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GLOBALLY MODIFIED NAVIER-STOKES
EQUATIONS COUPLED WITH THE HEAT

EQUATION: EXISTENCE RESULT AND TIME
DISCRETE APPROXIMATION

G. Deugoue1, J. K. Djoko2,† and A. C. Fouape3

Abstract We provide in this article an investigation of the globally mod-
ified Navier-Stokes problem coupled with the heat equation. After deriving
the variational formulation of this problem, we prove the existence and the
uniqueness of the solution using the method of Faedo-Galerkin and some com-
pactness results. Next, we propose a time discretization of these equations
based on Euler’s implicit scheme. We prove the existence of solution with the
aid of Brouwer’s fixed point and study the stability of discrete in time solution
by using the energy approach.
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1. Governing equations and its mathematical set-
ting

1.1. Formulation of the problem

Let Ω ⊂ R3 be an open bounded set with regular boundary Γ = ∂Ω. We define the
function FN : R+ → R+ by

FN (r) = min{1, N/r}, r ∈ R+, (1.1)
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for N ∈ R+ and taking T̃ > 0, we consider the following globally modified Navier-
Stokes equations coupled with the heat equations (GMNSEHE)

∂tu− ν∆u+ FN (‖ u ‖‖∥ V)(u · ∇)u+∇p = f in Ω× (0, T̃ ),

div u = 0 in Ω× (0, T̃ ),

∂tT − α∆T + FN (‖(u, T )‖V)(u · ∇)T = g in Ω× (0, T̃ ),

u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω,

u = 0, and T = Tb on Γ× (0, T̃ ),

(1.2)

where ‖u‖V and ‖(u, T )‖V are defined as in (1.6) and (1.7) below. As usual, u, T
and p represent respectively the fluid velocity, the temperature and the pressure.
ν is the constant viscosity of the fluid, and α represent the thermal conductivity.
f is the external force acting on the fluid while g is the radiant heating. u0 is
the initial velocity and T0 is the initial heat. We observe that when the added
terms are reduced to unity, then one obtains Navier Stokes coupled with the heat
equation, which has been thoroughly studied in 2D by [2,3,12,31,33], just to cited
a few. The GMNSEHE (1.2) is inspired from the globally modified Navier-Stokes
equations (GMNSE) studied in [5]. As clearly demonstrated in [5], FN (‖u‖V)
prevents the rapid growth of velocity gradient and helps to obtain uniqueness of
weak solution in 3d, property which is lacking for Navier Stokes in 3D. Hence
Mathematically, the globally modified Navier Stokes has an advantage for now over
the Navier Stokes equations. In this work, we show that the factors FN (‖u‖) and
FN (‖(u, T )‖V) help us to control the values of ‖u‖V and ‖(u, T )‖V and subsequently
permit us the establish uniqueness of weak solution of (1.2). As we are aware
of, this remarkable property is unreachable for (1.2) without the weighted terms
(see [2, 31]). It is worth noting that many challenges in the mathematical and
numerical analysis of the full 3D Navier-Stokes equation are still lacking at present.
Since the uniqueness theorem for the global weak solutions (or the global existence
of strong solutions) of the initial-value problem of the 3D Navier-Stokes system
is not yet proved, the known theory of global attractors of infinite-dimensional
dynamical systems is not applicable to the 3D Navier-Stokes system. Thus, the use
of “regularized approximation equations” to study the classical 3D Navier-Stokes
systems has become an effective tool both from the numerical and the theoretical
point of views. just like it has been noted in [34], many works make use of the
LANS-α model to approximate many problems related to turbulence flows.

In [5], the authors proposed a three-dimensional system of a globally modified
Navier-Stokes equations (GMNSE). They studied the existence and uniqueness of
strong solutions and established the existence of global V-attractors. Also, using
a limiting argument they obtained the existence of bounded entire weak solutions
of the three dimensional Navier-Stokes equations (NSE) with time independent
forcing. As noted in [5], the GMNSE prevents large gradients dominating the
dynamic and leading to explosion. Several articles are devoted to the mathematical
analysis of the modified problems involving Navier-Stokes equations, see for instance
[6, 7, 10, 18, 19, 22–24, 26, 27], as well as the review paper [8] in which the authors
present some recent developments on the GMNSE The globally modified Navier-
Stokes equations are useful in obtaining new results about the 3D NSE. Indeed there
were used in [19] to show that the attainability set of weak solutions of the 3D NSE
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is weakly compact and weakly connected. We refer the reader to [9,26,27] for other
modifications on the nonlinear terms in some mathematical models. Motivated by
the above works, we consider in the present article the globally modified of the
model (1.2). More precisely, we propose a time semi-discretization of the time-
dependent globally modified Navier-Stokes problem coupled with the heat equation
(GMNSHE). The analysis we propose follows in some aspects the works in [10, 12,
14–17,25,28,32], but is is worth mentioning the results presented here have not yet
been obtained in the literature because the GMNSE coupled with the heat has not
yet been analysed in the literature. It should be noted that the nonlinearities in (1.2)
will necessitate the use of special compactness results, and more computations will
also be needed to derive the kind of results one wants. These difficulties were already
present in our early contribution [11]. Finally one notes that different “stabilisation
terms” in the heat equation is possible (see [11]), but we have preferred the one
here because of its simplicity. The outline of the paper is as follows:

• We recall in section 2 the variational formulation of the problem. We also
present the mathematical tools for its resolution.

• In section 3, we establish the existence of strong solutions of the GMNSHE
in three-dimensions and their continuous dependence on N and on the initial
value in the space V. In addition, we show that the weak solution of the
GMNSHE is unique in the class of weak solutions. We also investigate the
relationship between the Galerkin approximations of the GMNSHE and the
NSHE for a fixed finite dimension.

• Section 4 is devoted to the time semi-discretization of GMNSHE. We present
a numerical scheme to approximate the unique solution obtained in section 3
and study its stability.

1.2. Mathematical setting
Let us now recall from [29] the functional spaces of the model (1.2) and its abstract
formulation.

Unless otherwise specified, the domain of interest Ω is bounded connected, and
have a boundary ∂Ω = Γ that is at least C0,1, i.e Lipschitz-continuous. Let k =
(k1, k2, k3) be a triplet of non-negative integers and set |k| = k1+k2+k3, we define
the partial derivative ∂k of order |k| by

∂kφ =
∂|k|φ

∂k1x1∂k2x2∂k3x3
.

The usual definitions of Lp spaces and Hm spaces applies with the scalar product of
L2 being denoted by (·, ·). These definitions are extended directly to vector-valued
functions, with the notation

L2(Ω) := (L2(Ω))3, Hm(Ω) := (Hm(Ω))3, Hm
0 (Ω) := (Hm

0 (Ω))3,L2
0(Ω) := (L2

0(Ω))
3

where L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x)dx = 0

}
. It is noted that for a vector w we set

‖w‖rLr(Ω) =

∫
Ω

|w(x)|rdx
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where | · | denotes the Euclidean norm |w|2 = w ·w. We shall frequently use Sobolev
imbedding: for a real number p ∈ R, 1 ≤ p ≤ 6, the space H1(Ω) is imbedded into
Lp(Ω). In particular, there exists a constant cp (that depends only on p, Ω and
d = 3) such that

for all v ∈ H1
0, ‖v‖Lp(Ω) ≤ cp‖∇v‖ . (1.3)

When p = 2, this is Poincare’s inequality and c2 is Poincare’s constant. In the case
of the maximum norm, the following imbedding holds

for all r > d = 3, W1,r(Ω) ⊂ L∞(Ω)

in particular, for each r > d = 3, there exists c∞,r such that

for all v ∈ H1
0(Ω) ∩W1,r, ‖v‖L∞(Ω) ≤ c∞,r‖∇v‖Lr(Ω) . (1.4)

Owing to Poincare’s inequality, the semi-norm | · | is a norm on H1
0(Ω), equivalent

to the full norm. As it is directly related gradient operator, we take this semi-norm
as norm on H1

0(Ω), and we use it to define the dual norm on its dual space H−1(Ω):

for all f ∈ H−1(Ω), ‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈f ,v〉
‖∇v‖

where 〈·〉 is the duality pairing between H−1(Ω) and H1
0(Ω). We also introduce the

following spaces

V =
{
u ∈ (C∞

c (Ω))3 : divu = 0
}
,

V = the closure of V in H1
0(Ω),

H =
{
u ∈ L2(M) : divu = 0 and u = 0 on Γ

}
,

H = H × L2(Ω),

V = V ×H1(Ω),

H1 =
{
T ∈ L2(Ω) : T = Tb on Γ

}
,

V1 =
{
T ∈ H1(Ω) : T = Tb on Γ

}
.

We have (see [29])
V ↪→ H ↪→ V′ (1.5)

where the first injection is compact. We endow H with the inner product of L2(Ω)
and the norm of L2(Ω) denoted respectively by (·, ·)H and | · |H.

We equip V thanks to Poincaré’s inequality with the following inner product

((u,v))V = (∇u,∇v)H.

and the norm
‖u‖V = (∇u,∇u)H. (1.6)

Hereafter, we set

((u, T ), (v, S))V = (∇u,∇v)H + (∇T,∇S) and ‖(u,v)‖2V = ‖u‖2V + ‖v‖2 , (1.7)
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where ‖·‖ denotes the norm in H1(Ω) and (·, ·) denotes the scalar product in L2(Ω).
The dual spaces of V and Hm

0 (Ω) are denoted by V ′ and H−m(Ω) respectively
and their norms by ‖·‖V ′ and ‖·‖−m respectively. We will also use the following
operators A and A1 defined from V to V′ and V1 to V ′

1 respectively by

〈Au,v〉 = (∇u,∇v)H for all u,v ∈ V,

〈A1T, S〉 = (∇T,∇S) for all T, S ∈ V1.

From the regularity theory for the Stokes equation [29,30], it is known that

D(A) = H2(Ω) ∩ V,
D(A1) = H2(Ω) ∩ V1,

and the following holds true
D(A) ⊂ V ⊂ H,

D(A1) ⊂ V1 ⊂ H1,
(1.8)

each injection being continuous and compact; hence

|u|H ≤ 1√
λ
‖u‖V for all u ∈ V, |T | ≤ 1√

λ1
‖T‖ for all T ∈ H1

0 (Ω) (1.9)

where λ, λ1 are respectively the first eigenvalues of the compact operators A−1

from H into itself and A−1
1 from H1 into itself. |.| and ‖.‖ represent respectively

the norm in L2(Ω) and H1(Ω). In addition, the following Agmon type inequality
holds (See [30], page 30):

‖u‖L∞(Ω) ≤ C |∇u|1/2H |Au|1/2H . (1.10)

Also, of importance in this part are the bilinear forms B,BN from V×V to V′

defined by
〈B(u1,u2),u3〉V′,V = b(u1,u2,u3),

〈BN (u1,u2),u3〉V′,V = bN (u1,u2,u3),

for all ui ∈ V(i = 1, 2, 3), where b(·, ·, ·) is a continuous trilinear form defined on
H1(Ω)×H1(Ω)×H1(Ω) by

b(u,v,w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx,

bN (u,v,w) = FN (‖u‖V)b(u,v,w).

Similarly, we also introduce the bilinear form B1,B1,N from V × V1 to V ′
1 defined

by
(B1(u, T1), T2) = b1(u, T1, T2),

(B1,N (u, T1), T2) = b1,N (u, T1, T2),

for all u ∈ V, T1, T2 ∈ V1, where b1,N is a continuous operator defined on V ×
H1(Ω)×H1(Ω) by

b1(u,v,w) =

3∑
i=1

∫
Ω

ui
∂v

∂xi
wdx,

b1,N (u,v,w) = FN (‖u‖V)b1(u,v,w).
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We will also use the bilinear forms a0(·, ·) and a1(·, ·) given by:

a0(u,v) = (∇u,∇v)H, u,v ∈ V,

a1(T, S) = (∇T,∇S), T, S ∈ H1(Ω),

a2(u, q) = −(q, divu) u ∈ H1(Ω), q ∈ L2(Ω).

From (1.10) and (1.9), we deduce most of the properties of the forms b(·, ·, ·) and
bN (·, ·, ·), given in the following lemmas where Cb is a positive constant (depending
on the domain) which can vary from one line to another.

Lemma 1.1 ( [5, 21]).

1. b(u,v,w) = −b(u,w,v), and bN (u,v,v) = 0 ∀u,v ∈ V,
2. |bN (u,v,w)| ≤ Cb |u|1/4H ‖u‖3/4V |v|1/4H ‖v‖3/4V ‖w‖V , u,v,w ∈ V,
3. |bN (u,v,w)| ≤ NCb ‖u‖V ‖w‖V , u,v,w ∈ V,

4. |b(u,v,w)| ≤ Cb ‖u‖1/2V |Au|1/2H ‖v‖V |w|H ,∀u ∈ D(A), v ∈ V, w ∈ H.

5. |b(u,v,w)| ≤ Cb ‖u‖V ‖v‖V |w|1/2H ‖w‖1/2V , ∀u, v, w ∈ V.

Lemma 1.2 ( [5, 22]). For all u,v ∈ V with v 6= 0,

1.
∣∣FN (‖u‖V)− FN (‖v‖V)

∣∣ ≤ ∥u−v∥V
∥v∥V

.

2.
∣∣FN (‖u‖V)− FN (‖v‖V)

∣∣ ≤ ∥u−v∥V
N FN (‖u‖V)FN (‖v‖V).

Lemma 1.3 ( [5]). For all M, N, p, r ∈ R+,

|FM (p)− FN (r)| ≤ |M −N |
r

+
|p− r|
r

.

Remark 1.1. Similar properties are satisfied by b1(·, ·, ·) and b1,N (·, ·, ·).

In the following, we shall use, if necessary, the notation φ(t) for the function

x → φ(x, t).

As usual for handling time dependent problems, it is convenient to consider func-
tions defined on a time interval (a, b) with values in a functional space, say Y
(see [4]). More precisely, we let ‖ · ‖Y be the norm on Y and for any number r
with 1 ≤ r ≤ ∞, we define

Lr(a, b;Y ) =

{
w measurable in (a, b) ;

∫ b

a

‖w(t)‖rY dt <∞

}
equipped with the norm

‖w‖r
Lr(a,b;Y )

=

∫ b

a

‖w(t)‖rY dt

with the usual modification if r = ∞. It is Banach space if Y is a Banach space,
and when r = 2, it is a Hilbert space if Y is also a Hilbert space. Of particular
interest here will be the space L2(0, T̃ ;H), L2(0, T̃ ;H1

0(Ω)), etc...
The analysis of (1.2) will required the following
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Lemma 1.4. Let T̃ > 0 and let κ be a non-negative function in L1(0, T̃ ). Let c > 0

be a constant and ψ ∈ C0(0, T̃ ) a function that satisfies

for all t ∈ [0, T̃ ] , 0 ≤ ψ(t) ≤ c+

∫ t

0

κ(s)ψ(s)ds,

then ψ satisfies the bound

for all t ∈ [0, T̃ ] , ψ(t) ≤ c exp

(∫ t

0

κ(s)ds

)
.

We will require the following compactness in time result to pass to the limit [4,20]

Theorem 1.1. Let E,F,G be three Banach spaces with continuous imbedding E ⊂
F ⊂ G, such that the imbedding of E into F being compact. Then for any number
q ∈ [1,∞], the space

{v ∈ Lq(0, T̃ ;E), ∂tv ∈ L1(0, T̃ ;G)}

is compactly imbedded into Lq(0, T̃ ;F ).

In the next paragraph, we propose a weak formulation of our problem.

1.3. Variational formulation
We propose here a weak formulation of Problem (1.2) given by the following defi-
nition.

Definition 1.1. Suppose that (u0, T0)∈H and f ∈L2(0, T̃ ;H−1(Ω)), g∈L2(0, T̃ ;

H−1(Ω)). A weak solution to (1.2) is any pair (u, T ) ∈ L2(0, T̃ ;V) × L2(0, T̃ ;H1)
such that 

du

dt
+ νAu+ BN (u,u) = f in D(0, T̃ ;V′),

d T

dt
+ αA1T + B1,N (u, T ) = g in D(0, T̃ ;V ′

1),

u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω,

u = 0 and T = Tb on Γ× (0, T̃ )

(1.11)

or equivalently for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),

〈
du(t)

dt
,v

〉
+ νa0(u(t),v) + bN (u(t),u(t),v) = 〈f(t),v〉 ,〈

d T (t)

dt
, S

〉
+ αa1(T (t), S) + b1,N (u(t), T (t), S) = 〈g(t), S〉 ,

u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω,

u = 0, and T = Tb on Γ× (0, T̃ ).

(1.12)

Remark 1.2. The previous definition provides also the variational formulation of
problem (1.2) which is, due to the density of D(Ω) in L2(Ω) and H1

0 (Ω) equivalent
to it.
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Remark 1.3. If the couple (u, T ) belong to L2(0, T̃ ;V)×L2(0, T̃ ;V1) and satisfies

(1.11)1 − (1.11)2, then
(
du

dt
,
d T

dt

)
∈ L2(0, T̃ ;V′), and we deduce from [29] that

(u, T ) ∈ C([0, T̃ ;H). In fact, BN (u,u) ∈ L2(0, T̃ ;V′), νAu ∈ L2(0, T̃ ;H) ⊂
L2(0, T̃ ;V′), f ∈ L2(0, T̃ ;H−1) ⊂ L2(0, T̃ ;V′) and B1,N (u, T ) ∈ L2(0, T̃ ;V ′

1),
αA1T ∈ L2(0, T̃ ;H1) ⊂ L2(0, T̃ ;V ′

1), g ∈ L2(0, T̃ ;H−1
1 ) ⊂ L2(0, T̃ ;V ′

1).

Before stating the existence result, it is clear that we need to take care of the
boundary condition involving the temperature. For that purpose, invoking to the
trace’s result, we let R be a continuous operator from H1/2(Ω) in to H1(Ω). Since
Tb ∈ L2(0, T̃ ;H1/2(Γ)) we denote by T̄b the function defined for a.e. 0 ≤ t ≤ T̃ by

T̄b(t) = RTb(t).

This function belongs to L2(0, T̃ ;H1(Ω)) and satisfies

∥∥T̄b∥∥L2(0,T̃ ;H1(Ω))
≤ cΛ ‖Tb‖L2(0,T̃ ;H1/2(Γ)) ,∥∥T̄b∥∥L2(0,T̃ ;L4(Ω))
≤ ε ‖Tb‖L2(0,T̃ ;H1/2(Γ)) ,

(1.13)

where ε > 0 is any reel number and cΛ is a positive constant depending only on Ω
and R. When setting T ∗ = T − T̄b, the variational formulation of problem (1.2)
reads: seek (u, T ∗) ∈ L2(0, T̃ ;V)× L2(0, T̃ ;H1

0 (Ω)) such that



du

dt
+ νAu+ BN (u,u) = f , in D(0, T̃ ;V′),

d T ∗

dt
+αA1T

∗+FN (‖(u, T ∗+T̄b)‖V)B1(u, T
∗)

= g− d T̄b
dt

−αA1T̄b − FN (‖(u, T ∗+T̄b)‖V)B1(u, T̄b) in D(0, T̃ ;V ′
1),

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0) in Ω,

u = 0, and T ∗ = 0 on Γ× (0, T̃ ),

(1.14)

or equivalently for all (v, S) ∈ V ×H1
0 (Ω),



〈
du(t)

dt
,v

〉
+ νa0(u(t),v) + bN (u(t),u(t),v) = 〈f(t),v〉 ,〈

d T ∗(t)

dt
, S

〉
+ αa1(T

∗(t), S) + FN (‖(u, T ∗ + T̄b)‖V)b1(u(t), T ∗(t), S)

= 〈g(t), S〉 −
(
d T̄b
dt

, S

)
− αa1(T̃b, S)− FN (‖(u, T ∗ + T̄b)‖V)b1(u(t), T̄b(t), S),

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0) in Ω,

u = 0, and T ∗ = 0 on Γ× (0, T̃ ).

(1.15)
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2. Existence theory and qualitative properties of
the solution

2.1. Existence and uniqueness

Here, we prove that problem (1.12) has a unique weak solution which is, under
some conditions a strong one. In this section, we construct solutions by combining;
Galerkin’s scheme, a priori estimates and compactness results. The method of proof
is classical (see [20]), but it is worth mentioning that the nonlinearity involved here
are particular. We give details proofs so as to render our work self contained. As
mentioned earlier, we would like to see how the added terms can control de velocity
gradient and help us to obtain uniqueness in 3d. We begin this journey by showing
that the weak solutions are properly defined (see theorem 2.1), next we show that
the solution is uniquely defined (see theorem 2.2).

Theorem 2.1. Suppose that f ∈ L2(0, T̃ ;H−1(Ω)), g ∈ L2(0, T̃ ;H−1(Ω)), Tb ∈
H1(0, T̃ ;H1/2(Γ)), the initial temperature on the boundary T 0

b belongs to H1/2(Γ)
and (u0, T0, ) ∈ H be given.

There exists a weak solution y = (u, T ) of (1.12), which is in fact a strong
solution if (u0, T0) ∈ V, in the sense that

y ∈ C(0, T̃ ;V) ∩ L2(0, T̃ ;D(A)×D(A1)). (2.1)

Proof. It is done on several steps:
Step1: Faedo Galerkin Approximation.

Let {(φi, ψi), i = 1, 2, ...} ⊂ V be an orthonormal basis of H, where {φi, i = 1, 2, ....},
{ψi, i = 1, 2, ....} are eigenvectors of A and A1 respectively. We set Vn × Wn =
span {(φ1, ψ1), ..., (φn, ψn)} and denote by Pn = (P 1

n , P
2
n), the orthogonal projector

from H onto Vn ×Wn for the scalar product (·, ·)H defined before. Note that Pn is
also the orthogonal projector from D(A×A1),V,V′ onto Vn ×Wn.

In Vn ×Wn, a smooth Galerkin’s approximation of problem (1.14) is as follows:

we look for (un, T
∗
n) =

(
n∑

i=1

uniφi,
n∑

i=1

Tniψi

)
∈ L2(0, T̃ ;Vn)×L2(0, T̃ ;Wn) such

that



d

dt
un + νAun + BN (un,un) = P 1

nf in D(0, T̃ ;V ′
n),

d

dt
T ∗
n + αA1T

∗
n + FN (‖(un, T

∗
n + T̄b)‖V)B1(un, T

∗
n)

= P 2
ng −

d

dt
T̄b − αA1T̄b − FN (‖(un, T

∗
n + T̄b)‖V)B1(un, T̄b) in D(0, T̃ ;W ′

n),

un(x, 0) = P 1
nu0(x), T ∗

n(x, 0) = P 2
nT0(x)− P 2

n T̄b(x, 0) in Ω,

un = 0, and T ∗
n = 0 on Γ× (0, T̃ ).

(2.2)
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or equivalently for all (v, S) ∈ Vn ×Wn,



〈
d

dt
un(t),v

〉
=
〈
P 1
nf(t),v

〉
− ν(Aun(t),v)− bN (un(t),un(t),v) ,〈

d

dt
T ∗
n(t), S

〉
=
〈
P 2
ng(t), S

〉
− α(A1T

∗
n(t), S)− FN (‖(un, T

∗
n + T̄b)‖V)

× b1(un(t), T
∗
n(t), S)−

(
d

dt
T̄b, S

)
− α(A1T̄b(t), S)

− FN (‖(un, T
∗
n + T̄b)‖V)b1(un(t), T̄b(t), S),

un(x, 0) = P 1
nu0(x), T ∗

n(x, 0) = P 2
nT0(x)− P 2

n T̄b(x, 0) in Ω,

un = 0, and T ∗
n = 0 on Γ× (0, T̃ ),

(2.3)

where uni(t), Tni(t) are C1 functions,
〈
P 1
nf(t),u

〉
= 〈f(t),un〉 and

〈
P 2
ng(t), T

〉
=

〈g(t), Tn〉 for (u, T ) ∈ V. (2.3) is a Cauchy problem and the mapping

(v, s) −→


P 1
nf + νAv − BN (v,v)

P 2
ng −

d

dt
T b − αA1T b − FN (

∥∥(v, s+ T̄b)
∥∥
V)B1(v, T b)−

FN (
∥∥(v, s+ T̄b)

∥∥
V)B1(v, s)− αA1s


is locally Lipschitz-continuous on H1(Ω)×H1(Ω) (see Appendix).

It follows from the Cauchy-Lipschitz theorem that problem (2.2) has a unique
solution (un, T

∗
n) ∈ C(0, T̃n;Vn)×C(0, T̃n;Wn) for some T̃n ≤ T̃ and the problem is

to show that T̃n is in fact independent of time. The following a priori estimates (see
lemma 2.1 and lemma 2.2) on un and T ∗

n , will be enough to conclude that T̃n = T̃ .
We next want to construct the limit of (un, T

∗
n) given via the equations (2.3),

and we hope that the limit will solve (1.15). For that purpose, we next derive some
a priori estimates and next we use compactness results to pass to the limit in (2.3).

Step2: A priori estimates and passage to the limit

Lemma 2.1. The functions un and T ∗
n are uniformly bounded on L2(0, T̃ ;V) ∩

L∞(0, T̃ ;H) and L2(0, T̃ ;H1
0 (Ω)) ∩ L∞(0, T̃ ;L2(Ω)) respectively.

Proof. Taking v = un(t) in (2.3)1 and S = Tn(t) in (2.3)2 and using Lemma 1.1,
we obtain

1

2

d

dt
|un(t)|2H + ν |∇un(t)|2H ≤ c1 ‖f(t)‖V′ ‖un(t)‖V ,

1

2

d

dt
|T ∗

n(t)|
2
+ α |∇T ∗

n(t)|
2 ≤ c2 ‖g(t)‖−1 ‖T

∗
n(t)‖+ c3

∥∥∥∥ ddt T̄b(t)
∥∥∥∥ ‖T ∗

n(t)‖

+ αc4
∣∣∇T̄b(t)∣∣ |∇T ∗

n(t)|+
N∥∥(un(t), T̄b(t))

∥∥
V

× c5 ‖un(t)‖V
∥∥T̄b(t)∥∥ ‖T ∗

n(t)‖ .

(2.4)



Globally modified Navier Stokes equations. . . 2433

Which leads to

1

2

d

dt
|un(t)|2H + ν ‖un(t)‖2V ≤ c21

2ν
‖f(t)‖2V′ +

ν

2
‖un(t)‖2V ,

1

2

d

dt
|T ∗

n(t)|
2
+α ‖T ∗

n(t)‖
2≤ c22

α
‖g(t)‖2−1+

α

8
‖T ∗

n(t)‖
2
+
2c23
α

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2+α

8
‖T ∗

n(t)‖
2

2c24
∥∥T̄b(t)∥∥2 + α

8
‖T ∗

n(t)‖
2
+

2N2c25
α

∥∥T̄b(t)∥∥2 + α

8
‖T ∗

n(t)‖
2
.

(2.5)
Hence

|un(t)|2H + ν

∫ T̃

0

‖un(t)‖2V dt ≤ c21
ν

∫ T̃

0

‖f(t)‖2V′ dt+ |u0|2H ,

|T ∗
n(t)|

2
+ α

∫ T̃

0

‖T ∗
n(t)‖

2
dt ≤ 2c22

α

∫ T̃

0

‖g(t)‖2−1 dt+
4c23
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2 dt

+

(
4c24 +

4N2c25
α

)∫ T̃

0

∥∥T̄b(t)∥∥2 dt+ |T ∗
0 |

2
.

(2.6)

□
From (2.6), we infer that ‖un‖L∞(0,T̃ ;H), ‖un‖L2(0,T̃ ;V), ‖Tn‖L∞(0,T̃ ;L2(Ω)),

‖Tn‖L2(0,T̃ ;H1
0 (Ω)) are uniformly bounded independently of n. Then, considering

also (1.5), we use Theorem 1.1 to extract a subsequence of (un, T
∗
n) denoted again

by (un, T
∗
n) satisfying

(un, T
∗
n) → (u, T ∗)


weak-star in L∞(0, T ;H),

weakly in L2(0, T ;V ×H1
0 (Ω)),

strongly in L2(0, T ;H),

a.e., in (0, T )× Ω,

(2.7)

with (u, T ∗) ∈ L∞(0, T ;H) ∩ L2(0, T ;V ×H1
0 (Ω)).

With the weak convergence (2.7), we can pass to the limit in the linear terms in
(2.3), meaning that as n→ ∞,〈

d

dt
un(t),v

〉
→
〈
d

dt
u(t),v

〉
,

(Aun(t),v) → (Au(t),v),〈
d

dt
T ∗
n(t), S

〉
→
〈
d

dt
T ∗(t), S

〉
,

(A1T
∗
n(t), S) → (A1T

∗(t), S).

(2.8)

Now, it remains to deal with terms involving nonlinearities and projections in (2.3).
Starting with nonlinear terms, it is worth noticing that the weak convergence in
L2(0, T ;V ×H1

0 (Ω)) is not enough to ensure that

FN (‖un‖V) → FN (‖u‖V) as n→ ∞,

FN (‖(un, T
∗
n)‖V) → FN (‖(u, T ∗)‖V) as n→ ∞.
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Hence we need to derive stronger a priori estimates and this is the goal of our next
result.

Lemma 2.2. The functions un and T ∗
n are uniformly bounded on L∞(0, T̃ ;V) ∩

L2(0, T̃ ;D(A)) and L∞(0, T̃ ;H1
0 (Ω)) ∩ L2(0, T̃ ;D(A1)) respectively.

Proof. Taking the inner product of (2.2)1 by Aun(t) and the inner product of
(2.2)2 by A1T

∗
n(t), we obtain

1

2

d

dt
‖un(t)‖2V + ν |Aun(t)|2H

≤〈f(t),Aun(t)〉 − FN (‖un‖V)b(un,un,Aun),

1

2

d

dt
‖T ∗

n(t)‖
2
+ α |A1T

∗
n(t)|

2

≤〈g(t),A1T
∗
n(t)〉Ω − (

d

dt
T̄b(t),A1T

∗
n(t))− α(∇T̄b(t),A1T

∗
n(t))

− FN (
∥∥(un(t), T̄b(t) + T ∗

n(t))
∥∥
V)b1(un(t), T̄b(t),A1T

∗
n(t))

− FN (
∥∥(un(t), T̄b(t) + T ∗

n(t))
∥∥
V)b1(un(t), T

∗
n(t),A1T

∗
n(t)).

(2.9)

Using Lemma 1.1 and Young’s inequality, we have the following estimates:

∣∣−FN (‖un‖V)b(un,un,Aun)
∣∣ ≤ 3(cbN)4

4ν
‖un‖2V +

ν

4
|Aun(t)|2H , (2.10)

|〈f(t),Aun(t)〉Ω| ≤
c2

ν
‖f(t)‖2V′ +

ν

4
|Aun(t)|2H , (2.11)

|〈g(t),A1T
∗
n(t)〉Ω| ≤

4c21
α

‖g(t)‖2−1 +
α

16
|A1T

∗
n(t)|

2
, (2.12)∣∣∣∣−(

d

dt
T̄b(t),A1T

∗
n(t))

∣∣∣∣ ≤ 4c22
α

∥∥dtT̄b(t)∥∥2 + α

16
|A1T

∗
n(t)|

2
, (2.13)

∣∣−α(∇T̄b(t),A1T
∗
n(t))

∣∣ ≤ 4c23
α

∣∣∇T̄b(t)∣∣2 + α

16
|A1T

∗
n(t)|

2
, (2.14)∣∣−FN (

∥∥(un(t), T̄b(t) + T ∗
n(t))

∥∥
V)b1(un(t), T̄b(t),A1T

∗
n(t))

∣∣
≤3(cbN)4

α
‖un(t)‖2V +

α

16
|A1T

∗
n(t)|

2
,

(2.15)

∣∣−FN (
∥∥(un(t), T̄b(t) + T ∗

n(t))
∥∥
V)b1(un(t), T

∗
n(t),A1T

∗
n(t))

∣∣
≤3(cbN)4

4α
‖un(t)‖2V +

α

4
|A1T

∗
n(t)|

2
.

(2.16)

Then using (2.10)–(2.16) in (2.9), we have

d

dt
‖un(t)‖2V + ν |Aun(t)|2H ≤ 2c2

ν
‖f(t)‖2V′ +

3(cbN)4

2ν
‖un(t)‖2V ,

d

dt
‖T ∗

n(t)‖
2
+ α |A1T

∗
n(t)|

2 ≤8c21
α

‖g(t)‖2−1 +
8c22
α

∥∥dtT̄b(t)∥∥2
+

8c23
α

∥∥T̄b(t)∥∥2 + 15(Ncb)
4

4α
‖un(t)‖2V .

(2.17)
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Hence

‖un(t)‖2V + ν

∫ T̃

0

|Aun(t)|2H dt

≤2c2

ν

∫ T̃

0

‖f(t)‖2V′ dt+
3(cbN)4

2ν

∫ T̃

0

‖un(t)‖2V dt+ ‖u0‖2H ,

and

‖T ∗
n(t)‖

2
+ α

∫ T̃

0

|A1T
∗
n(t)|

2
dt

≤8c21
α

∫ T̃

0

‖g(t)‖2−1 dt+
8c22
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2 dt+ 8c23

α

∫ T̃

0

∥∥T̄b(t)∥∥2 dt
+

15(Ncb)
4

4α

∫ T̃

0

‖un(t)‖2V dt+ ‖T ∗
0 ‖

2
, (2.18)

and the lemma is proved. □
From (2.2), we have

d

dt
un(t) = −νAun(t)− BN (un(t),un(t)) + P 1

nf(t),

d

dt
T ∗
n(t) = −αA1T

∗
n(t)− FN (‖(un, T

∗
n + T̄b)‖V)B1(un(t), T

∗
n(t)) + P 2

ng(t)

− d

dt
T̄b − αA1T̄b(t)− FN (‖(un, T

∗
n + T̄b)‖V)B1(un(t), T̄b(t)).

(2.19)

It follows from (2.19) and Lemma 1.1 that
(
d

dt
un,

d

dt
T ∗
n

)
is also bounded in

L2(0, T̃ ,H).
Using Lemma 2.2, (1.8), and the compactness result (Theorem 1.1), there ex-

ists an element (u, T ∗) ∈ L2(0, T̃ ;V × H1
0 (Ω)) ∩ L2(0, T̃ ;D(A) × D(A1)) and a

subsequence of (un, T
∗
n) denoted again by (un, T

∗
n) satisfying

(un, T
∗
n) → (u, T ∗)


weak-star in L∞(0, T̃ ;V ×H1

0 (Ω)),

weakly in L2(0, T̃ ;D(A)×D(A1)),

strongly in L2(0, T̃ ;V ×H1
0 (Ω)),

a.e., in (0, T )× Ω,

(2.20)

and (
d

dt
un,

d

dt
T ∗
n

)
→
(
d

dt
u,

d

dt
T ∗
)

weakly in L2(0, T̃ ;H ×H1
0 (Ω)). (2.21)

From (2.20), we infer that

FN (‖un‖V) → FN (‖u‖V) as n→ ∞,

FN (‖(un, T
∗
n + T̄b)‖V) → FN (‖(u, T ∗ + T̄b)‖V) as n→ ∞.

(2.22)
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Our next task is to compute the limit when n goes to infinity of FN (‖(un, T
∗
n +

T̄b)‖V)b1(un, T
∗
n , S) and FN (‖(un, T

∗
n + T̄b)‖V)b1(un, T̄b, S) for (v, S) ∈ Vn ×Wn.

Firstly,
FN (‖(un, T

∗
n + T̄b)‖V)b1(un, T

∗
n , S)

= FN (‖(un, T
∗
n + T̄b)‖V)

∫
Ω

(un(t) · ∇)T ∗
n(t)Sdx

= FN (‖(un, T
∗
n + T̄b)‖V)

3∑
i,j=1

∫
Ω

ui
n(t)∂iT

∗j
n (t)Sjdx

=

3∑
i,j=1

∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)umi

n (t)∂iT
∗j
n (t)Sjdx

= −
3∑

i,j=1

∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)ui

n(t)T
∗j
n (t)∂iS

jdx.

But

∥∥ui
n(t)T

∗j
n (t)

∥∥
L3/2(Ω)

=

(∫
Ω

∣∣ui
n(t)T

∗j
n (t)

∣∣3/2 dx)2/3

≤
(∫

Ω

∣∣ui
n(t)

∣∣3/2×4/3
dx

)2/3×3/4(∫
Ω

∣∣T ∗j
n (t)

∣∣3/2×4
dx

)2/3×1/4

=

(∫
Ω

∣∣ui
n(t)

∣∣2 dx)1/2(∫
Ω

∣∣T ∗j
n (t)

∣∣6 dx)1/6

=
∣∣ui

n(t)
∣∣
H
∥∥T ∗j

n (t)
∥∥

L6(Ω)

≤C |un(t)|H ‖T ∗
n(t)‖ .

Hence, ui
nT

∗j
n is bounded in L2(0, T ;L3/2(Ω)). Next, we note that

0 < FN (‖(un, T
∗
n + T̄b)‖V) ≤ 1,

and FN (∥(un, T
∗
n+T̄b)∥V)ui

nT
∗j
n is still bounded in L2(0, T ;L3/2(Ω))⊂L3/2(0, T ;L3/2(Ω)).

Thus there exists χij ∈ L3/2(0, T ;L3/2(Ω)) such that

FN (‖(un, T
∗
n + T̄b)‖V)ui

nT
∗j
n → χij in L3/2(0, T ;L3/2(Ω))− weak. (2.23)

In addition, relation (2.22) implies

FN (‖(un, T
∗
n+T̄b)‖V)ui

nT
∗j
n → FN (‖(u, T ∗+T̄b)‖V)uiT ∗j a.e. in (0, T )×Ω. (2.24)

Then we apply Lemma 1.3 in [20] to conclude from (2.23) and (2.24) that

FN (‖(un, T
∗
n+T̄b)‖V)ui

nT
∗j
n →FN (‖(u, T ∗+T̄b)‖V)uiT ∗j in L3/2(0, T ;L3/2(Ω)) weak,

which implies the following convergence result

−
3∑

i,j=1

∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)ui

n(t)T
∗j
n (t)∂iSjdx
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→−
3∑

i,j=1

∫
Ω

FN (‖(u, T ∗ + T̄b)‖V)ui(t)T ∗j(t)∂iSjdx.

Hence,

FN (‖(un, T
∗
n + T̄b)‖V)b1(un, T

∗
n , S) → FN (‖(un, T

∗
n + T̄b)‖V)b1(u, T ∗, S), S ∈Wn.

(2.25)
Secondly,

FN (‖(un, T
∗
n + T̄b)‖V)b1(un, T̄b, S)

=FN (‖(un, T
∗
n + T̄b)‖V)

∫
Ω

(un(t).∇)T̄b(t)Sdx

=FN (‖(un, T
∗
n + T̄b)‖V)

3∑
i,j=1

∫
Ω

ui
n(t)∂iT̄

j
b (t)S

jdx

=

3∑
i,j=1

∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)umi

n (t)∂iT̄
j
b (t)S

jdx

=−
3∑

i,j=1

∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)ui

n(t)T̄
j
b (t)∂iS

jdx.

Using (2.7) and (2.22) one obtains the following∫
Ω

FN (‖(un, T
∗
n + T̄b)‖V)ui

n(t)T̄
j
b (t)∂iS

jdx

→
∫
Ω

FN (‖(u, T ∗ + T̄b)‖V)ui(t)T̄ j
b (t)∂iS

jdx,

thus

FN (‖(un, T
∗
n + T̄b)‖V)b1(un, T̄b, S) → FN (‖(un, T

∗
n + T̄b)‖V)b1(u, T̄b, S), S ∈Wn.

(2.26)
For the initial data, we have

Pn(u0, T
∗
0 ) → (u0, T

∗
0 ) in H. (2.27)

Indeed, Pn(u0, T
∗
0 ) = (un(0), T

∗
n(0)). Since (un, T

∗
n) ∈ C([0, T ];H) and (un, T

∗
n) →

(u, T ∗) strongly in H; then (2.27) follows.
In addition, since

〈
P 1
nf(t),u

〉
= 〈f(t),un〉 and un → u strongly in H, then〈

P 1
nf(t),u

〉
→ 〈f(t),u〉 .

Similarly, we prove that 〈
P 2
ng(t), T

〉
→ 〈g(t), T 〉 .

Step 3: recovering the pressure

The method is standard and proceed as follows. First, we integrate the first
equation of (1.15) respecting to t, we define the functional for all L by: for all
v ∈ H1(Ω),

L(v) =

∫ t

0

((f(s),v)− νa0(u(s),v)− bN (u(s),u(s), v)) ds− (u(s),v) + (u0,v)
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which is a continuous linear functional on H1(Ω) and vanish on V. Hence from [13],
there exists a unique function P (t) ∈ L2

0(Ω) such that for all v ∈ H1
0(Ω), for all

t ∈ (0, T̃ )

L(v) = −(divv, P (t))H,

|P (t)| ≤ sup
v∈H1

0(Ω)

L(v)

‖v‖V
.

(2.28)

By defining p(t) = d

dt
P (t), we conclude that (u, p, T = T ∗+T b) is the weak solution

of problem (1.2).
Hence we have constructed the weak solutions of problem (1.2). □
We now show that problem (1.2) has a unique solution.

Theorem 2.2. Suppose that f ∈ L2(0, T̃ ;H−1(Ω)), g ∈ L2(0, T̃ ;H−1(Ω)), Tb ∈
H1(0, T̃ ;H1/2(Γ)), the initial temperature on the boundary T 0

b belongs to H1/2(Γ)
and (u0, T0, ) ∈ H be given.

The weak solution of problem (1.2) given by theorem 2.1 is unique.

Proof. Let (u1,T 1) and (u2,T 2) two weak solutions of (1.11), then we have when
setting u = u1 − u2 and T = T1 − T2,

d

dt
u(t) + νAu(t) ≤ −BN (u1(t),u1(t)) +BN (u2(t),u2(t)),

d

dt
T (t) + αA1T (t) ≤ −b1,N (u1(t), T1(t)) + b1,N (u2(t), T2(t)),

(u(0), T (0)) = (0, 0),

(2.29)

or for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),

〈
d

dt
u(t),v

〉
+ ν(Au(t),v) ≤ −bN (u1(t),u1(t),v) + bN (u2(t),u2(t),v),〈

d

dt
T (t), S

〉
+ α(A1T (t), S) ≤ −b1,N (u1(t), T1(t), S) + b1,N (u2(t), T2(t), S),

(u(0), T (0)) = (0, 0).

(2.30)
Taking v = u(t) in (2.30)1 and S = T (t) in (2.30)2, we have

1

2

d

dt
|u(t)|2H + ν ‖u(t)‖2V ≤ −bN (u1(t),u1(t),u(t)) + bN (u2(t),u2(t),u(t)),

1

2

d

dt
|T (t)|2 + α ‖T (t)‖2 ≤ −b1,N (u1(t), T1(t), T (t)) + b1,N (u2(t), T2(t), T (t)),

(u(0), T (0)) = (0, 0).

(2.31)
Now, we estimate each term of the right hand side of (2.30). First,

− bN (u1(t),u1(t),u(t)) + bN (u2(t),u2(t),u(t))

=− FN (‖u1(t)‖V)b(u(t),u1(t),u(t))−
(
FN (‖u1(t)‖V)

− FN (‖u2(t)‖V)
)
b(u2(t),u1(t),u(t)).
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But using standard inequalities∣∣−FN (‖u1(t)‖V)b(u(t),u1(t),u(t))
∣∣

≤ cb
N

‖u1(t)‖V
‖u(t)‖V ‖u1(t)‖V |u(t)|1/2H ‖u(t)‖1/2V

= Ncb ‖u(t)‖3/2V |u(t)|1/2H

≤ ν

4
‖u(t)‖2V +

3(Ncb)
4

4ν
|u(t)|2H,

(2.32)

and ∣∣− (FN (‖u1(t)‖V)− FN (‖u2(t)‖V)
)
b(u2(t),u1(t),u(t))

∣∣
≤

‖u2(t)− u1(t)‖V
N

|b(u2(t),u1(t),u(t))|FN (‖u1(t)‖V)FN (‖u2(t)‖V)

≤ cbFN (‖u1(t)‖V)FN (‖u2(t)‖V)
‖u(t)‖V

N
‖u2(t)‖V ‖u1(t)‖V |u(t)|1/2H ‖u(t)‖1/2V

= Ncb ‖u(t)‖3/2V |u(t)|1/2H

≤ ν

4
‖u(t)‖2V +

3(Ncb)
4

4ν
|u(t)|2H.

(2.33)
Similarly

− bN1(u1(t), T1(t), T (t)) + bN1(u2(t), T2(t), T (t))

= −FN (‖(u1(t), T1(t))‖V)b1(u(t), T1(t), T (t))
− (FN (‖(u1(t), T1(t))‖V)− FN (‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t), T (t)).

Again, with usual inequalities one has

|−FN (‖(u1(t), T1(t)‖V)b1(u(t), T1(t), T (t))|

≤ cb
N

‖(u1(t), T1(t))‖V
‖u(t)‖V ‖T1(t)‖ |T (t)|1/2 ‖T (t)‖1/2

≤ Ncb ‖u(t)‖V |T (t)|1/2 ‖T (t)‖1/2

≤ α

4
‖u(t)‖2V +

α

4
‖T (t)‖2 + (Ncb)

4

α3
|T (t)|2,

(2.34)

and
|− (FN (‖(u1(t), T1(t))‖V)− FN (‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t), T (t))|

≤
‖(u(t), T (t))‖V

N
|b1(u2(t), T1(t), T (t))|FN (‖(u1(t), T1(t))‖V)FN (‖(u2(t), T2(t))‖)

≤cbFN (‖(u1(t), T1(t))‖V)FN (‖(u2(t), T2(t))‖V)
‖(u(t), T (t))‖V

N
‖u2(t)‖V

× ‖T1(t)‖ |T (t)|1/2 ‖T (t)‖1/2

=Ncb ‖(u(t), T (t))‖3/2V |T (t)|1/2

≤α
4
‖(u(t), T (t))‖2V +

3(Ncb)
4

4α
|T (t)|2.

=
α

4
‖u(t)‖2V +

α

4
‖T (t)‖2 + 3(Ncb)

4

4α
|T (t)|2.

(2.35)
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Using (2.32)–(2.35) in (2.29), we obtain

d

dt
|u(t)|2H + ν ‖u(t)‖2V ≤ 3(Ncb)

4

2ν
|u(t)|2H ,

d

dt
|T (t)|2 + α ‖T (t)‖2 ≤ α ‖u(t)‖2V +

(
2(Ncb)

4

α3 + 3(Ncb)
4

2α

)
|T (t)|2 ,

(u(0), T (0)) = (0, 0).

(2.36)

Dropping momentarily the term ν ‖u(t)‖2V in (2.36)1 and using lemma 1.4, we have

|u(t)|2H ≤ |u(0)|2H e
3(Ncb)

4

2ν t,

consequently, u1(t) = u2(t) since u(0) = 0.
Using this in (2.36)2 and Lemma 1.4 again, we have

|T (t)|2 ≤ |T (0)|2V e

(
2(Ncb)

4

α3 +
3(Ncb)

4

2α

)
t
,

hence, T1(t) = T2(t) since T (0) = 0 and the theorem is proved. □

2.2. Continuous dependence on initial values and the param-
eter N

The goal of the paragraph is to show that the solution (u(t), T (t), p(t)) of (1.2)
depends continuously on the parameter N as well as on the initial value (u0, T0).
This result was already obtained when the temperature is zero in [5]. The non trivial
task here is to re-adapt their proof by taking into account the coupling between the
velocity and temperature. More precisely, we prove the following result

Theorem 2.3. Let f ∈ L2(0, T̃ ;L2(Ω)), g ∈ L2(0, T̃ ;L2(Ω)), Ni > 0, (u0i, T0i) ∈
V, i = 1; 2 be given. Assume y = (ui, Ti) be the solutions of (1.2) corresponding to
the parameter Ni and the initial values y0i = (u0i, T0i), i = 1; 2. Then

(u1, T1) → (u2, T2) in C(0, T̃ ;V) ∩ D(0, T̃ ;D(A)×D(A1))

when N1 → N2 and (u02, T01) → (u02, T02). More precisely, the following esti-
mates hold true.

‖(u(t), T (t))‖2V ≤

{
‖(u(0), T (0))‖2V +

12c2b
α3

|N1 −N2|2
∫ T̃

0

(|Au2(s)|2H

+ |A1T2(s)|2)ds

}
× exp

(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
.

(2.37)

and

α3

∫ T̃

0

(|Au(t)|2H + |A1T (t)|2 dt

≤

{
‖(u(0), T (0))‖2V +

12c2b
α3

|N1 −N2|2
∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}
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×

[
1+

(
6(Ncb)

4

α3
T̃+α4

∫ T̃

0

|Au2(t)|2H dt

)
×exp

[
6(Ncb)

4

α3
T̃+α4

∫ T̃

0

|Au2(t)|2H dt

]]
(2.38)

α3, α4 will be defined later.

Proof. Setting u = u1 − u2 and T = T1 − T2, we have for almost every t ∈ (0, T̃ )


d

dt
u(t) + νAu(t) ≤ −BN1(u1(t),u1(t)) +BN2(u2(t),u2(t)),

d

dt
T (t) + αA1T (t) ≤ −B1,N1

(u1(t), T1(t)) +B1,N2
(u2(t), T2(t)).

(2.39)

Taking the inner product of (2.39)1 with Au(t) and of (2.39)2 with A1T (t), we
have



1

2

dt

dt
‖u(t)‖2V+ν |Au(t)|2H≤−bN1(u1(t),u1(t),Au(t))+bN2(u2(t),u2(t),Au(t)),

1

2

d

dt
‖T (t)‖2+α |A1T (t)|2≤−b1,N1

(u1(t), T1(t),A1T (t))

+ b1,N2(u2(t), T2(t),A1T (t)).

(2.40)
We now need to treat the right hand side of (2.40). First from the linearity one has

− bN1(u1(t),u1(t),Au(t)) + bN1(u2(t),u2(t),Au(t))

=− FN1
(‖u1(t)‖V)b(u(t),u1(t),Au(t))− FN2

(‖u2(t)‖V)b(u2(t),u(t),Au(t))

−
(
FN1

(‖u1(t)‖V)− FN2
(‖u2(t)‖V)

)
b(u2(t),u1(t),Au(t)).

(2.41)
The right hand side of (2.41) is treated using standard inequalities as follows;

∣∣−FN1
(‖u1(t)‖V)b(u(t),u1(t),Au(t))

∣∣ ≤ cb
N1

‖u1(t)‖V
‖u(t)‖1/2V ‖u1(t)‖V |Au(t)|3/2H

= N1cb ‖u(t)‖1/2V |Au(t)|3/2H

≤ ν

8
|Au(t)|2H +

3(N1cb)
4

2ν
‖u(t)‖2V ,

(2.42)∣∣− (FN1
(‖u1(t)‖V)− FN2

(‖u2(t)‖V)
)
b(u2(t),u1(t),Au(t))

∣∣
≤
(
|N1 −N2|
‖u1(t)‖V

+
‖u(t)‖V
‖u1(t)‖V

)
cb |Au2(t)|H ‖u1(t)‖V |Au(t)|H

≤ 2

ν1

(
|N1 −N2|+ ‖u(t)‖V

)2
c2b |Au2(t)|2H +

ν1
8

|Au(t)|2H

≤2

ν

(
|N1 −N2|2 + ‖u(t)‖2V

)
c2b |Au2(t)|2H +

ν

8
|Au(t)|2H ,

(2.43)
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and∣∣−FN2
(‖u2(t)‖V)b(u2(t),u(t),Au(t))

∣∣ ≤ |b(u2(t),u(t),Au(t))|

≤ cb |Au2(t)|H ‖u(t)‖V |Au(t)|H
≤ ν

4 |Au(t)|2H +
c2b
ν |Au2(t)|2H ‖u(t)‖2V .

(2.44)
Secondly, exploiting the same linearity one has

− b1,N1(u1(t), T1(t), T (t)) + b1,N2(u2(t), T2(t),A1T (t))

=− FN1(‖(u1(t), T1(t))‖V)b1(u(t), T1(t),A1T (t))− FN2(‖(u2(t), T2(t))‖V)
× b1(u2(t), T (t),A1T (t))− (FN1(‖(u1(t), T1(t))‖V)− FN2(‖(u2(t), T2(t))‖V))
× b1(u2(t), T1(t),A1T (t)).

(2.45)
Again, we treat the right hand side of (2.45) using standard inequalities as follows;

|−FN1(‖(u1(t), T1(t)‖V)b1(u(t), T1(t),A1T (t))|

≤cb
N1

‖(u1(t), T1(t))‖V
‖u(t)‖1/2V ‖T1(t)‖ |A1T (t)|3/2

=N1cb ‖u(t)‖1/2V |A1T (t)|3/2

≤α
8
|A1T (t)|2 +

3(N1cb)
4

2α
‖u(t)‖2V ,

(2.46)

|− (FN1
(‖(u1(t), T1(t))‖V)− FN2

(‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t),A1T (t))|

≤
(

|N1 −N2|
‖(u1(t), T1(t))‖V

+
‖y(t)‖V

‖(u1(t), T1(t)‖V

)
cb |Au2(t)|H ‖T1(t)‖ |A1T (t)|

≤ 2

α
(|N1 −N2|+ ‖y(t)‖V)

2
c2b |Au2(t)|2H +

α

8
|A1T (t)|2

≤ 4

α

(
|N1 −N2|2 + ‖y(t)‖2V

)
c2b |Au2(t)|2H +

α

8
|A1T (t)|2 ,

(2.47)
and

|−FN2
(‖(u2(t), T2(t))‖V)b1(u2(t), T (t),A1T (t))|

≤ |b1(u2(t), T (t),A1T (t))|
=cb |Au2(t)|H ‖T (t)‖ |A1T (t)|

≤α
4
|A1T (t)|2 +

c2b
α

|Au2(t)|2H ‖T (t)‖2 .

(2.48)

Using (2.42)–(2.48) in (2.40), we obtain

d

dt
‖u(t)‖2V + ν |Au(t)|2H ≤

(
3(N1cb)

4

ν +
6c2b
ν |Au2(t)|2H

)
‖u(t)‖2V

+
4c2b
ν |N1 −N2|2 |Au2(t)|2H ,

d

dt
‖T (t)‖2 + α |A1T (t)|2 ≤

{
3(N1cb)

4

α +
8c2b
α |Au2(t)|2H

}
‖u(t)‖2V

+
8c2b
α |N1−N2|2 |Au2(t)|2H+

10c2b
α |Au2(t)|2H ‖T (t)‖2 .

(2.49)
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Adding these two inequalities, we obtain

d

dt
‖(u(t), T (t))‖2V + α3(|Au(t)|2H + |A1T (t)|2

+
12c2b
α3

|N1 −N2|2
(
|Au2(t)|2H + |A1T (t)|2

)
≤
(
6(Ncb)

4

α3
+ α4 |Au2(t)|2H

)
‖(u(t), T (t))‖2V (2.50)

where α3 = min (ν1, α) ;α4 =
14c2b
α3

+
10c2b
α .

Dropping momentarily the term α3(|Au(t)|2H + |A1T (t)|2) in (2.50) and using
Lemma 1.4, we have

‖(u(t), T (t))‖2V≤

{
‖(u(0), T (0))‖2V+

12c2b
α3

|N1−N2|2
∫ T̃

0

(|Au2(s)|2H+|A1T2(s)|2)ds

}

× exp
(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
. (2.51)

Using (2.51) in (2.50), we get

α3

∫ T̃

0

(|Au(t)|2H + |A1T (t)|2 dt

≤

{
‖(u(0), T (0))‖2V +

12c2b
α3

|N1 −N2|2
∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}

×

[
1+

(
6(Ncb)

4

α3
T̃+α4

∫ T̃

0

|Au2(t)|2H dt

)
×exp

[
6(Ncb)

4

α3
T̃+α4

∫ T̃

0

|Au2(t)|2H dt

]]
(2.52)

the proof of Theorem (2.3) follows. □

2.3. Comparison of Galerkin solutions of the GMNSHE and
NSHE

We first note that NSHE stands for Navier-Stokes equation coupled with the heat
equation. In this paragraph, we prove that the Galerkin’s approximations of the
GMNSHE (2.54) below are the same as the Galerkin’s approximations for the NSHE
(associated with the same initial value (u0, T0) over the time interval [0, T̃ ]) for some
value of N . The following inequalities (see [5]) will also be used:

|Aun|H ≤ λn|un|H, ‖un‖V ≤ (λn)
1/2|un|H,

|A1Tn| ≤ λ1n|Tn|, ‖Tn‖ ≤ (λ1n)
1/2|Tn|,

λ1|un|2H ≤ ‖un‖2V, λ11|Tn|2 ≤ ‖Tn‖2,

(2.53)

where λj and λ1j are the corresponding eigenvalues of the operators A and A1. our
next result establishes a link between GMNSHE and NSHE. We claim that
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Theorem 2.4. We assume that f ∈ L∞(0, T̃ ;L2(Ω)), g ∈ L∞(0, T̃ ;L2(Ω)) for
all T̃ > 0, and we consider the Galerkin’s approximations of the GMNSHE and
NSHE of fixed dimension n for the same initial value (u0, T0) over the time interval
[0, T̃ ]. Then there exists a subsequence (u

(Nj)
n , T

(Nj)
n )j of the sequence (uN

n , T
N
n )N

which converges uniformly in C(0, T̃ ;R3) × C(0, T̃ ;R3) to a function (u∞
n , T

∞
n ) in

C(0, T̃ ;R3) × C(0, T̃ ;R3) which is the corresponding solution of the n-dimensional
Galerkin’s approximations for the NSHE if N satisfies

N ≥ max

{
(λn)

1/2K1/2
4 ;

(
λnK4 + 2

(
λ1nK5 + c2Λ ‖Tb‖2H1/2(Γ)

))1/2}
where K4 and K5 are defined below.

Proof. We set |f |H∞ = ‖f‖L∞(0,T̃ ;L2(Ω)) and |g|∞ = |g|L∞(0,T̃ ;L2(Ω)) . The Galerkin’s
approximations of the GMNSHE with the parameter N are given by

d

dt
uN
n (t) + νAuN

n (t) + BN (uN
n (t),uN

n (t)) = f(t),

d

dt
T ∗N
n (t) + αA1T

∗N
n (t) + FN (‖(uN

n , T
∗N
n + T̄b)‖V)B1(u

N
n (t), T ∗N

n (t))

=g(t)− d

dt
T̄b − αA1T̄b(t)− FN (‖(uN

n , T
∗N
n + T̄b)‖V)B1(u

N
n (t), T̄b(t)),

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0).

(2.54)

We deduce from (2.5) and (2.53) that

d

dt

∣∣uN
n (t)

∣∣2
H + νλ1

∣∣uN
n (t)

∣∣2
H ≤ c21

ν
|f |2H∞ ,

d

dt
|T ∗

n(t)|
2
+ αλ11

∣∣T ∗N
n (t)

∣∣2 ≤ 2c22
α

|g(t)|2∞ +
4c23
α

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

+
(
4c24 +

4λnc
2
5

α

∣∣uN
n (t)

∣∣2
H

)∥∥T̄b(t)∥∥2 .
(2.55)

Hence, the energy inequalities of the ODE (2.54) read

∣∣uN
n (t)

∣∣2
H ≤ |u0|2H +

c21
λ1ν2 |f |2H∞ ,∣∣T ∗N

n (t)
∣∣2 ≤ |T ∗

0 |
2
+

2c22
α T̃ |g|2∞ +

4c23
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2 dt

+
(
4c24 +

4λnc
2
5

α K4

)∫ T̃

0

∥∥T̄b(t)∥∥2 dt,
(2.56)

where K4 = |u0|2H+
c21

λ1ν2 |f |2H∞ . In addition, from (2.54), (2.55) and (1.1), we have∣∣∣∣ ddtuN
n (t)

∣∣∣∣
H

≤ ν
∣∣AuN

n

∣∣
H +

∣∣BN (uN
n ,u

N
n )
∣∣
H + |f |H

≤ |νAuN
n |H +

∣∣B(uN
n ,u

N
n )
∣∣
H + |f |H∞

≤ νλn|uN
n |H + cb‖uN

n ‖3/2V |AuN
n |1/2H + |f |H∞

≤ νλnK1/2
4 + cbλ

5/4
n K4 + |f |H∞ .

(2.57)
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On the other hand, also from (2.54), (2.55) and (1.1),∣∣∣∣ ddtT ∗N
n (t)

∣∣∣∣
≤α

∣∣A1T
∗N
n (t)

∣∣+ FN (‖(uN
n , T

∗N
n + T̄b)‖V)

∣∣B1(u
N
n (t), T ∗N

n (t))
∣∣+ ∣∣∣∣ ddt T̄b

∣∣∣∣
+ α

∣∣A1T̄b(t)
∣∣+ FN (‖(uN

n , T
∗N
n + T̄b)‖V)

∣∣B1(u
N
n (t), T̄b(t))

∣∣+ |g(t)|

≤α
∣∣A1T

∗N
n (t)

∣∣+ ∣∣B1(u
N
n (t), T ∗N

n (t))
∣∣+ ∣∣∣∣ ddt T̄b

∣∣∣∣+ α
∣∣A1T̄b(t)

∣∣
+
∣∣B1(u

N
n (t), T̄b(t))

∣∣+ |g(t)|

≤α
∣∣A1T

∗N
n (t)

∣∣+cb ∣∣AuN
n

∣∣
H
∥∥T ∗N

n

∥∥+∣∣∣∣ ddt T̄b
∣∣∣∣+α ∣∣A1T̄b(t)

∣∣+cb ∣∣AuN
n

∣∣
H
∥∥T̄b∥∥+|g(t)|∞

≤αλ1n
∣∣T ∗N

n (t)
∣∣+ cbλn

∣∣uN
n

∣∣
H (λ1n)

1/2
∣∣T ∗N

n

∣∣+ ∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣

+ cbλn
∣∣uN

n

∣∣
H
∥∥T̄b∥∥+ |g(t)|∞

≤αλ1nK5 + cbλn(λ
1
n)

1/2K4K5 +

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣+ cbλnK4

∥∥T̄b∥∥+ |g(t)|∞ ,

(2.58)

where K5= |T ∗
0 |

2
+

2c22
α T̃ |g|2∞+

4c23
α

∫ T̃

0

∥∥ d
dt T̄b(t)

∥∥2 dt+(4c24+ 4λnc
2
5

α K4

) ∫ T̃

0

∥∥T̄b(t)∥∥2 dt.
Using these estimates (providing the uniformly boundaries in both N and n

of (uN
n , T

∗N
n )N and

(
d
dtu

N
n ,

d
dtT

∗N
n

)
, it follows from the Ascoli theorem that there

exists a subsequence (u
Nj
n , T

∗Nj
n )j of (uN

n , T
∗N
n )N which converges uniformly to a

function (u∞
n , T

∗∞
n ) in C(0, T̃ ;R3)×C(0, T̃ ;R3). Setting T∞

n = T ∗∞
n + T̄b, (u

∞
n , T

∞
n )

is the corresponding solution of the n−dimensional Galerkin ODE for NSHE. This
follows from the uniqueness of solutions of the Galerkin ODE for a given initial
value and the fact that

1≥FN

(
‖uN

n ‖V
)
= min

(
1,

N

‖uN
n ‖V

)
≥ min

(
1,

N

(λn)1/2K1/2
4

)
, (2.59)

1≥FN

(
‖
(
uN
n , T

∗N
n +T̄b

)
‖V
)
= min

(
1,

N

‖
(
uN
n , T

∗N
n +T̄b

)
‖V

)

≥ min

1,
N(

λnK4+2
(
λ1nK5+c2Λ ‖Tb‖2H1/2(Γ)

))1/2
 ,

(2.60)

so,
FN (‖uN

n ‖V) = 1 and FN (‖(uN
n , T

∗N
n + T̄b)‖V) = 1

for
N ≥ max

{
(λn)

1/2K1/2
4 ;

(
λnK4 + 2

(
λ1nK5 + c2Λ ‖Tb‖2H1/2(Γ)

))1/2}
.

□
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3. Time discretization of problem (1.2)

In this section our goals are as follows; formulate the time discrete scheme and
analyse it. By analysing, we mean: existence, uniqueness and stability.

3.1. Numerical scheme

We propose in this paragraph the time semi-discretization of problem (1.2) based
on a backward Euler’s scheme. As in [10], we divide the interval [0, T̃ ] in to M

intervals of equal length. Let k = T̃
M the time step. We associate with k and the

functions f, g and Tb the elements

fm =
1

k

∫ mk

(m−1)k

f(t)dt, gm =
1

k

∫ mk

(m−1)k

g(t)dt, Tm
b =

1

k

∫ mk

(m−1)k

Tb(t)dt,

with m = 1, 2, ...M. Most of time, we will use (u, T ) instead of (u(t), T (t)).
For any data (f , g, Tb) ∈ C(0, T̃ ;H−1(Ω))× C(0, T̃ ;H−1(Ω))× C(0, T̃ ;H1/2(Γ)),

(u0, T0) ∈ V × H1(Ω). We consider the following scheme: for all m = 1, 2, ...,M ,
a.e. t ∈ (0, T̃ ) find (um, Tm) ∈ V ×H1(Ω) such that



u0 = u0, T
0 = T0 on Ω,

Tm = Tm
b on Γ,

um − um−1

k
+ νAum + BN (um,um) = fm,

Tm − Tm−1

k
+ αA1T

m + B1,N (um, Tm) = gm.

(3.1)

Following the analysis in the continuous case, it is suitable to lift the boundary data
Tm
b . For this purpose, according to the analysis done before, we set T̄m

b = RTm
b

where

∥∥T̄m
b

∥∥
L2(0,T̃ ;H1(Ω))

≤cΛ‖Tm
b ‖H1/2(Γ) and

∥∥T̄m
b

∥∥
L2(0,T̃ ;L4(Ω))

≤ε‖Tm
b ‖L2(0,T̃ ;H1/2(Γ)) .

(3.2)
We set T ∗m = Tm − T̄m

b , we seek for (um, T ∗m) ∈ V ×H1(Ω) such that



u0 = u0, T
∗0 = T0 − T̄ 0

b on Ω,

Tm = Tm
b , u

m = 0, T ∗m = 0 on Γ,

um + kνAum + kBN (um,um) = um−1 + kfm,

T ∗m + kαA1T
∗m + kFN (‖(um, T ∗m + T̄m

b )‖V)B1(u
m, T ∗m)

=Tm−1 + T̄m−1
b + kgm − kαA1T̄

m
b − kFN (‖(um, T ∗m + T̄m

b )‖V)B1(u
m, T̄m

b ),
(3.3)
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or equivalently for all (v, S) ∈ V ×H1
0 (Ω),

u0 = u0, T
∗0 = T0 − T̄ 0

b on Ω,

Tm = Tm
b , u

m = 0, T ∗m = 0 on Γ,

(um,v) + ka0(u
m,v) + kbN (um,um,v) = (um−1, v) + k 〈fm, v〉Ω ,

(T ∗m, S)+kαa1(T
∗m, S)+kFN (‖(um, T ∗m+T̄m

b )‖V)b1(um, T ∗m, S)

=(Tm−1, S) + (T̄m−1
b , S) + k 〈gm, S〉Ω − kαa1(T̄

m
b , S)

− kFN (‖(um, T ∗m + T̄m
b )‖V)b1(um, T̄m

b , S).

(3.4)

3.2. Existence of solutions
Our goal in this paragraph is to construct the weak solutions to (3.4) by using;
Galerkin’s scheme, Brouwer’s fixe point, a priori estimates and compactness results.

Theorem 3.1. Assume that the data (f , g, Tb) belongs to C(0, T̃ ;H−1(Ω)×C(0, T̃ ;
H−1(Ω)×C(0, T̃ ;H1/2(Γ)), that the initial temperature on the boundary T 0

b belongs
to H1/2(Γ) and (u0, T0) ∈ V ×H1(Ω), then problem (3.3) has at least one solution
(um, T ∗m) ∈ D(A)×D(A1).

Proof. Following [10], the existence of a solution ym = (um, T ∗m) of problem (3.3)
is proved by the Galerkin’s method in several steps as follows.

Step 1: Existence of approximate solutions.
Let p ≥ 1 be an integer, knowing (u1, T ∗1), ..., (um−1, T ∗m−1), we define an

approximate solution of problem (3.3) by

um
p =

p∑
i=1

gmipvi, T
∗m
p =

p∑
i=1

hmipwi, g
m
ip , h

m
ip ∈ R,

u0
p = (u0)|⟨v1,...,vp⟩, T

∗0
p =

(
T0 − T̄ 0

b

)
|⟨w1,...,wp⟩,

Tm
p = Tm

b |⟨w1,...,wp⟩, u
m
p = 0, T ∗m

p = 0 on Γ,

um
p + kνAum

p + kBN (um
p ,u

m
p ) = um−1 + kfm,

T ∗m
p + kαA1T

∗m
p + kFN (‖(um

p , T
∗m
p + T̄m

b )‖V)B1(u
m
p , T

∗m
p )

=Tm−1 + T̄m−1
b + kgm − kαA1T̄

m
b − kFN (‖(um

p , T
∗m
p + T̄m

b )‖V)B1(u
m
p , T̄

m
b ),
(3.5)

where (vi)1≤i≤p ⊂ D(A) and (wi)1≤i≤p ⊂ D(A1) are respectively the eigen-vectors
of the operators A and A1; Y |W is the restriction of Y on the space W. Let Zp =
〈v1, ..., vp〉× 〈w1, ..., wp〉 the space generated by the indicated vectors. To prove the
existence of (um

p , T
∗m
p ) defined via (3.5), we consider the operator ϕ : Zp → Z ′

p

given as follows; for all U = (u, T ), V = (v, S) ∈ Zp,

〈ϕ(U), V 〉Zp,Z′
p
=(u,v) + (T, S) + kνa0(u,v) + kαa1(T, S) + kbN (u,u,v)

− (Tm−1, S)− (T̄m−1
b , S) + kFN (‖(u, T + T̄m

b )‖V)b1(u, T, S)
− (um−1,v)− k 〈fm, v〉Ω − k 〈gm, S〉Ω + kαa1(T̄

m
b , S)

+ kFN (‖(u, T + T̄m
b )‖V)b1(u, T̄m

b , S)
(3.6)
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we apply a consequence of Brouwer’s fixed point theorem, see ( [35], Lemma 41,
page 23). So, our task is to show that ϕ is continuous and 〈ϕ(U), U〉Zp,Z′

p
is positive

outside a sphere.
Continuity of ϕ. Let (U)n = (un, T

∗
n)n ⊂ D(A) × D(A1) a sequence such that

(un, T
∗
n) → (u, T ∗) = U, it is enough to prove that ϕ(Un) → ϕ(U). Note that there

is no need to specify wether it is weak or strong convergence since Zp is a finite
dimensional space. Let V = (v, S) ∈ V ×H1

0 (Ω),

〈ϕ(Un), V 〉Zp,Z′
p
=(un,v)+(T ∗

n , S)+kνa0(un,v)+kαa1(T
∗
n , S)+kbN (un,un,v)

+ kFN (‖(un, T
∗
n + T̄m

b )‖V)b1(un, T
∗
n , S)− (um−1,v)

− (Tm−1, S)− (T̄m−1
b , S)− k 〈fm,v〉 − k 〈gm, S〉Ω

+ kαa1(T̄
m
b , S) + kFN (‖(un, T

∗
n + T̄m

b )‖V)b1(un, T̄
m
b , S). (3.7)

Taking the limit of (3.7) when n → +∞ and arguing as in the continuous case
(see step 2 of the proof theorem 2.1), we can show that ϕ(Un) → ϕ(U) and the
continuity of ϕ follows.
Coercivity of ϕ. Let U = (u, T ), then

〈ϕ(U), U〉Zp,Z′
p
=(u,u) + (T, T ) + kνa0(u,u) + kαa1(T, T ) + kbN (u,u,u)

+ kFN (‖(u, T + T̄m
b )‖V)b1(u, T, T )− (um−1,u)− (Tm−1, T )

− (T̄m−1
b , T )− k 〈fm,u〉Ω − k 〈gm, T 〉Ω + kαa1(T̄

m
b , T )

+ kFN (‖(u, T + T̄m
b )‖V)b1(u, T̄m

b , T )

= |u|2H + |T |2 + kν ‖u‖2V + kα ‖T‖2 − (um−1,u)− (Tm−1, T )

− (T̄m−1
b , T )− k 〈fm,u〉Ω − k 〈gm, T 〉Ω + kαa1(T̄

m
b , T )

+ kFN (‖(u, T + T̄m
b )‖V)b1(u, T̄m

b , T )

≥min {kν, kα}
(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V ‖u‖V −

∥∥Tm−1
∥∥ ‖T‖

−
∥∥T̄m−1

b

∥∥ ‖T‖ − k ‖fm‖V′ ‖u‖V − k ‖gm‖−1 ‖T‖
− kα

∥∥T̄m
b

∥∥ ‖T‖+ k
∣∣FN (‖(u, T + T̄m

b )‖V)b1(u, T̄m
b , T )

∣∣
≥min {kν, kα}

(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V ‖u‖V −

∥∥Tm−1
∥∥ ‖T‖

− cΛ
∥∥Tm−1

b

∥∥
Γ
‖T‖ − k ‖fm‖V′ ‖u‖V − k ‖gm‖−1 ‖T‖

− kαcΛ ‖Tm
b ‖Γ ‖T‖+

kεcΛ
2

‖Tm
b ‖Γ

(
‖u‖2V + ‖T‖2

)
.

We choose ε such that εkcΛ ‖Tm
b ‖Γ ≤ min {kν, kα} ; then

〈ϕ(U), U〉Zp,Z′
p
≥min {kν, kα}

(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V ‖u‖V −

∥∥Tm−1
∥∥ ‖T‖

− cΛ
∥∥Tm−1

b

∥∥
Γ
‖T‖ − k ‖fm‖V′ ‖u‖V − k ‖gm‖−1 ‖T‖

− kαcΛ ‖Tm
b ‖Γ ‖T‖ ,

which with the inequality a ≤ (a2 + b2)1/2 for all a, b ∈ R, a ≥ 0 gives

〈ϕ(U), U〉Zp,Z′
p
≥min {kν, kα}

(
‖u‖2V + ‖T‖2

)
−
(
‖u‖2V + ‖T‖2

)1/2
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×
{∥∥um−1

∥∥
V −

∥∥Tm−1
∥∥− cΛ

∥∥Tm−1
b

∥∥
Γ
− k ‖fm‖V′ − k ‖gm‖−1

− kαcΛ ‖Tm
b ‖Γ

}
≥
(
‖u‖2V + ‖T‖2

)1/2{
min {kν, kα}

(
‖u‖2V + ‖T‖2

)1/2}
−
(
‖u‖2V + ‖T‖2

)1/2 {∥∥um−1
∥∥

V +
∥∥Tm−1

∥∥+ cΛ
∥∥Tm−1

b

∥∥
Γ

}
−
{
k ‖fm‖V′ + k ‖gm‖−1 + kαcΛ ‖Tm

b ‖Γ
}(

‖u‖2V + ‖T‖2
)1/2

.

So, 〈ϕ(U), U〉Zp,Z′
p

is nonnegative on the sphere of V ×H1
0 (Ω) with radius

α ≥ 2

min {kν, kα}

{∥∥um−1
∥∥

V +
∥∥Tm−1

∥∥+ cΛ
∥∥Tm−1

b

∥∥
Γ
+ k ‖fm‖V′

+ k ‖gm‖−1 + kαcΛ ‖Tm
b ‖Γ

}
.

Then we deduce the existence of (um
p , T

∗p
p ) ∈ Zp, solution of (3.5).

Step 2: Some a priori estimates.
At this step, we recall that k and m are kept fixed, and we want to obtain a

priori estimates on (um
p , T

∗m
p ) independently of p and then pass to the limit on (3.5)

as p goes to the infinity.
Taking the inner product of (3.5)4 with 2um

p and Young’s inequality, we have∣∣um
p

∣∣2
H +

∣∣um
p − um−1

p

∣∣2
H + kν

∥∥um
p

∥∥2
V ≤

∣∣um−1
p

∣∣2
H +

kc21
ν

‖fm‖2V′ . (3.8)

Similarly, taking the inner product of (3.5)5 with 2T ∗m
p , we have∣∣T ∗m

p

∣∣2 + ∣∣T ∗m
p −Tm−1

p

∣∣2 + kα
∥∥Tm

p

∥∥2 ≤
∣∣Tm−1

p

∣∣2 + 4kc22
α

‖gm‖2−1

+ 4kαc24
∥∥T̄m

b

∥∥2 + 2N2c25
α

K6,

(3.9)

with K6 =
∣∣um−1

p

∣∣2
H +

kc21
ν ‖fm‖2V′ . Now, we take the inner product of (3.5)4 with

Aum
p and of (3.5)5 with A1T

∗m
p . One obtains

kν
∣∣Aum

p

∣∣2 ≤ k
〈
fm,Aum

p

〉
Ω
− FN (

∥∥um
p

∥∥
V)b(um

p ,u
m
p ,Aum

p )− (um
p − um−1

p ,Aum
p ),

α
∣∣A1T

∗m
p

∣∣2≤k 〈gm,A1T
∗m
p

〉
Ω
− (T ∗m

p − Tm−1
p ,A1T

∗m
p )− (T̄m−1

b ,A1T
∗m
p )

−kα(A1T̄
m
b ,A1T

∗m
p )−kFN (

∥∥(um
p , T̄

m
b +T ∗m

p )
∥∥
V)b1(u

m
p , T̄

m
b ,A1T

∗m
p )

− kFN (
∥∥(um

p , T̄
m
b + T ∗m

p )
∥∥
V)b1(u

m
p , T

∗m
p ,A1T

∗m
p ).

(3.10)
This leads to

kν
∣∣Aum

p

∣∣2 ≤ 4kc2 ‖fm‖2V′ +
3kc4bN

4

ν

∥∥um
p

∥∥2
V +

2

kν

∣∣um
p − um−1

p

∣∣2
H ,

α
∣∣A1T

∗m
p

∣∣2 ≤8kc21 ‖gm‖2−1 +
8c22
kα

∣∣T ∗m
p − Tm−1

p

∣∣2 + 9kc4bN
4

α
K6 + 8αkc23

∣∣A1T̄
m
b

∣∣2
+

4

kα

∣∣A1T̄
m−1
b

∣∣2 .
(3.11)
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Since k and m are kept fixed, we conclude from (3.11) that
{
(um

p , T
∗m
p )

}
p

is bounded
in D(A) × D(A1). As in the continuous case, we can extract a subsequence of{
(um

p , T
∗m
p )

}
p

still noted
{
(um

p , T
∗m
p )

}
p

such that

(um
p , T

∗m
p ) → (um, T ∗m)

{
weakly in L2(0, T̃ ;D(A)×D(A1)),

strongly in L2(0, T̃ ;V ×H1
0 (Ω)).

(3.12)

Arguing as in the continuous case, we can prove that (um, T ∗m) is the solution of
problem (3.3). □

3.3. Stability of the Numerical scheme
The objectives here are twofold. First, we follow [29] by computing some a priori
estimates on (um, Tm), solution of problem (3.1). We would like these estimates
to be uniform with respect to m and k. In fact, discretization in time of evolution
equations can lead to unstable or conditionally stable schemes. Hence the impor-
tance of having uniform estimates with respect to approximation parameter. Next,
we use the a priori estimates to deduce the unique solvability of (3.1).
We first claim that

Lemma 3.1.

|um|2H ≤ |u0|2H +
1

ν

∫ T̃

0

‖f(t)‖2V′ dt. (3.13)

k

M∑
m=1

‖um‖2V ≤ 1

ν

[
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

]
. (3.14)

M∑
m=1

∣∣um − um−1
∣∣2
H ≤ |u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt. (3.15)

The quantity k
M∑

m=1

∥∥∥∥um − um−1

k

∥∥∥∥2
V′

is bounded independently of m and k.

Similarly,

|Tm|2 ≤ |T0|2 +
1

α

∫ T̃

0

‖g(t)‖2−1 dt. (3.16)

k

M∑
m=1

‖Tm‖2 ≤ 1

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]
. (3.17)

M∑
m=1

∣∣Tm − Tm−1
∣∣2 ≤ |T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt. (3.18)

The quantity k
M∑

m=1

∥∥∥∥Tm − Tm−1

k

∥∥∥∥2
V′

1

is bounded independently of m and k.

Proof. Taking the inner product of (3.1)3 with 2um and using Young’s inequality,
we have

|um|2H +
∣∣um−1

∣∣2
H +

∣∣um − um−1
∣∣2
H + kν ‖um‖2V ≤ k

ν
‖fm‖2V′ .
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Summing this inequality over m, we obtain

|um|2H +

m∑
i=1

∣∣ui − ui−1
∣∣2
H + kν

m∑
i=1

∥∥ui
∥∥2

V ≤ |u0|2H +
k

ν

m∑
i=1

∥∥f i
∥∥2

V′ . (3.19)

We now would like to estimate the right hand side of (3.19).

∥∥f i
∥∥2

V′ ≤
1

k2

[∫ ik

(i−1)k

‖f(t)‖V′ dt

]2

≤ 1

k2

(∫ ik

(i−1)k

‖f(t)‖2V′ dt

)1/2(∫ ik

(i−1)k

dt

)1/2
2

=
1

k

∫ ik

(i−1)k

‖f(t)‖2V′ dt.

Hence
k

ν

m∑
i=1

∥∥f i
∥∥2

V′ ≤
M∑
i=1

∫ ik

(i−1)k

‖f(t)‖2V′ dt ≤
∫ T̃

0

‖f(t)‖2V′ dt. (3.20)

Then (3.13), (3.14) and (3.15) follow. In addition, taking the norm in V′ of (3.1)3,
we obtain ∥∥∥∥um − um−1

k

∥∥∥∥
V′

≤ ‖fm‖V′ + ν ‖Aum‖V′ + ‖BN (um,um)‖V′

≤ ‖fm‖V′ + (cbN + ν2c) ‖um‖V .

This leads to ∥∥∥∥um − um−1

k

∥∥∥∥2
V′

≤ 2 ‖fm‖2V′ + C ′ ‖um‖2V

where we have used the inequality (a+b)p ≤ 2p−1(ap+bp), a ≥ 0; b ≥ 0; 1 ≤ p <∞,
( [1], Lemma 2.24). So, we conclude that

k
M∑

m=1

∥∥∥∥um − um−1

k

∥∥∥∥2
V′

≤ 2k
M∑

m=1
‖fm‖2V′ + 2C ′k

M∑
m=1

‖um‖2V

≤ 2

∫ T̃

0

‖f(t)‖2V′ dt+
2C ′

ν

[
|u0|2H +

1

ν

∫ T̃

0

|‖f(t)‖|2−1 dt

]

= 2
[
1 + C′

ν2

] ∫ T̃

0

‖f(t)‖2V′ dt+
2C ′

ν
|u0|2H .

Similarly, we take the inner product of (3.1)4 with 2Tm and use Young’s inequality
to obtain

|Tm|2 +
∣∣Tm−1

∣∣2 + ∣∣Tm − Tm−1
∣∣2 + kα ‖Tm‖2 ≤ k

α
‖gm‖2−1 .

Summing this inequality over m we have

|Tm|2 +
m∑
i=1

∣∣T i − T i−1
∣∣2 + kα

m∑
i=1

∥∥T i
∥∥2 ≤ |T0|2 +

k

α

m∑
i=1

∥∥gi∥∥2−1
. (3.21)
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As before, the right hand side of (3.21) gives

∥∥gi∥∥2−1
≤ 1

k2

[∫ ik

(i−1)k

‖g(t)‖−1 dt

]2

≤ 1

k2

(∫ ik

(i−1)k

‖g(t)‖2−1 dt

)1/2(∫ ik

(i−1)k

dt

)1/2
2

=
1

k

∫ ik

(i−1)k

‖g(t)‖2−1 dt.

Hence
k

α

m∑
i=1

∥∥gi∥∥2−1
≤

M∑
i=1

∫ ik

(i−1)k

‖g(t)‖2−1 dt ≤
∫ T̃

0

‖g(t)‖2−1 dt. (3.22)

Then (3.16), (3.17) and (3.18) follow. In addition, taking the norm in H−1(Ω) of
(3.1), we obtain∥∥∥∥Tm − Tm−1

k

∥∥∥∥
V ′
1

≤ ‖gm‖−1 + α ‖A1T
m‖V ′

1
+ ‖B1,N (um, Tm)‖V ′

1

≤ ‖gm‖−1 + (cbN + αc) ‖Tm‖ .

From which we have∥∥∥∥Tm − Tm−1

k

∥∥∥∥2
V ′
1

≤ 2 ‖gm‖2−1 + 2C ′ ‖Tm‖2V .

Then

k
M∑

m=1

∥∥∥∥Tm − Tm−1

k

∥∥∥∥2
V ′
1

≤ 2k
M∑

m=1
‖gm‖2−1 + 2C ′k

M∑
m=1

‖Tm‖2V

≤ 2

∫ T̃

0

‖g(t)‖2−1 dt+
2C ′

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]

= 2
[
1 + C′

α2

] ∫ T̃

0

‖g(t)‖2−1 dt+
2C ′

α
|T0|2 .

This ends the proof of Lemma 3.1. □
We need additional preparations to state the stability result. We recall from [29]

the following definition.

Definition 3.1. An infinite set of functions E is called Lp(0, T ;X) stable if and
only if E is a bounded subset of Lp(0, T ;X).

Let us introduce the approximate functions

uk : [0, T̃ ] −→ V

t 7−→ uk(t) = um pour t ∈ [(m− 1)k,mk], m = 1, ..., N,

and
Tk : [0, T̃ ] −→ V1

t 7−→ Tk(t) = Tm pour t ∈ [(m− 1)k,mk], m = 1, ..., N.
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Then we have the following stability result.

Theorem 3.2. The functions uk and Tk are respectively L∞(0, T̃ ;H)∩L2(0, T̃ ;V)

and L∞(0, T̃ ;H1) ∩ L2(0, T̃ ;V1) stable.

Proof. Due to Lemma3.1, we have

sup
t∈[0,T̃ ]

|uk|H ≤

(
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

)1/2

,

∫ T̃

0

‖uk(t)‖2V dt ≤ 1

ν

[
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

]
,

sup
t∈[0,T̃ ]

|Tk| ≤

(
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

)1/2

,

∫ T̃

0

‖Tk(t)‖2 dt ≤
1

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]
.

Then, the theorem is proved. □
Theorem 3.3. Under the assumptions in theorem 3.1, and assuming that the dis-
cretization parameter k is such that

k < min

{
ν

3(Ncb)4
,

α

3(Ncb)4

}
, (3.23)

then is valid the problem (3.3) has only one solution (um, T ∗m) ∈ D(A)×D(A1).

Proof. It will be enough to prove that problem (3.1) has exactly one solution
(um, Tm) ∈ D(A) × D(A1). Let (um

1 ,T
m
1 ) and (um

2 ,T
m
2 ) two weak solutions of

(3.1), we set um = um
1 − um

2 and Tm = Tm
1 − Tm

2 , then um and Tm satisfy
um − um−1 + kνAum = −kBN (um

1 ,u
m
1 ) + kBN (um

2 ,u
m
2 ),

Tm − Tm−1 + kαA1T
m = −kb1,N (um

1 , T
m
1 ) + kb1,N (um

2 , T
m
2 ),

(um(0), Tm(0)) = (0, 0).

(3.24)

Or for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),
〈
um − um−1,v

〉
+ kν(Aum,v) = −kbN (um

1 ,u
m
1 ,v) + kbN (um

2 ,u
m
2 ,v),〈

Tm − Tm−1, S
〉
+ kα(A1T

m, S) = −kb1,N (um
1 , T

m
1 , S) + kb1,N (um

2 , T
m
2 , S),

(um(0), Tm(0)) = (0, 0).

(3.25)
Taking v = um in (3.25)1 and S = Tm in (3.25)2, we have

|um|2H+kν ‖um‖2V≤−kbN (um
1 ,u

m
1 ,u

m)+kbN (um
2 ,u

m
2 ,u

m)+|um|H
∣∣um−1

∣∣
H ,

|Tm|2+kα ‖Tm‖2≤−kb1,N (um
1 , T

m
1 , T

m)+kb1,N (um
2 , T

m
2 , T

m)+|Tm|
∣∣Tm−1

∣∣ ,
(um(0), Tm(0)) = (0, 0).

(3.26)
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Reasoning as deriving (2.32)-(2.35), we infer from (3.26) that
|um|2H+kν ‖um‖2V ≤ 3k(Ncb)

4

2ν |um|2H + kν
2 ‖um‖2V + 1

2 |u
m|2H + 1

2

∣∣um−1
∣∣2
H ,

|Tm|2+kα ‖Tm‖2≤kα
2 ‖um‖2V+ 3k(Ncb)

4

2α |Tm|2+ kα
2 ‖Tm‖2+ 1

2 |T
m|2+ 1

2

∣∣Tm−1
∣∣2,

(um(0), Tm(0)) = (0, 0).

(3.27)
Then, 

|um|2H + kν ‖um‖2V ≤ 3k(Ncb)
4

ν |um|2H +
∣∣um−1

∣∣2
H ,

|Tm|2 + kα ‖Tm‖2 ≤ kα ‖um‖2V + 3k(Ncb)
4

α |Tm|2 +
∣∣Tm−1

∣∣2 ,
(um(0), Tm(0)) = (0, 0).

(3.28)

At this stage, we continue the proof by induction on the space’s dimension m. First,
we mention that for m = 0, we just have u0 and T0.

Now, let m = 1. Using it in (3.28) and taking into account the fact that u0 =
T 0 = 0, one obtains

∣∣u1
∣∣2
H

(
1− 3k(Ncb)

4

ν

)
+ kν

∥∥u1
∥∥2

V ≤ 0,∣∣T 1
∣∣2 (1− 3k(Ncb)

4

α

)
+ kα

∥∥T 1
∥∥2 ≤ kα

∥∥u1
∥∥2

V .
(3.29)

Then, u1
1 = u1

2 and T 1
1 = T 1

2 since (3.23) holds.
On the other hand, we suppose that the solution of problem (3.1) is unique for

p = 1, 2, 3, ...,m and we want to prove that it remains unique for p = m+ 1.

We recall that (um+1, Tm+1) verifies
∣∣um+1

∣∣2
H + kν

∥∥um+1
∥∥2

V ≤ 3k(Ncb)
4

ν

∣∣um+1
∣∣2
H + |um|2H ,∣∣Tm+1

∣∣2 + kα
∥∥Tm+1

∥∥2 ≤ kα
∥∥um+1

∥∥2
V + 3k(Ncb)

4

α

∣∣Tm+1
∣∣2 + |Tm|2 ,

(um+1(0), Tm+1(0)) = (0, 0).

(3.30)

By the induction hypothesis um = Tm = 0, we then infer from (3.30) that
∣∣um+1

∣∣2
H

(
1− 3k(Ncb)

4

ν

)
+ kν

∥∥um+1
∥∥2

V ≤ 0,∣∣Tm+1
∣∣2 (1− 3k(Ncb)

4

α

)
+ kα

∥∥Tm+1
∥∥2 ≤ kα

∥∥um+1
∥∥2

V .

Using again (3.23), we obtain um+1
1 = um+1

2 and Tm+1
1 = Tm+1

2 ; this end the proof
of Theorem 3.3. □

Remark 3.1. The condition (3.23) for uniqueness is restrictive, but we are all
aware that for nonlinear problems, uniqueness in general is not guaranteed without
restrictions. On the other hand even for Navier Stokes, there is a restriction on
the discretization parameter in order to ensure uniqueness (see [29]). Hence having
(3.23) is not surprising.
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Appendix
Theorem 3.4. The application

F : V ×H1
0 (Ω) → V′ ×H−1(Ω)

(w, z) 7→ (F1(w, z), F2(w, z))

is locally lipschitz-continuous with

F1(w, z) = f − νAw − BN (w,w) ,

F2(w, z) = g − d

dt
T b − αA1T b − FN (

∥∥(w, z + T̄b)
∥∥
V)B1(w, T b)

− FN (
∥∥(w, z + T̄b)

∥∥
V)B1(w, z)− αA1z.

Proof. It is enough to show that F2 is locally lipschitz-continuous in V ×H1
0 (Ω).

Let (w1, z1), (w2, z2) ∈ V ×H1
0 (Ω), we set w = w1 −w2, z = (z1 − z2), we look

for a positive constants C2 such that

‖F2(w1, z1)− F2(w2, z2)‖H−1(Ω) ≤ C2 ‖(w, z)‖V .

We have

F2(w1, z1)− F2(w2, z2) =− FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w1, z1)

+ FN (
∥∥(w2, z2 + T̄b)

∥∥
V)B1(w2, z2)

− FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w, T b)

+ FN (
∥∥(w2, z2 + T̄b)

∥∥
V)B1(w2, T̄b)

− αA1z1 + αA1z2. (3.31)

Using (3.31) and arguing like proving the uniqueness result, we obtain∣∣(−FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w1, z1) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, z2), z)

∣∣
≤Ncb ‖w‖V ‖z‖+Ncb ‖(w, z)‖V ‖z‖ ;∣∣(−FN (

∥∥(w1, z1 + T̄b)
∥∥
V)B1(w, T b) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, T̄b), z)

∣∣
≤Ncb ‖w‖V ‖z‖+Ncb ‖(w, z)‖V ‖z‖ ;

and |(−αA1z1 + αA1z2, z)| ≤ α ‖z‖2 . Then,

|((F2(w1, z1)− F2(w2, z2)), z)| ≤ (4Ncb + α) ‖(w, z)‖V ‖z‖ ;

consequently

‖F2(w1, z1)− F2(w2, z2)‖H−1(Ω) ≤ (4Ncb + α) ‖(w, z)‖V

and we take C2 = 4Ncb + α. □
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