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Abstract In this work, a final value problem for a fractional pseudo-parabolic
equation is considered. Firstly, we present the regularity of solution. Secondly,
we show that this problem is ill-posed in Hadamard’s sense. After that we
use the quasi-boundary value regularization method to solve this problem.
To show that the proposed theoretical results are appropriate, we present an
illustrative numerical example.
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1. Introduction

In this paper, for we study the linear nonclassical diffusion equation which called
pseudo-parabolic equation in the following form

ug(z,t) — mAug(x,t) + (—A)Pu(z,t) = f(z,t), for z € Q, t € (0,T), (1.1)
satisfies the following Dirichlet boundary condition
u(w,t)|aax 0,1) = 0- (1.2)

o Initial value problem (IVP): This problem consists in finding u(z,t) for ¢ €
(0,T] from the initial data

u(z,0) =up(z), =€ (1.3)
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o Final value problem (FVP): This problem is related to recovering u(z,t) for
t € [0,7T) from the terminal data (or final state)

u(z,T) =g(x), = €. (1.4)

Pseudo-parabolic equations have many applications in science and technology,
particularly in physical phenomena such as aggregation of populations, seepage of
homogeneous fluids through a fissured rock, we can see in [13] and the references
of this paper. We have the standard Laplace operator when § = 1, it means that
the operator (—A)? becomes —A. In this case, many authors have studied the
nonclassical diffusion equation has been studied with many various directions and
motivations such as [1,7,8,10,13,15,24,25]. As far as we know that the results on
fractional pseudo-parabolic equation are limited, we can mention them in some few
papers, for example [3,4,13,26,27]. For final value problem for pseudo-parabolic
equation (1.1), (1.2) and (1.4), until now, there are still not many research results for
this problem (for instance, [18] and its references). In general, the problem statisfies
the conditions (1.1), (1.2) and (1.4) is ill-posed problem, namely, a solution do not
exist and if a solution exists it does not depend continuously on the data. Moreover,
if we have a small error in the perturbed data, it can lead to the blow-up of the
solution.

In case m = 0 and 8 = 1, the problem (1.1) is the parabolic problem. There
are many methods which are used to solve the final value problem for the classical
parabolic equation. In this area, we can find much research works, e.g., Dang Duc
Trong and his group, (see [21-23]).

In case m > 0 and S = 1, the problem (1.1), (1.2) and (1.3) is called by the
pseudo-parabolic equation (we can refer to [17,20]). In [13], Fang and his group
studied the time-decay and global existence for the solution of the fractional pseudo-
parabolic equation.

For an example of the regularization topic, [2], V.V. Au et al., studied the
Problem (1.1) in the cases of globally or locally Lipschitzian source term with the
help of modified Lavrentiev and Fourier truncated regularization methods.

In case the observation g satisfying the statistical model. In [9], the authors
consider Problem (1.1) in a different point of view of data. They assume that the
exact value of g by the observation g; = gi, 4,,....i,, Satisfying the statistical model

m

gi = g+ 6, (1.5)
where 6; = 6i,4,,..4, > 0 is bounded by a given positive constant and X; =
Xisviorosim oy N(0,1) are i.i.d. standard Gaussian random variables, for i € Z~ .

In this paper, we strongly consider the quasi-boundary value regularization
method to solve the problem (1.1), (1.2), and (1.4). In 1983, [16], Showalter who
used the quasi-boundary value method for the homogeneous problem which gave sta-
bility pretty good than the quasi reversibility method of Lattes and Lions, see [14].
This method has a long history of research. The main idea of this method is adding
appropriate items into the final data. By using the above idea, the author Denche-
Bessila in [11], solved the backward heat problem by replacing the final condition
as follows

w(T) +eu(0) =g, u(T)— e (0) =g.

In the present paper, our main target is to provide one regularized solution that
is called regularized solution for approximating u(z,t), t € (0,T]. It gives the error
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estimate between the regularized solution and the sought solution, we also give
one numerical example to show the efficiency of the proposed method about the
convergent estimate.

The paper is structured as follows. In Section 1, we introduce about the prob-
lem which is considered in this work. In next section, we give some preliminary
materials to be used later in this paper. Next, we show the regularity of u(x,t) and
%(m, t) and the ill-posedness of the fractional inverse source problem. In Section 3,
we propose a generalized quasi-boundary value regularization method and show in-
formation about the error estimate between the sought solution and the regularized
solution in Section 4. Finally, one numerical example to test our proposed regular-
ized method is shown in Section 5. Lastly, we give some comments in Section 6 -
Conclusion.

2. Preliminary results

We start this section by introducing several definitions and lemmas.

Definition 2.1. Let £ be the operator on the domain D(—L) := H} () N H?(Q)
and assume that —£ has a eigenvalues A, with eigenfunction e, € D(L) as follows

O< A < << A\ <.

and A\, — 0o as k — 0o. An example of L is the negative Laplacian operator —A
on L?(Q), we have

Lep(x) = Apep(x), x€Q, and ex(r) =0,z € 0N.

Definition 2.2 (Hilbert scale space). Being doing so, we introduce some suitable
Sobolev space, and fix some notation, 5 > 0. Let us recall that the spectral problem

LPe(z) = )\gek(sc), x €, and ex(zx) =0, z € 09,
admits a family of eigenvalues
0< A <A <o for Ay —> o0 as k— oo,

and the corresponding eigenfunctions e, € HE (). The Hilbert scale space H* (s >
0) is defined as follows

H () = {f € L2(Q) : Y N|(fo i) o[ < oo}, (2.1)
k=1
with the norm .
HfHZDs(Q) = Z)\iSKf, €k>£2(ﬂ)‘2 < 00. (2.2)
k=1

For a Hilbert space X, we denote by L? (0,T; X) and C ([0,7]; X) the space of the
continuous functions f : [0,7] — X, such that

r :
||fHLP(O7T;X) = (/0 ”f“g(dt) <oo, 1<p<oo,
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I flleqorix)y = sup |If (#)]lx < oo,
0<t<T

and
||f||Loo(0TX)_eSbbupr( )||X<OO, p=0x

The definition of the negative fractional power £7° with s > 0 can be founded
n [6]. Its domain D(L£™*) is a Hilbert space endowed with the inner product (-, -)
taken between D(L~%) and D(L®). This generates the norm

o ) 3
D<) = (Z ‘<V7 6k>’ /\;Z2S> : (2.3)
k=1

Let L>®(0,T; Gg,m(92)) (see [12]) be the following space

L>(0,T;Ggm(R2) = {V € L>(0,T; L*(2)), sup e2tm N Kz/, ek>|2 < oo},

0<t<T
(2.4)
for any 8 > 1 and m > 0.
Lemma 2.1. For 0 < a < €T, by denoting b(z) = (am + e_wT)_l, we have
T T
b(z) < < . 2.5
O ST m (@) = am(D) 25)
Proof. The proof of Lemma 2.1 can be found in [21]. O
8 ~
Lemma 2.2. For any 0 < t < T, by denoting {(m,[) = 1+)\Tk>\k and T =
max{1,T}, we have
Du(T e tem ) 2.6
4 = .
S T N e 20
then we obtain
. T 1 _
Di(T,t,8) < T(aln (7)) T (2.7)
e
Proof. We can see the same proof in Lemma 3.1 of [19]. O

Lemma 2.3. Let0 < <1, forany0 <t < ( <T, by using the inequality e™* < 1
for all z, uy = (1 +mAg) ™1 and &(m, B) is defined in the Lemma 2.2, we can find
that

r

Proof. First of all, we deduce that

oo

Z Mke(cft)ﬁk(m,ﬁ)g(.? 0), @k(')>

k=1

- -1
2 Te2Tm 1 )\f

™ = e Wli=oriz)

(2.8)

2 e2(C—AL (14mAg)

=y 1(F(0), en())]

L2(Q) =1 1 + m)‘k)

D el OB F( ), ()

k=1
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esz—l,\{’*1 o0

_ mkz [(FC.0sen())]

=1

(2.9)

Then, we have

1S 4 ete-tenms) P 2
)&k (m, < . )
/ > e (0| | acs G [ 16Ol

2T7rL71)\f_1
S 7 R
(14 mh)2 L= (0,T;L2(2))
(2.10)

O

3. Main Result

3.1. Regularity of problem (1.1) for 0 < g <1

The goal of this section, we study the final value problem (1)—(4) in first case
0 < 8 <1 and second case 8 > 1. In more detail, 0 < § < 1, we show the regularity

0
of u(x,t) and 6—1;(:6715). Moreover, in case 8 > 1, we show that the problem (1)-

(4) is ill-posed. After that we present a modified quasi boundary value method to
regularize problem (1)—(3) and convergent rate.

3.2. Homogeneous
The theorem below is the first major result in this section.

Theorem 3.1. Let u be the solution of the problem (1.1) with f =0, g€ D*(Q)N
D3tB(Q) for s > 0, we obtained the following estimate:

a) For allt € (0,T), it gives

CHm-1aA-1
[u(,t)[[pey < eT=Hm 2 g]

D3 ()
d 1,6
‘ ﬁ(.7t) < m~le(T—tm A8 1H9|Ds+ﬂ(9)' (3.1)
)
b) Att =0, we get
1481
[[u(-,0)] D) = ™M |gllpe (- (3:2)
Proof. a) For all t € (0,T), we have
(o)
U(l‘,t) = Ze(T_t)Ek(mﬁ) <g()7 Bk(')>6k(ﬂf), (33)
k=1

which leads to

) oegey = || 32 AT 06 ), () e
k=1
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< e(Tft)m_lz\f71

x-rn

Xi(g()s ex()) en )|
k=1
Cm-1aBt
< elT=tm= A l9llps - (3.4)

To prove the second estimate, we take the derivative on the variable ¢ of u(x,t), we
receive

[ 6O = i A 6u(m, )T O g(), n () )|

< qu 3 ATFIAS LT =06 (m8) (g (). ek(.)>ek(.)H
k=1

< m_1H g:l AP T =06 (m8) (), ek(')>€k(')H
T A 60, erenl)

k=1

gl

<m

— —1
< m—leT-tm A8

Ds+8(Q) (3.5)

Now, for a sequence {t,} C (0,T] such that ¢, — ¢ when h — oo, we get

Tim [Juc,ta) = u(,6) |-

~ lim H S (épn)@(mﬂ) _ e(:u)ék(m,@)xg(% 6k(.)>ek(.)H
k=1

h—o0

< || ST (e o) ), ) )|
k=1

h—o0

SeTm71A§71 lim H Z /\Z (e—thfk(m»ﬁ) _ e—tEk(mﬁ)) <g(.)7 ek(.)>ek(.)H, (3.6)
k=1

h=r00
Because of the inequality |e_p — e_q| <|p—gql|, ¥p,q >0, one has
i fJu( tn) = ul )l o)
<eTm TN =1\ 1HZ>\S ex())er(- H lim |th7t]
<e N A gl Jim [t 1], (87)
h=rc0

From (3.7), if t;, — t as h — oo, then the right hand side to 0 which leads to
u € C((0,T]; D%(2)). Next, we can assert that

du du

lim (|25 t) — S2(t
hl—>ngo ‘ dt ( ’ h) dt ( ’ ) Ds+1(Q)
< lim m~ HZASH} (=088 (g, e () ) e (- H
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h—o0

<m1eTm M i H S8 (et otk (), ek(->>ek(~>H
k=1

_14,8-1 _ .
<mleTm AT S Ygllpers o Jim |th —t|. (3.8)
—00

= 0. Hence, we can
Ds+1(Q)

Gotn) — 4 ()
conclude that u € C1((0,T]; D*+1(Q)).
b) At t =0, using (3.18), it can be written as follows:

From (3.8), this yields limp_ oo

—1,8-1
u(-,0)[|ps (o) < ™ M

> s —1,8-1

S At (o0) () er ()] < N gl (3.9)
k=1

The proof is completed. O

3.3. Nonhomogeneous

Since the problem (1)—(2), see [13], we carry on the mild solution of the initial value
problem as follows

w(z,t) = c- e ték(m.B) [y, (), ex(+)) | ex(x)
H( (10, en() )

£ (e [ e OsmIG O a0t (10)

k=1 0

Next, from (3.10), by letting ¢ = T and using the condition (1.4), we can estab-
lish a representation formula for the solution problem (1)—(3), then by a simple
computation, one has

oo

u(et) =Y (e”-”fk(m%(-), ek<->>) ()

k=1

e e} T
o e(C*t)ﬁk(mﬁ) f(.,C),G () d¢ e (33) (3.11)
5 i)

Theorem 3.2. Let u be the solution of the problem (1.1), assume that g € L?(Q2),
and f € L>(0,T; L*(2)) then the following estimates

e Forallt € (0,T), we get

— -1
VTeT™ A7

ul, )|, @ < llgllz o) A5 ma) £l o= 0,752 ()
u AP Lo(T—tym ™At

(.t <Vv3|=

%5 )y = V3 loll s

(\/T)\feTml’\fl

A -t oo .72 .
(1+mh) + (mA1) )”f”L (0,T;L (Q)):|

(3.12)
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e Att =0, we have

o \/TeTm—l,\f*
-0 < oTm AT e — oo (0.7T" .
||U( )HL2(Q) =€ 9/l L2(0) + (1 +mh) 1l oo 0,722 (92))
(3.13)
Proof. a) For all t € (0,T), using the inequality (p + ¢)? < 2(p? + ¢?), it gives
0o 2
2 m
Ol zay <2 2 T2 o), ex0)]
k= L2(Q)
Aq
2
,u;ge(c )€k (m, ﬁ)<f > d¢e(-) (3.14)
¢ L2(Q)

Az

To prove the inequality (3.14), we perform the following two steps
Step 1: Estimate of A;, we deduce that

Ay <2 30D ), (e
k=1

2

L2(Q)
< 22T NN (g (), en())[F < 22T g2, 0 (3.15)

Step 2: Using the Lemma 2.3, we can find that
2

T
Ay <2 uke<<*t>fk<mvﬁ><f(-7 (), en(+))d¢

L2(Q)
TeQTm71 Xﬁ B

< 27(1 )2 £ 0,7522(2)) (3.16)

Combining (3.14), (3.15) and (3.16), we obtain that

eTm—l,\’3 1
\ffi

< (T—t)ym~ 1A~
V2e ||9||L2(Q +mr)

(-t 1 £l o0, 7:22(2))"

(3.17)
b) Next, using the inequality (p + q + )2 < 3(p? + ¢® +72), Vp,q,7 > 0, we get

||L2(Q)

5‘% oT=DEmB) (01} o0 (. ’
| %], ., <3 ka DD
B?
T 2
+3 Zukfk / )5k(m5)<f(-,C),€k(‘)> d¢
£2(Q)
B3
(e’ 2
+3)| Yl e (3.18)
k=1 L2(Q)
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Step 1: Because of & (m, ) = )\g(l +mAp) "t < m’l)\gfl < m’l)\ffl. Hence,
we have the estimation for B? as follow:

B < 3m—2)\%5—2€2(T—t)m’1A’f_1 Z {g(-), ek(-)>!2
k=1

”9”%2(9)' (3.19)

_ —1yB—
ng—z)\fﬁ 2,2(T—t)ym ISt

Step 2: Applying the Lemma 2.3, estimate of B3, we get

) T 2
B <3( S méutm ) [ O (f(.0) n() dc)
k=1 t

2B—2 —1y6-1
T)‘lﬁ e2Tm A7

2
=3 (1+mh)4 11z 0,7:22 (@) (3.20)

Step 3: In here, we note that for 0 < ¢ < T there holds
2 = 2
|fr(t)]” < Z [(FCt) e < NFIE0.m:22(0))" (3.21)
k=1

Hence, we conclude that B2 can be bounded as follows
B3 < 3(mA) P f 7~ 0.1v22(0) (3.22)

Combining (3.19), (3.20) and (3.22), we receive (3.12) holds

%

A?—le(Tft)m’l)\fl
5 |

(1)

)5\/5

L2 ||9||L2(Q)

\/TAB*eTm_l)\le -
( (1 + mAr) + (mA1) 1) [ fllo(o,m;z2(0)) |- (3.23)
b) At t =0, by replacing ¢ = 0 in (3.17), it enables us to write

—148—1
/TeTm A7

.0 2eTm M 2
flu(., )HLZ(Q)\[Q lgllz2co) + V2 TETW

[ flle(o,m:2(0))  (3.24)

O

4. Regularization and error estimate of (1.1) by a
modified quasi boundary value method when 5>1

4.1. Construction of a regularization problem

V.
)\;1+m

In fact, from (3.11), we know that & (m, ) = /\f(l +mA) " =

that fixed f§ > 1, when k£ — oo, it gives )\',[:(1 + mAg)~! — oco. From (3.11), we
receive exp ((T—t))\g(l +mAy) ') and exp ((s —t))\f(l +mAy) ") tends to infinity
quickly. Small errors in high-frequency components can blow up and completely
destroy the solution for 0 < t < T'. Therefore, recovering u(z,t) from the data g(x)

. Assume



FVP for the fractional Sobolev equation 2411

is severely ill-posed. Hence, we employ the modified quasi boundary value method
to established a regularized problem, namely

e~ T¢k(m,B)
Z“ o, B)+o-TetmA | (")

U1 (T,1) =AU (2, 1)+ (=A) Pug (2, 1)

(z,t) € 2% (0,T),
Uq(z,t) =0, x €0, te (0,17,
> e~ Tk (m,B)

(z,T) z:lafk pe Tgk(mﬁ)g(x), x € Q.

(4.1)
In this section, we propose the following regularized solutions as follows:

0 efték(m’ﬁ)

Ua (@, t) = <a Er(m, B) + e~ Ter(mA) {90), ek(.)>> )

k=1

o(C—t=T)&x(m, )

00 T
([ am g reTamm 0 a0) & Jat, 02

where « is the regularization parameter. Next, taking the derivative of the function
u(z,t) according to the variable t, we have

etk (m,p)
Ug,t (T, 1) Z( &k(m, B) oEn (. B) § o Temd) <g(')7ek(-)>) e ()
k=1
- T o((—t=T)&k(m.B)
+/§—:1 (Mk . 0) / o &k(m, B)+e~Tér(m oy SO en() dC) ex(2)
= e~ T¢k(m,B)
+;;< b B) + o T 1) 6k('>>) ex (), (4.3)
and
- o—Ték(m,B)
,;( &k(m, B) + e~ Tik(mﬁ)< ()’ek(')>> ex(z). (4.4)

Theorem 4.1. For any 0 <t < ( <T. Let ul(z,t) be a regularized solution as
(4.2) corresponding to the final data g1(z) and f(z,t). Similarly, let u2(x,t) be a

reqularized solution as (4.2) corresponding to the final data go(x) and f(x,t), then
one has

T
||U(11(7t) - ui(.7t)||L2(Q) < (@) Hgl - 92||L2(Q)‘ (4.5)

Proof. From (4.2), we get

— e—tée(m,B)
Z <a Ex(m, B) + e~ Téx(m.B) (910, 6k()>> e (x)

k=1

((—t=T)&k(m,B)
- Z < /t a fk?m B3) 1 o~ Téx(m.) (F(Q), ex(w)) dC )6k(:c),
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0 o téx(m,6)
ug (2,t) =) &r(m, B) + e~ T&(m.p) (920, ek(')>> e (x)

(0%
> T ((—t=T)&x(m,B)
X ([ e O @) d Ja) (19

0 e—t&r(m,pB) 2
[[ua(t) —“3("15)“?2(9 ) (a &r(m, B) + e~ Téx(m, 5)) (916() = 92())”.
k=1
(4.7)

From (4.7), using the Lemma 2.1, we get

2 T
Wl = (s ) 2 =040 6OV (s =l

(4.8)
Hence, we can find that
) = ) gy < ( s Jlon = 92l (4.9)
al’ al’ L2(Q) = aln(%) 1 2 L2(Q) .
The completes the proof of Theorem 4.1. O

Theorem 4.2. For any g(x) € L*(Q2), we prove uy(x,T) —
2
<

a— 0. Let £ >0, choose N such that Y. |(g(-), ex(- )>| =,
E=N+1 4

g(z) € L3(Q) when
€

we receive

N o~ Téx(m,f) 2 2
e T) = 90200y < 2; <a§k(m ) + o Tex(mB) 1) (oCh e[+ 5

N 2
abi(m, 5) 2 €2
: QkZl <a§k(m B) + e~ Téc(m ﬁ)) [{g()s ex ()" + 5
2
<2023 Hm BT 4, )+ S (o)

N 1y -1
By taking o such that o < %(Trf2 3 e2Tm AL 1)\?72‘@('), 6k(')>‘2) » we get
k=1

||ua(o,T) < & which the proof of the theorem is complete.

||L2(Q)

Theorem 4.3. Let g(-) € L3(2), and f € L?(0,T; DY(R)). If the sequence uy(z,0)
converges in L*()), then u is a unique solution of the problem (1.1). Furthermore,
we prove that uy(x,t) converges to u(x,t) as « tends to zero uniformly in t.

Proof. Suppose that lim,— ua(x,0) = ug(x) exists. Let

oo

u(a,t) =Y (eftg’“(m’ﬁ)uo,k +/ (e DEmB (£(..(), €k(')>dC) ex (),

k=1 0
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where g = (u(-,0), ex(-)). We can see that u(x,t) satisfies (1.1), then uq(z,t)
has the formula as follows

> t o(C—t=T)&k(m,B)
ta(2,6)=) (e_tgk(mﬁ)ua’o’ﬁ/o alp(m, B)+eTe(m.0) (f(- e (')>(C)dC) (@),
k=1

where uq,0,5 = (ua(+,0), ex(+)). Using the inequality (p +¢)* < 2(p? + ¢*), one has

||ua('at) - u('vt)H%?(Q)
© e(20-2t)¢k(m,B) |, )‘k

< 2 (a0 — ox)” tzz(/ (ak(m 5)+e—Tsk<m,ﬁ>)2|<f("’<)’ek(')>|2dc)

k=1

<ltano () — o ()2 + ———— / S0, en()[Pdc
1 + In( 0 =1
<t () — 0() 2y + r

<1 +in(L)

2 ”fHLOO(O,T;Dl(Q)).
2)

Hence, limy_otq(z,t) = u(z,t). We have limy o ua(z,T) = u(x,T). Applying
the theorem 4.2, it gives u(x,T) = g(z). Therefore, u(x,t) is the unique solution of
the problem (4.1). In addittion, we see that u,(z,t) tends to u(x,t) uniformly in ¢.

O

Theorem 4.4. Assume that |gs(-)—g()llL2) <9 and || fs(-, )~ (-, )l 0,736 5 () <
d, then we can assert that

(1) — ey < o (1 (5)) T (VAT 4+ VAT 2(ma) 1 4 V/E5).

where Qs is defined in (4.25).
Proof. Using the triangle inequality, we get

lug (1) = u(, t)llzz() < ud(t) = wal O)lza@) + lual ) = ul, ) r2e)

Applying Lemma 4.1 Applying Lemma 4.2

(4.12)

Lemma 4.1. Forany0 <t <(<T, andg,gs € L*(Q), f, fs € L>=(0,T; Gg,m(Q2))
such that

lgs(:) —g(llzz) <0, [Ifs(t) = FC DL 0,165 (2) <6 (4.13)
then we have

g (-, 1) = ta(- 8l L20) < (\/@1”95 —gllz2 @) + V@l fs - f||L<>o(0,T;Gm,B(Q)))'
(4.14)

Proof. From (4.2), we proposed the regularized solution with gs, f5 as follows

S i o tEx(m.B)
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o T o(C—t=T)éx(m,fB)
,; (“’“/t T B o TaE) s (fs (s >d<) ex(z): (4.15)

From (4.2) and (4.15), it gives

650 = D0y
K1
etk (m,p) >
S2Z <a€k (m, B) + e~ Ték(m.5) (95() —g(~)7ek(-)>)
k=1

K3

o(C—t=T)&x(m.B)

oo T 2
+ 2;:1 (/jfk‘/t a gk(m,ﬁ) T o—T&(m,B) <f5('7 C) - f(7 C)v ek()>dc) : (416)

Applying the Lemma 2.2, we can find that

~ T \2%—2
ki <20?(amn(2)) " llgs — glia (4.17)
Next, we have Ky has the following estimates:

o téx(m.B) T e—merm ) 2
K3 <QZ (Mkafk 3)+eTex(m.B) /te | <f5("o_f("0’ek('»dC)

<2(mA)"2T? (a In (z))2%f2 i(/tZ(CT)Ek(mﬁ)gé(_’ O—f(,0), €k(')>dg~>2

o
k=1
2L -2 ‘2

§2T(m)\1)_2f2 (a In (g)) 3 AT ‘ ieCEk(mﬁ)<f6(., C) - f(a C)7 €]€(')> dC
k=1
<2T(mA;) 212 (a In (%))2%72

T > —1y8—1 2
< [T s (0 - 10 al)] e

k=1 0<(¢<T

—2772 T\\27—2 2
<2T(m) T2 (aln (2)) " fs — FEe o rics @) (4.18)

Combining (4.17) and (4.18), we conclude that

||u6a('at) - uoc('vt)HLz(Q) < (\/@1”95 - g||L2(Q) + \/@2”]05 - f||L°°(O,T;GB,m(Q)>’
(4.19)
%,

- 24 -2 ~ 272
where @ = 277 (a In (g)) and Qg = 2T (mA;)~2T? (a In (%)) . O

Lemma 4.2. Suppose that g5, g € L*(Q) such that ||gs — gl r2() < 0, u(x,t) be the
ezact solution same as (3.11) satisfying u(.,0) € DP~Y(Q) (for any B > 1), and
J=> )\iﬁ% foT |eC§k(mﬁ)<f(.,Q, ek(~)>|2dC, then we have

1

t

: T o~ ~ 1/2
o) =l Ollpaiey St (1)) ™ (2Tm 2, O)fpoor o) +2Tm 773 )

(4.20)
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Proof. From (3.11) and (4.2) we get
Ue (T, 1) — u(z,t)

& 1 —t& (m,
(T& m.p) _ agk(m,ﬁ)+e_T§k(m’ﬁ))e 0 (g(-), e () en(x)

k=1

o(—t=T)&x(m. ) )

(oo}
*tﬁk m,B) _
+kz_:< & (m, B) + e—Ter(m,B) 1

X
N =

eka:(m7ﬁ)<f(.7 C), ek()>d<6k($)

e Tk (m,B)
720‘@ (m, B) + e~ T&(m.f) (fk(m,ﬁ)e S (g (), ex(-))

+Nk§k(ma5)/t e“k(mﬁ)ﬁ(wC)a6k(')>dC)€k($)‘ (4.21)

From (3.11) at ¢ = 0, combining some basic transformation, we get

T
&x(m, B)el ™A (g(2), e () +Mk§k(m,5)/ eSSk mB (£(L0), e(-))dC
t
—u(m, B)u(-,0) — jux / 6 (m. B (£(.,0), ex())dC. (4.22)
Therefore, we receive
a5 t) = ul-, 1) I72 (0
etk (m,B)
<2Z o €am, B) + & TG0
X &k (m, Bu +,Uk/ Ex(m, B)e A (L (), e
o e tEr(m.B)
kz a &k(m, B) + e Tér(m:B)
Z
k=

m74>\i6—4T/ ’eiﬁk(m,ﬁ)g(,’o’ek(.»

0

2

71)‘54;3_1“(" O)

‘ 2

etk (m,p) 2

o & (m, B) + e~ Tek(m:f)

2
X ‘

g

~ ot T \24-2 2
§2m*2T2a27(ln(—)> B Z’)\gflu(o,())’
e

2

+2m 7Tt (n f)%*zivﬂ ' / e F (., 0), en()] ¢
72 2.t T\\?7=2( 2 —4
<272 T(ln(a)> (m (-, 0)[25-1 gy +m le), (4.23)

whereby J1 = > )\25_4 fOT ’ecg’“(7'“5)<f(';§)7 er(-))

‘2
k=1

dc. O
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Combining (4.19) and (4.23), by choosing o = d, we can conclude that
e LR LB

<a%(ln(a))% (V2T + VaTT*2(m) ™" +1/Q5),

R (4.24)

where
Qs — 2T<m_2||u(-, 0)[Z5-1 (0 + m_4Tj1). (4.25)

O

5. Numerical simulation

In this section, we show a numerical example to verify the usefulness of the proposed
method. The numerical example is constructed in the final value problem with the
linear source function with the regularization result base on the modified quasi-
boundary value method. After that, we also propose a convergence estimate between
the exact and regularized solutions. Before presenting the results, we install some
numerical methods to assist in the examples as follows. Firstly, throughout this
section we choose Q = (0,7), T' = 1. The discrete form of our problem is as follows:
We divide the domain (0, 7) x (0,1) into N,, and N; sub-intervals of equal length A,

1

and A;, where A\, = T and A; = A respectively (M and N are the numbers
x t

of partitions on the z-axis and t-axis). Then we denote by f¥ = f(z;,tx), where

z;=({—1)Azandt; =(j—1)A fori=1,2,..,N;+1; j=1,2,..., N, + 1. Next,
to calculate the integrals, we use the Simpson approximation method as follows

b n/2—1 e n/2 c
e~ i) + Z FGai) + 227 f(Gai ) + I, (1)
a Jj=1

b—a
where £,, = ——. The Matlab code used to calculate this approximation Simpson’s

n

Rule Integration was written by Juan Camilo Medina (2020). In addition, we have
2

the orthogonal basis in L2(0,7) is ex(z) = /= sin(kx) and the eigenvalues \; =
™

k?, k =1,2,..., the scalar product of f and g in L?(0, ) is given by

(fsh)r2(0,m) :/ fhdx = simpsons(£*h,0,pi,n).
0
In this section, we choose functions as follows:
g(z) = (sin(z) + sin(g)), f(z,t) = (sin(z) + sin(2z)) exp(—t27). (5.2)

Next, we consider the problem (1.1) with the noisy model

”95() - g(')HLQ(O,ﬂ) < 6’ ||f§(at) - f('at)HLo"(O,l;(O,ﬂ)) <. (53)
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The couple of (gs, f5) which are measured data with the following model random
noise

érand = §(2rand(-) — 1), gs =g+ drand, f5 = f(1+ drand). (5.4)

Then we have the regularized solution in the following form

u‘;(w,t)
k28
2 il eitm s
2> 128 / gs(x) sin(kx)dx | sin(kz)
T 28 _TW 0
0) —— m
a(0) 1+ mk? te
k28
S I T S . o
_;I; 1+mk2/t 20 Tkzg/o fs(z, ¢) sin(kx)dzdC
§) —— 4o L+mk?
a(9) 1+ mk2 te
x sin(kx). (5.5)

We also calculate the root mean square error E*(t) to analyze the error between the
numerically obtained solution S (x,t) and the exact solution u(z,t) and as follows:

Nz+1

; |ud (21, 1) — u(zs, )|
Eo(t) = = — : (5.6)
> |u(mi7t)|2

While implementing these numerical examples using the Matlab program, by
choosing m = 0.8, § = 1.5, because of in this case, the problem (1.1) os ill-posed.
Since the above tables and figures, we show some results as follows. In Figure 1,
we show the comparison the convergent estimate between exact solution and the
regularized solution in the case 3D. In Figure 2, we give the information for con-
vergent estimate between exact solution and its approximation by quasi boundary
value method and the corresponding errors with a(6) = 6 = 0.25, «(d) = 0 = 0.1
and «a(d) = 6 = 0.01, respectively. In Figure 3, we give information the convergent
estimate between exact solution and its approximation by quasi boundary value
method and the corresponding errors with «(§) = § = 0.25, a(6) = § = 0.1 and
a(d) = 6 = 0.01, respectively. In Table 1, it shows the estimation between the exact
solution and regularized solution by quasi boundary value in two case t = 0.5 and
t = 0.7. Finally, in Table 2, in the case fixed m = 1 and § = 1, with different o = §
tends to zero. It is clear that, in Tables 1, 2, the convergence level of the method
used in the theory is still equivalent. Therefore, we infer that when «(d) goes to
zero, the regularized solution tends to the exact solution pretty good.
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:f? 3 T 25 3 x 7;}!;:';’;;’7%7‘"“ 2 3
i . N 4 7 S

ge /I/I;;;Illllﬂlll;;ll;;{é\k\\\\\\\\\\\\ . 1'”””"{”'/{;;\{\‘? 25
2 NN W\ .

(a) u(z,t) on (0,7) x (0,1) (b) u(z,t) for § = 0.25

NN\
s s
27
/78

The regularized solution

1

(c) u(z,t) for § = 0.1 (d) u(z,t) for § = 0.01

Figure 1. A comparison the regularity by time variable for m = 0.8, 8 = 1.5.

Table 1. The error estimation according to the regularity by time variable for ¢ € {0.5,0.7} and
a=0=0.25,a=0=0.1 and a« = = 0.01.

N, =N, =30,N, =2,m=08,3=15
E0'25(t) Eo'l(t) E0.0l (t)
0.5 0.023475752  0.0082489906 1.04E-03

0.7 0.026470059 0.0107564740 8.07E-04

Table 2. The error estimation according to the regularity by time variable for t € {0.22,0.44, 0.66,0.88}.

N,=N,=30,N,=2m=108=1
E0'5(t) E0.05 (t) E0.005 (t)
0.22 0.058813211  0.004610596 5.37E-04

0.44 0.055182770  0.004464875 4.26E-04

0.66 0.059215408 0.035225510 3.75E-04

0.88 0.065312409 0.003959612  3.64E-04
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(a) § =0.25

(d) The error,éd = 0.25

£ 0004

L 5

0 [ 1 15 2 25 3 0 05 1

(e) The error,é = 0.1 (f) The error,é = 0.01

Figure 2. A comparison the regularity by time variable for t = 0.5, a =6 = 0.25,a = § = 0.1 and a =
6 =0.01, at B =1.5, m =0.8.

6. Conclusions

In this work, we use the quasi—boundary value method to regularize the fractional
pseudo-parabolic equation. We prove that this problem is ill-posed in the sense of
Hadamard through on an example and we also carry out the regularity of solution
and derivative by time of solution. After that, we proposed the quasi boundary value
method to regularize this problem, it gives the information about the convergent
estimate between the regularized solution and the exact solution. In addition, by
giving the numerical example, we shown that the proposed regularized method is
effective.
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i
P ammann W1 [ 1
\l\m Al H I “““;HUMM\S\ Al

Figure 3. A comparison the regularity by time variable for t = 0.7, a =6 = 0.25,a = § = 0.1 and a =
6 =0.01, at B =1.5, m =0.8.
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