation, and hence the present study is a further application as discussed
in [18].

The present method has several advantages in solving boundary value prob-
lems for the LAD equation. The Fokas method is relatively simple, but effective
to implement in solving boundary value problems with more general and compli-
cated boundary conditions [5,32] (see also [7] and references therein). Moreover the
method provides an integral representation of the solution involving explicit expo-
nential dependence on spatial and time variables. Thus, it enables one to understand
and study long-time asymptotic behaviors of the solution [25–28, 34]. In addition,
the integral representation of the solution provides a novel efficient method for
computing numerically the analytical solution, called a hybrid analytical-numerical
method [10].

The outline of this work is as following. In Sec. 2, we discuss the 2-D LAD
equation as the relevant mathematical formulation of the 2-D solute transport in
a porous medium and we present the analytical solution for the 2-D LAD equa-
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tion posed on the quarter plane and a semi-infinite domain by means of the Fokas
method. In Sec. 3, we demonstrate examples as computational applications for the
developed solution. We end with concluding remarks in Sec. 4.

2. The two-dimensional linear advection-dispersion
equation

Two-dimensional solute transport subjected to linear equilibrium adsorption, through
a saturated porous medium with uniform steady flow is generally described by the
two-dimensional linear advection-dispersion equation (2-D LAD) [31]

∂C

∂t
+ V

∂C

∂x
= DL

∂2C

∂x2
+DT

∂2C

∂y2
, 0 < x < ∞, 0 < y < L, (2.1)

where C(x, y, t) represents the solute concentration, V is the average pore velocity
and DL and DT represent the longitudinal and transverse dispersion coefficients,
respectively. We here consider two cases that the length L is finite for the semi-
infinite domain and is infinity for the quarter plane. We assume that the concen-
tration C(x, y, t) is sufficient smooth and rapidly decays for all t as x → ∞ (and as
y → ∞ for L = ∞). Moreover, in order to solve eq. (2.1), it requires to prescribe
initial and boundary conditions. We assume that the initial solute concentration is
present at t = 0

C(x, y, 0) = C0(x, y)

and in addition, we assume mass balance at x = 0 and impermeable boundary
conditions at y = 0 (and y = L for finite L), respectively,(

C − DL

V

∂C

∂x

)
(0, y, t) = 0, Cy(x, 0, t) = Cy(x, L, t) = 0.

2.1. Solution for the LAD equation on the quarter plane
We first study the 2-D LAD equation on the quarter plane (L = ∞). More specif-
ically, letting t′ = V t in eq. (2.1), we consider the following rescaled 2-D LAD
equation posed on the quarter plane

∂C

∂t
= b

∂2C

∂x2
− ∂C

∂x
+ a

∂2C

∂y2
, x, y > 0, (2.2)

where we have omitted the prime for simplicity and b = DL/V and a = DT /V .
The initial and boundary conditions are given by

C(x, y, 0) = C0(x, y), (C − bCx) (0, y, t) = 0, Cy(x, 0, t) = 0. (2.3)

Introduce the dispersion relations ω1(k1) and ω2(k2) defined by

ω1(k1) = bk21 + ik1, ω2(k2) = ak22, k1, k2 ∈ C (2.4)

and it is convenient to write k = (k1, k2), z = (x, y) and

kz = k1x+ k2y, ω(k) = ω1(k1) + ω2(k2). (2.5)
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We then write eq. (2.2) as(
e−ikz+ω(k)tC

)
t
=
[
e−ikz+ω(k)t ((ibk1 − 1)C + bCx)

]
x

+
[
e−ikz+ω(k)t (iak2C + aCy)

]
y
. (2.6)

We denote the Fourier transform of C(x, y, t) by Ĉ(k1, k2, t)

Ĉ(k1, k2, t) =

∫ ∞

0

dx

∫ ∞

0

dy e−ikzC(x, y, t). (2.7)

Note that Ĉ(k1, k2, t) is well defined for Im k1,2 ≤ 0. Taking the Fourier transform
in eq. (2.6), we find(

eω(k)tĈ(k1, k2, t)
)
t
=−

∫ ∞

0

dy e−ik2y+ω(k)tibk1C(0, y, t)

−
∫ ∞

0

dx e−ik1x+ω(k)tiak2C(x, 0, t). (2.8)

Integrating eq. (2.8) with respect to t, we find the global relation as

eω(k)tĈ(k1, k2, t) = Ĉ0(k1, k2)− ibk1ĝ1(k1, k2, t)− iak2f̂1(k1, k2, t), Im k1,2 ≤ 0,
(2.9)

where Ĉ0(k1, k2) = Ĉ(k1, k2, 0) and

ĝ1(k1, k2, t) =

∫ t

0

ds

∫ ∞

0

dη e−k2η+ω(k)sC(0, η, s), (2.10)

f̂1(k1, k2, t) =

∫ t

0

ds

∫ ∞

0

dξ e−k1ξ+ω(k)sC(ξ, 0, s). (2.11)

Then, the solution C(x, y, t) can be reconstructed by taking the inverse Fourier
transform in the global relation (2.9),

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t
(
ibk1ĝ1(k1, k2, t)+iak2f̂1(k1, k2, t)

)
.

(2.12)

However, the representation of the solution given in (2.12) involves unknown func-
tions ĝ1(k1, k2, t) and f̂1(k1, k2, t) due to the unknown boundary values C(0, y, t)
and C(x, 0, t). Thus, for the explicit representation of the solution, we should de-
termine the unknown functions ĝ1(k1, k2, t) and f̂1(k1, k2, t). This can be done by
using the global relation (2.9).

We first introduce the regions

Dj = {kj ∈ C | Reωj(kj) < 0}, j = 1, 2, (2.13)

and it is convenient to decompose the regions Dj (j = 1, 2) into Dj = D+
j ∪ D−

j ,
where D+

j = {kj ∈ C | Reωj(kj) < 0 and Im kj > 0} and D−
j = {kj ∈ C |
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-

Figure 1. (Left) The region D1 = D+
1 ∪ D−

1 (shaded) in the complex k1-plane, where Reω1(k1) < 0

with ω1(k1) = bk2
1 + ik1. (Right) The region D2 = D+

2 ∪ D−
2 (shaded) in the complex k2-plane, where

Reω2(k2) < 0 with ω2(k2) = ak2
2.

Reωj(kj) < 0 and Im kj < 0} (see Fig. 1). Thus, by the Cauchy theorem, we can
deform the (−∞,∞) to ∂D+

j and then eq. (2.12) can be written as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tibk1ĝ1(k1, k2, t)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ikz−ω(k)tiak2f̂1(k1, k2, t). (2.14)

Note that under the transformation k1 → −k1 − i/b := k̂1, the dispersion relations
ω1(k1) is invariant. Thus, letting k1 → k̂1 in eq. (2.9), we find

eω(k)tĈ(k̂1, k2, t) = Ĉ0(k̂1, k2)− (1− ibk1)ĝ1(k1, k2, t)− iak2f̂1(k̂1, k2, t), (2.15)

which implies that

ĝ1(k1, k2, t) =
1

1− ibk1

(
Ĉ0(k̂1, k2)− iak2f̂1(k̂1, k2, t)

)
− 1

1− ibk1
eω(k)tĈ(k̂1, k2, t). (2.16)

The term involving eω(k)tĈ(k̂1, k2, t) in the above equation vanishes when substi-
tuting this term into eq. (2.14) thanks to the Cauchy theorem. On the other hand,
ω2(k2) is invariant under the transformation k2 → −k2. Hence, replacing k2 → −k2,
the global relation yields

eω(k)tĈ(k1,−k2, t) = Ĉ0(k1,−k2)− ibk1ĝ1(k1,−k2, t) + iak2f̂1(k1, k2, t), (2.17)

and then we find

iak2f̂1(k1, k2, t) = −Ĉ0(k1,−k2) + ibk1ĝ1(k1,−k2, t) + eω(k)tĈ(k1,−k2, t). (2.18)

As before, the term involving eω(k)tĈ(k1,−k2, t) in eq. (2.18) does not contribute in
eq. (2.14) by the Cauchy theorem. Hence, substituting eqs. (2.16) and (2.18) into
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eq. (2.14), we find

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t ibk1
1− ibk1

Ĉ0(k̂1, k2)

+
1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ikz−ω(k)tĈ0(k1,−k2)

+
1

4π2

∫
∂D+

1

dk1

∫
∂D+

2

dk2 e
ikz−ω(k)t

[
ibk1

1− ibk1
iak2f̂1(k̂1, k2, t)

− ibk1ĝ1(k1,−k2, t)

]
. (2.19)

On the other hand, replacing k1 → k̂1 and k2 → −k2 in the global relation (2.9),
we find

eω(k)tĈ(k̂1,−k2, t) = Ĉ0(k̂1,−k2)−(1−ibk1)ĝ1(k1,−k2, t)+iak2f̂1(k̂1, k2, t), (2.20)

and then the squared bracket in the forth integral of eq. (2.19) becomes

ibk1
1− ibk1

iak2f̂1(k̂1, k2, t)− ibk1ĝ1(k1,−k2, t)

=− ibk1
1− ibk1

Ĉ0(k̂1,−k1) +
ibk1

1− ibk1
eω(k)tĈ(k̂1,−k2, t). (2.21)

Using the above equation, the solution C(x, y, t) can be written as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t ibk1
1− ibk1

Ĉ0(k̂1, k2)

+
1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ikz−ω(k)tĈ0(k1,−k2)

− 1

4π2

∫
∂D+

1

dk1

∫
∂D+

2

dk2 e
ikz−ω(k)t ibk1

1− ibk1
Ĉ0(k̂1,−k2), (2.22)

where we have used the fact that the term involving eω(k)tĈ(k̂1,−k2, t) in eq. (2.21)
vanishes by the Cauchy theorem. Deforming the contours ∂D+

1 and ∂D+
2 into

(−∞,∞), finally we obatin the solution of eq. (2.2) as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tN̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t ibk1
1− ibk1

N̂0(k̂1, k2), (2.23)

where N̂0(k1, k2) is defined by

N̂0(k1, k2) = Ĉ0(k1, k2) + Ĉ0(k1,−k2). (2.24)
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2.2. Solution for the LAD equation in a semi-infinite domain
We now consider the 2-D LAD equation on the semi-infinite domain {0 < x, 0 <
y < L}. Letting y′ = y/L and t′ = V t in eq. (2.1), we study the following 2-D LAD
equation posed on the semi-infinite domain

∂C

∂t
= b

∂2C

∂x2
− ∂C

∂x
+ a

∂2C

∂y2
, 0 < x, 0 < y < 1, (2.25)

where we have omitted the prime for simplicity and

b =
DL

V
, a =

DT

V L2
. (2.26)

We consider the following initial and boundary conditions

C(x, y, 0) = C0(x, y), (C − bCx) (0, y, t) = 0, Cy(x, 0, t) = Cy(x, 1, t) = 0. (2.27)

The implementation of the Fokas method in analyzing eq. (2.25) is similar as pre-
sented in Sec. 2.1 and hence we will abuse the notations used in this section. Note
that eq. (2.6) is still valid for eq. (2.25). However, in this case, we let the Fourier
transform be given by

Ĉ(k1, k2, t) =

∫ ∞

0

dx

∫ 1

0

dy e−ikzC(x, y, t), Im k1 ≤ 0. (2.28)

Taking the Fourier transform in eq. (2.6), we find(
eω(k)tĈ(k1, k2, t)

)
t
=−

∫ 1

0

dy e−ik2y+ω(k)tibk1C(0, y, t)

−
∫ ∞

0

dx e−ik1x+ω(k)tiak2C(x, 0, t)

+

∫ ∞

0

dx e−ik1x−ik2+ω(k)tiak2C(x, 1, t). (2.29)

Integrating eq. (2.29) with respect to t, we obtain the global relation as

eω(k)tĈ(k1, k2, t) =Ĉ0(k1, k2)− ibk1ĝ1(k1, k2, t)− iak2f̂1(k1, k2, t)

+ iak2e
−ik2 f̂2(k1, k2, t), Im k1 ≤ 0, (2.30)

where

ĝ1(k1, k2, t) =

∫ t

0

ds

∫ 1

0

dη e−k2η+ω(k)sC(0, η, s), (2.31)

f̂1(k1, k2, t) =

∫ t

0

ds

∫ ∞

0

dξ e−k1ξ+ω(k)sC(ξ, 0, s), (2.32)

f̂2(k1, k2, t) =

∫ t

0

ds

∫ ∞

0

dξ e−k1ξ+ω(k)sC(ξ, 1, s). (2.33)

Employing the inverse Fourier transform, the reconstruction formula of the solution
can be found as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)
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− 1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t
[
ibk1ĝ1(k1, k2, t) + iak2f̂1(k1, k2, t)

−iak2e
−ik2 f̂2(k1, k2, t)

]
. (2.34)

We should determine the unknown functions ĝ1(k1, k2, t), f̂1(k1, k2, t) and f̂2(k1, k2, t)
due to the unknown boundary values C(0, y, t), C(x, 0, t) and C(x, 1, t). In this re-
spect, we appropriately deform the contour (−∞,∞) into ∂D±

j (j = 1, 2) by the
Cauchy theorem and then eq. (2.34) can be written as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tĈ0(k1, k2)

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tibk1ĝ1(k1, k2, t)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ikz−ω(k)tiak2f̂1(k1, k2, t)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D−

2

dk2 e
ikz−ω(k)tiak2e

−ik2 f̂2(k1, k2, t). (2.35)

Note that letting k1 → k̂1 = −k1 − i/b, eq. (2.30) yields

eω(k)tĈ(k̂1, k2, t) =Ĉ0(k̂1, k2)− (1− ibk1)ĝ1(k1, k2, t)

− iak2f̂1(k̂1, k2, t) + iak2e
−ik2 f̂2(k̂1, k2, t), (2.36)

which implies that

ĝ1(k1, k2, t) =
1

1− ibk1

(
Ĉ0(k̂1, k2)− iak2f̂1(k̂1, k2, t) + iak2e

−ik2 f̂2(k̂1, k2)
)

− 1

1− ibk1
eω(k)tĈ(k̂1, k2, t). (2.37)

Using eq. (2.37) in eq. (2.35), the second integral involving ĝ1(k1, k2, t) in eq. (2.35)
can be written as

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t ibk1
1− ibk1

[
Ĉ0(k̂1, k2, t)

−iak2f̂1(k̂1, k2, t)− iak2e
−ik2 f̂2(k̂1, k2, t)

]
, (2.38)

where we have used the fact that the term involving eω(k)tĈ(k̂1, k2, t) in (2.37)
vanishes by the Cauchy theorem. According to the regions, where each integrand in
(2.38) is bounded and rapidly decaying as k1,2 → ∞, we deform the contours and
then we can write eq. (2.38) as

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)t ibk1
1− ibk1

Ĉ0(k̂1, k2, t)

+
1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ikz−ω(k)t ibk1

1− ibk1
iak2f̂1(k̂1, k2, t)

+
1

4π2

∫ ∞

−∞
dk1

∫
∂D−

2

dk2 e
ikz−ω(k)t ibk1

1− ibk1
iak2e

−ik2 f̂2(k̂1, k2, t). (2.39)
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On the other hand, letting k2 → −k2, the global relation (2.30) yields

eω(k)tĈ(k1,−k2, t) =Ĉ0(k1,−k2)− ibk1ĝ1(k1,−k2, t)

+ iak2f̂1(k1, k2, t)− iak2e
ik2 f̂2(k1, k2). (2.40)

Solving eqs. (2.30) and (2.40) for f̂j(k1, k2) (j = 1, 2), we find

iak2f̂1(k1, k2, t) =
1

∆(k2)

[
eik2Ĉ0(k1, k2)− ibk1ĝ1(k1, k2, t) + e−ik2Ĉ0(k1,−k2)

− ibk1ĝ1(k1,−k2, t)
]
− eω(k)t

∆(k2)

[
eik2Ĉ(k1, k2, t)

+ e−ik2Ĉ(k1,−k2, t)
]
,

(2.41a)

iak2f̂2(k1, k2, t) =
1

∆(k2)

[
Ĉ0(k1, k2)− ibk1ĝ1(k1, k2, t) + Ĉ0(k1,−k2)

− ibk1ĝ1(k1,−k2, t)
]
− eω(k)t

∆(k2)

[
Ĉ(k1, k2, t) + Ĉ(k1,−k2, t)

]
,

(2.41b)

where ∆(k2) = eik2 − e−ik2 is the determinant of the linear system of eqs. (2.30)
and (2.40). Replacing k1 → k̂1 in eq. (2.41a) and solving resulting equation with
eq. (2.41a), we find

ibk1
1− ibk1

iak2f̂1(k̂1, k2, t)

=iak2f̂1(k1, k2, t)−
1

∆(k2)

[
eik2N̂0(k1, k2) + e−ik2N̂0(k1,−k2)

]
+

eω(k)t

∆(k2)

[
eik2N̂(k1, k2, t) + e−ik2N̂(k1,−k2, t)

]
, (2.42)

where N̂0(k1, k2) = N̂(k1, k2, 0) with

N̂(k1, k2, t) = Ĉ(k1, k2, t)−
ibk1

1− ibk1
Ĉ(k̂1, k2, t). (2.43)

Similarly, we can obtain

ibk1
1− ibk1

iak2f̂2(k̂1, k2, t) =iak2f̂2(k1, k2, t)−
1

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
+

eω(k)t

∆(k2)

[
N̂(k1, k2, t) + N̂(k1,−k2, t)

]
. (2.44)

We now substitute eqs. (2.42) and (2.44) into eq. (2.39). First note that the
terms involving eω(k)tN̂(k1,±k2, t) vanish by the Cauchy theorem when inserting
eqs. (2.42) and (2.44) into eq. (2.39). Furthermore, the integrals regarding the terms
f̂1,2(k1, k2, t) in eqs. (2.42) and (2.44) cancel with the third and fourth integrals in
(2.35). However, the function ∆(k2) has simple zeros at k2 = mπ (m ∈ Z) and
particularly, k2 = 0 is in ∂D+

2 and ∂D−
2 . Thus, we should deform the contours
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Re k1,2

Im k1,2

L1L2

π /6

Re k2

Im k2

Γ1Γ2
Γϵ

π /6

Figure 2. (Left) Efficient contour L = L1 ∪ L2 for numerical integration. (Right) Efficient contour
Γ = Γ1 ∪ Γ2 ∪ Γϵ for numerical integration (see the text for some details).

∂D+
2 and ∂D−

2 to pass above and below k2 = 0, which are denoted by ∂D̃+
2 and

∂D̃−
2 , respectively. Finally, we find the solution of eq. (2.25) as

C(x, y, t)

=
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tN̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ikz−ω(k)t 1

∆(k2)

[
eik2N̂0(k1, k2) + e−ik2N̂0(k1,−k2)

]
− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃−

2

dk2 e
ikz−ω(k)t e

−ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
. (2.45)

3. Application results
In this section, we present examples as applications of the developed solutions.
Here, we discuss the case of the semi-infinite domain since analysis and results of
the case for the quarter plane are similar. Throughout this section, we take the
parameters as

V = 1, L = 1, DT = 1 (3.1)
and DL = 0.1, 1 and 10 will be considered. More precisely, we study

∂C

∂t
= b

∂2C

∂x2
− ∂C

∂x
+

∂2C

∂y2
, 0 < x, 0 < y < 1, (3.2)

where b = DL and the initial and boundary conditions are given by eq. (2.27).

3.1. Point pulse release
We first consider the case that the initial value is given by

C(x, y, 0) = C0(x, y) = δ(y)δ(x− p), (3.3)

where δ(·) is the Dirac delta function and p = 1 is taken. This initial condition
describes that a point pulse injection of the solute is initially provided at y = 0 and
x = p. In this case, Ĉ0(k1, k2) = e−ik1p and Ĉ0(−k1− i/b, k2) = eik1p−1/b and hence
we find

N̂0(k1, k2) = N̂0(k1,−k2) = e−ik1p − ibk1
1− ibk1

eik1p−1/b. (3.4)
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Figure 3. (a,c,e) Comparison of the analytical solutions (solid curves) and the numerical solutions
(symbols) with the point pulse initial value in a longitudinal cross-section at y = 0 under the different
dispersion coefficients. (b,d,f) Analytical solution profiles over the xt-plane, where y = 0 under the
different dispersion coefficients.

Thus, the solution C(x, y, t) can be found as

C(x, y, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz−ω(k)tN̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ik1x−ω(k)t 1

∆(k2)

×
(
eik2(y+1) + eik2(y−1) + 2e−ik2(y−1)

)
N̂0(k1, k2), (3.5)

where N̂0(k1,2 ) is given in eq. (3.4). Note that the analytical solution given in
eq. (3.5) involves rather complicated integrals with respect to k1,2 and it is not
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simple to evaluate explicitly. However numerical integrations can be done well
effectively and efficiently. Here, we will use a hybrid analytical-numerical scheme,
presented in [10] (also see [26,27]). We first note that since the relevant integrands
of kj in eq. (3.5) are analytic, bounded and decaying rapidly as kj → ∞ in the
region, where Reωj(kj) ≥ 0 and Im kj ≥ 0 (j = 1, 2), by the Cauchy theorem
we can deform the contour (−∞,∞) for the integrals in eq. (3.5) to the contour
L = L1 ∪ L2 (see Fig. 2), where

L1 = {kj = reiπ/6 | 0 ≤ r}, L2 = {kj = re5iπ/6 | 0 ≤ r}. (3.6)

Similarly, we can deform the contour ∂D̃+
2 of the integral with respect to k2 in

eq. (3.5) to the contour Γ = Γ1 ∪ Γ2 ∪ Γϵ (see Fig. 2), where ϵ > 0 and

Γ1 = {k2 = reiπ/6 | ϵ ≤ r}, Γ2 = {k2 = re5iπ/6 | ϵ ≤ r},

Γϵ =

{
k2 = ϵeiθ | π

6
≤ θ ≤ 5π

6

}
. (3.7)

Along these deformed contours L and Γ, the corresponding integrands decay rapidly
as kj → ∞ (j = 1, 2) due to the exponential terms and hence numerical integration
converges very fast for large kj . For the numerical integration, we use the adaptive
Gauss-Kronrod quadrature method with |r| ≤ 100 and x ≤ 50. It can be shown
that this quadrature rule converges exponentially with respect to the number of
quadrature points N (see [10] and references therein). The exponential convergence
of the relative error in L2 norm is shown in Fig. 4, where N is increased by 50
quadrature points. In this figure, the rate of the convergence of the method shows
no significant difference for the values of DL.

Also, note that the integral over Γϵ can be approximated by the residue contri-
bution at k2 = 0, that is,

lim
ϵ→0

∫
Γϵ

dk2 e
−ω2(k2)t

1

∆(k2)

(
eik2(y+1) + eik2(y−1) + 2e−ik2(y−1)

)
= −4π

3
. (3.8)

In Fig. 3(a,c,e), by using the hybrid analytical-numerical method, the analytical
solutions given in eq. (3.5) are displayed as solid curves in a longitudinal cross-
section at y = 0 under the different dispersion coefficients DL = 0.1, 1 and 10.
Note that since a small DL value makes the parabolic boundary of D+

1 wide, in this
case we take the efficient contour L̃ = L̃1 ∪ L̃2, where

L̃1 = {k1 = reiDLπ/6 | 0 ≤ r}, L̃2 = {k1 = rei(1−DL/6)π | 0 ≤ r}. (3.9)

In addition, we also illustrated in Fig. 3(b,d,f) the analytical solution profiles in the
longitudinal cross-section at y = 0 over the xt-plane.

For comparison, we solve eq. (3.2) numerically by using a classical finite differ-
ence method (FDM) namely, the centered and explicit finite difference method [37]
(see also [26, 27]). Regarding the numerical solution of eq. (3.2), we used trunca-
tion of the infinite domain (0 < x) to a sufficiently large finite one with x ≤ 50.
Fig. 3(a,c,e) show that the analytical solutions (solid curves) given by eq. (3.5) agree
well with the numerical solutions (symbols) obtained by the FDM. In contrast to the
exponentially convergence of the present method, the FDM converges algebraically
with respect to step sizes of x, y and t [10]. Thus, the integral representation given
in eq. (3.5) provides more efficient numerical scheme than the FDM.
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Figure 4. Exponential convergence of the Fokas method for the case of the point pulse initial value.
Relative error in the L2 norm versus the number of quadrature points N when (Left) t = 5 and (Right)
t = 10 under different dispersion coefficients.

3.2. Gaussian pulse release

We consider the case that the initial value is given by two-dimensional Gaussian
form

C0(x, y) = e−
(x−p)2

4 − y2

4 , (3.10)

which is often used for solute transport in a porous medium [30]. Here, we take
p = 1. In this case, we find

N̂0(k1, k2) = Ĉ1(k1)Ĉ2(k2)−
ibk1

1− ibk1
Ĉ1(−k1 − i/b)Ĉ2(k2) (3.11)

with

Ĉ1(k1) = e−k1(k1+ip)
√
π

[
1− ierfi

(
k1 +

ip

2

)]
, (3.12)

Ĉ2(k2) = e−k2
2
√
π

[
erf

(
1

2
+ ik2

)
− ierfi (k2)

]
, (3.13)

where erf(·) and erfi(·) are respectively, the error and imaginary error functions.
Substituting eq. (3.11) into eq. (2.45), we can find the explicit integral representation
of the solution. We then employ the hybrid analytical-numerical scheme to integrate
the resulting equation with respect to k1,2 in a similar way as discussed in Sec. 3.1.
The exponential convergence of the Gauss-Kronrod method was shown in Fig. 6,
showing how effective and efficient the Fokas method is.

In Fig. 5(a,c,e), we compared the analytical solutions (displayed as solid curves)
in a longitudinal cross-section at y = 0 with the numerical solutions (displayed as
symbols) under the different dispersion coefficients DL = 0.1, 1 and 10. These
figures show that the analytical solutions obtained by the Fokas method with the
hybrid analytical-numerical scheme are well consistent with the numerical results
found by the FDM. We also demonstrated in Fig. 5(b,d,f) the analytical solution
profiles in the longitudinal cross-section at y = 0 over the xt-plane.
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Figure 5. (a,c,e) Comparison of the analytical solutions (solid curves) and the numerical solutions
(symbols) with the Gaussian initial value in a longitudinal cross-section at y = 0 under the different
dispersion coefficients. (b,d,f) Analytical solution profiles over the xt-plane, where y = 0 under the
different dispersion coefficients.

4. Concluding remarks
In conclusion, we have studied two-dimensional solute transport in a porous medium
with advection, longitudinal and transverse dispersions and linear equilibrium ad-
sorption, which can be modeled by the 2-D LAD equation posed on the quarter
plane and in a semi-infinite domain. We have demonstrated the Fokas method
to derive the analytical solution of the 2-D LAD equation as the integrals in the
complex plane. The Fokas method is based on analysis of the divergence form and
the global relation for the 2-D LAD equation. The developed solution has been
compared with the numerical results, showing an excellent agreement.

The presented method has several advantages in studying the linear advection-
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Figure 6. Exponential convergence of the Fokas method for the case of Gaussian initial value. Relative
error in the L2 norm versus the number of quadrature points N when (Left) t = 5 and (Right) t = 10
under different dispersion coefficients.

dispersion equation. The method is relatively simple, but effective to implement in
solving the LAD equation. Importantly, the method provides the explicit integral
representation of the solution, involving the time-dependence of exponential form,
which leads to an effective numerical evaluation of the solution, called a hybrid
analytical-numerical method. This hybrid method does not require to discretize
the time domain and hence the presented method makes it efficient to understand
and study the behavior of the long-time asymptotics [26, 27]. In addition, the
present method converges exponentially with respect to the number of the quadra-
ture points, which implies that the method is more efficient than finite difference
methods. It is also remarked that in the case that the integral transforms of the
initial and boundary values can not be computed explicitly, we can do numerically
by using the Gauss-Kronrod quadrature method as discussed in [10].

The Fokas method has been extensively developed in solving boundary value
problems and hence the presented method can be extended to analyze other physi-
cally important boundary value problems with more general and complicated bound-
ary conditions as discussed in [6, 12, 29, 39, 41]. We will present these issues in the
near future.
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Appendix A.
In this section, we will verify that C(x, y, t) given in eq. (2.45) solves eq. (2.25) satis-
fying the initial and boundary conditions. By substituting eq. (2.45) into eq. (2.25),
it is straightforward to show that C(x, y, t) solves the LAD equation (2.25). Thus,
we will show that C(x, y, t) given by eq. (2.45) satisfies the initial and boundary
conditions given in eq. (2.27).
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Initial condition. Note that eq. (2.45) at t = 0 is given by

C(x, y, 0) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikzN̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2
eikz

∆(k2)

[
eik2N̂0(k1, k2) + e−ik2N̂0(k1,−k2)

]
− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃−

2

dk2
eikz−ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
. (A.1)

Regarding the first integral of the right-hand-side of eq. (A.1), we note that

1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikzĈ0(k1, k2)

=
1

4π2

∫ ∞

−∞
dξ

∫ 1

0

dη C0(ξ, η)

∫ ∞

−∞
dk1 e

ik1(x−ξ)

∫ ∞

−∞
dk2 e

ik2(y−η). (A.2)

Using the following identity∫ ∞

−∞
dλ eiλ(x−ξ)λ = 2πδ(x− ξ), (A.3)

we find
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikzĈ0(k1, k2) =

∫ ∞

−∞
dξ

∫ 1

0

dη C0(ξ, η)δ(x− ξ)δ(y − η)

= C0(x, y). (A.4)

On the other hand, note that
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikz ibk1
1− ibk1

Ĉ0(k̂1, k2)

=
1

4π2

∫ ∞

0

dξ

∫ 1

0

dη e−1/bC0(ξ, η)

∫ ∞

−∞
dk2 e

ik2(y−η)

×
∫ ∞

−∞
dk1 e

ik1(x+ξ) ibk1
1− ibk1

= 0, (A.5)

where we have used the fact that, by the Jordan lemma and eq. (A.3)∫ ∞

−∞
dk1 e

ik1(x+ξ) ibk1
1− ibk1

=

∫ ∞

−∞
dk1 e

ik1(x+ξ)

(
1

1− ibk1
− 1

)
= −2πδ(x+ ξ) = 0 (x > 0). (A.6)

Thus, we find
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ikzN̂0(k1, k2) = C0(x, y). (A.7)

On the other hand, the second and third integrals of the right-hand-side of eq. (A.1)
vanish by using boundedness and analyticity of the integrands in the regions D+

2 or
D−

2 . Indeed, by the Jordan lemma, we find∫
∂D̃+

2

dk2 e
ik2y

e±ik2

∆(k2)
e∓ik2η = 0, (A.8)
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which implies that

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ikz e±ik2

∆(k2)
N̂0(k1,±k2) = 0. (A.9)

Hence the second integral of the right-hand-side of eq. (A.1) vanishes. In a similar
way, using ∫

∂D̃−
2

dk2 e
ik2(y−1) e

±ik2η

∆(k2)
= 0, (A.10)

the third integral of the right-hand-side of eq. (A.1) equals to zero. Therefore,
C(x, y, 0) = C0(x, y), as desired.

Boundary condition at x = 0. Differentiating eq. (2.45) with respect to x and
evaluating the resulting equation at x = 0, we find

(C − bCx)(0, y, t)

=
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik2y−ω(k)t (1− ibk1) N̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ik2y−ω(k)t 1− ibk1

∆(k2)

[
eik2N̂0(k1, k2)+e−ik2N̂0(k1,−k2)

]
− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃−

2

dk2 e
ik2y−ω(k)t (1− ibk1)e

−ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
.

(A.11)

Note that the first integral of the right-hand-side of eq. (A.11) can be written as

1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik2y−ω(k)t (1− ibk1) N̂0(k1, k2)

=− 1

4π2

∫
∂D−

1

dk1

∫ ∞

−∞
dk2 e

ik2y−ω(k)t(1− ibk1)Ĉ0(k1, k2)

− 1

4π2

∫
∂D+

1

dk1

∫ ∞

−∞
dk2 e

ik2y−ω(k)tibk1Ĉ0(k̂1, k2). (A.12)

Letting k1 → k̂1 = −k1 − i/b in the second integral of the right-hand-side of
eq. (A.12), the resulting integral cancels with the first integral of the right-hand-side
of eq. (A.12). Thus, we find

1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik2y−ω(k)t (1− ibk1) N̂0(k1, k2) = 0. (A.13)

In a similar way, we can prove that the second and third integrals of the right-hand-
side of eq. (A.11) vanish. Therefore, we can show that (C − bCx) (0, y, t) = 0.

Boundary conditions at y = 0 and y = 1. Differentiating eq. (2.45) with
respect to y and evaluating the resulting equation at y = 0, we find

Cy(x, 0, t)
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=
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik1x−ω(k)tik2N̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ik1x−ω(k)t ik2

∆(k2)

[
eik2N̂0(k1, k2) + e−ik2N̂0(k1,−k2)

]
− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃−

2

dk2 e
ik1x−ω(k)t ik2e

−ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
.

(A.14)
Replacing k2 → −k2 in the third integral of the right-hand-side of eq. (A.14) yields

1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ik1x−ω(k)t ik2e

ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
. (A.15)

Thus, eq. (A.14) can be written as

Cy(x, 0, t) =
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik1x−ω(k)tik2N̂0(k1, k2)

+
1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ik1x−ω(k)tik2N̂0(k1,−k2). (A.16)

Replacing k2 → −k2 in the second integral of the right-hand-side of eq. (A.16), we
find

1

4π2

∫ ∞

−∞
dk1

∫
∂D+

2

dk2 e
ik1x−ω(k)tik2N̂0(k1,−k2)

=
1

4π2

∫ ∞

−∞
dk1

∫
∂D−

2

dk2 e
ik1x−ω(k)tik2N̂0(k1, k2). (A.17)

By the Cauchy theorem, we deform the contour ∂D−
2 in the right-hand-side of

the above equation to the contour (−∞,∞) in the negative orientation and then we
know that the resulting integral cancels with the first integral of the right-hand-side
of eq. (A.16). Thus, we can show that Cy(x, 0, t) = 0.

Differentiating eq. (2.45) with respect to y and evaluating the resulting equation
at y = 1, we find

Cy(x, 0, t)

=
1

4π2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 e

ik1x−ω(k)tik2e
ik2N̂0(k1, k2)

− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃+

2

dk2 e
ik1x−ω(k)t ik2e

ik2

∆(k2)

[
eik2N̂0(k1, k2)+e−ik2N̂0(k1,−k2)

]
− 1

4π2

∫ ∞

−∞
dk1

∫
∂D̃−

2

dk2 e
ik1x−ω(k)t ik2

∆(k2)

[
N̂0(k1, k2) + N̂0(k1,−k2)

]
.xx

(A.18)
In a similar way as discussed above, we can show that Cy(x, 1, t) = 0.
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