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TO THE B-TYPE
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Abstract In this paper, a new method to find quadratic function solutions
to bilinear forms is proposed. By applying the Hirota direct method, we con-
struct some important exact solutions to the B-type Kadomtsev-Petviashvili
(BKP) equation of fourth-order. Solitons, rational solutions, lump solutions
and interaction solutions are presented with the help of symbolic computa-
tions. The dynamics of some selected solutions are also studied with the aid
of 3D plots.
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1. Introduction
Searching for exact solutions to nonlinear differential equations is an extremely
important task in mathematical physics. Over the years, many different kinds of
exact solutions have been constructed for nonlinear differential equations through
the application of powerful mathematical tools such as the inverse scattering trans-
form [14], the Hirota method [19–21], the Wronskian and pfaffian technique [8, 24],
the Bell polynomial approach [28, 64], the Darboux transformation[50] and the
Bäcklund transformation [12, 16, 24, 35], Painlevé analysis [34, 68] etc. Among
these tools, the Hirota method and various ansatzes with symbolic computation
remain most efficient for the formulation of exact solutions and multiple collisions
of solitons[7, 15, 29, 30, 36–39, 45–47, 69, 71, 72, 75, 76, 79–81, 81, 83].

The Kadomtsev-Petviashvili (KP) equation, discovered in 1970 [25], is one of
the most extensively studied soliton equations in (2+1)-dimensions [27, 44, 61].
It describes the evolution of nonlinear, long waves of small amplitude with slow
dependence on the transverse coordinate. It is also a natural extension of the
classical KdV equation to two spatial dimensions. The KP equation is usually
written in the form of

(−4ut + uxxx + 6uux)x + 3σ2uyy = 0. (1.1)
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Here the subscripts x, y and t denote partial derivatives, and σ2 = ±1. When σ2 = 1
the above equation is known as the KPII equation, and when σ2 = −1 it is called
the KPI equation.

From the viewpoint of infinite dimensional Lie algebras, the KP hierarchy, which
contains the KP equation, corresponds to Lie algebras of A-type [54]. A variant
of this hierarchy is the BKP hierarchy which corresponds to Lie algebras of B-
type [10, 53, 54]. It is a system of nonlinear differential equations obtained as the
compatibility conditions of

LKPw(x, k) = kw(x, k), (1.2)
∂nw(x, k) = Bn(x, ∂)w(x, k) (1.3)

where x = (x1, x3, x5, · · · ), under the condition

Bn(x, ∂)1 = 0, n = 1, 3, 5, · · · . (1.4)

The first two nonlinear partial differential equations in the BKP hierarchy are [22,
23]

uyt − uxxxy − 3(uxuy)x + 3uxx = 0, (1.5)
with bilinear form

[(D3 −D3
1)D−1 + 3D2

1]f · f = 0, (1.6)
where x1 = x, x−1 = y, x3 = t, and

(ut + 15uuxxx + 15u3
x − 15uxuy + uxxxxx)x − 5uxxxy − 5uyy = 0, (1.7)

with bilinear form

(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)f · f = 0,

where x1 = x, x3 = y, x5 = t. The latter has been studied extensively in [17, 34, 52,
67, 73, 77]. In the present paper, we mainly study equation (1.5).

The nonlinear partial differential equation (1.5) can be expressed as
∂

∂x

{
[(D3 −D3

1)D−1 + 3D2
1]f · f

}
= 0 (1.8)

through the dependent variable transformation,

u = 2(ln f)x, (1.9)

where x1 = x, x−1 = y, x3 = t. Therefore, whenever the function f solves the
bilinear equation (1.6), the corresponding function u defined by (1.9) also solves
(1.5). If we introduce the polynomial

PBKP (t, x, y) = ty + 3x2 − x3y, (1.10)

then (1.6) can be expressed as

PBKP (Dt, Dx, Dy)f · f = 0. (1.11)

In what follows, we shall investigate solitons and rational solutions of (1.5) in
detail and also show that this equation possesses lump solutions. Moreover, we shall
construct the solutions describing collisions of lumps from the soliton solutions of
(1.5). For this reason, we provide a short description of soliton solutions of the BKP
equation in section 2. In Section 3, we shall consider rational solutions (including
lumps) of the BKP equation. Section 4 is devoted to the collisions of a soliton and
a lump solution. We have comments for the results in the final section.
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2. Solitons
Solitons are the most important class of solutions of integrable systems and can
be derived by the IST and the Hirota method. They are usually exponentially
localized solutions. However, they can be rationally localized as well. For example,
soliton solutions for the Benjamin-Ono equation are given by rational functions (see
[9, 49, 62] for details). For the BKP equation under discussion, a multi-soliton can
also be expressed as a phaffian or in a Wronskian form [24, 26].

Solitons have a wide range of applications in nonlinear dynamics. They arise
in areas such as fluid mechanics [18, 70], nonlinear optics [1], atomic physics [13],
biophysics [57], biology [63], field theory [11] and in plasmas [33] and Bose-Einstein
condensates [32, 58] to name but a few.

2.1. The one-soliton solution
In order to investigate solutions to the BKP equation, let us first consider the
one-soliton solution. We introduce the wave function

η := kx+ ly + wt+ η0, (2.1)

where k, l, w and η0 are constants. If the dispersion relation

PBKP (w, k, l) = 0 (2.2)

is satisfied, then we have

w = k3 − 3k2

l
. (2.3)

According to the Hirota method, the function

u = 2[ln(f1)]x = 2[ln(1 + exp (η))]x =
2k exp (η)

1 + exp (η)
,

where η is defined by (2.1), gives the one-soliton solution to the BKP equation.

2.2. The two-soliton solution
Again, according to [24], the two-soliton expression is given by

u = 2[ln(f2)]x, f2 = 1 + exp(η1) + exp(η2) + b12 exp(η1 + η2). (2.4)

If we introduce parameters pj and qj we may rewrite ηj as

ηj = ξj + ξ̂j , (2.5)
ξj = p−1

j y + pjx+ p3j t+ ξ0j , (2.6)

ξ̂j = q−1
j y + qjx+ q3j t+ ξ̂0j (2.7)

and thus, the dispersion relation (2.2) is automatically satisfied. Also, the phase
shift term b12 is given by

b12 =
(p1 − p2)(p1 − q2)(q1 − p2)(q1 − q2)

(p1 + p2)(p1 + q2)(q1 + p2)(q1 + q2)
. (2.8)
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2.3. The N-soliton solution
If we put bij = exp(Bij), the Hirota condition is satisfied and the N-soliton solution
to the BKP equation is expressed as

fN =
∑

exp

 N∑
i=1

µiηi +

(N)∑
i<j

Bijµiµj

 , (2.9)

where
∑

denotes the summation over all possible combinations of µi = 0, 1 for

i = 1, 2, · · · , N , and
(N)∑
i<j

is the sum over all pairs i, j(i < j) chosen from {1, 2, ..., N}.

3. Rational solutions
Rational solutions are the simplest solutions to nonlinear evolution equations. They
have attracted a lot of interest in the past few years owing to their copious real-
life applications. For example, the most commonly used mathematical model for the
study of rogue waves involves rational solutions of the focusing nonlinear Schrodinger
(NLS) equation [9]. Further applications include the description of vortex dynamics
[3–5] and vortex solutions of the complex sine-Gordon equation [6, 55].

In what follows, we present rational function solutions to the BKP equation
generated by quadratic functions.

3.1. Quadratic solutions to a bilinear form
Quadratic functions are polynomials which can be easily discussed. The transforma-
tion u = (ln f)x makes u a rational function when f is a polynomial. We specifically
look for quadratic solutions to the bilinear equation (1.11). In order to achieve this,
we first introduce a general method to find all the quadratic function solutions to
a bilinear form. This method can be regarded as an extension of [42, 43].

Suppose the integer M ≥ 1 and x ∈ RM . Let D = (D1, D2, · · · , DM )T , where
Dj is the D-operator [24] with respect to xj , 1 ≤ j ≤ M . We will discuss the
following general bilinear form

P (D)f · f = P (D1, D2, · · · , DM )f · f = 0, (3.1)

where P is a polynomial of M variables x = (x1, · · · , xM ). By the property of
bilinear forms, we assume that P is an even polynomial with P (0) = 0, i.e., P (−x) =
P (x). In general, we set

P (x) =

M∑
i,j=1

qijxixj +

M∑
i,j,k,l=1

pijklxixjxkxl + higher order terms, (3.2)

where qij and pijkl are coefficients of the second- and fourth-degree terms respec-
tively, to determine quadratic function solutions. Without loss of the generality, we
require qij = qji, 1 ≤, i, j ≤ M . We denote the coefficient matrix of the second-order
Hirota bilinear derivative terms by Q = (qij)M×M ∈ RM×M so that it is symmetric:
Q = QT . A quadratic polynomial f : RM → R can always be expressed as

f(x) =
1

2
xTAx+ bTx+ c, (3.3)
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where A ∈ RM×M is a symmetric matrix, b ∈ RM denotes a column vector, c ∈ R
is a constant and T denotes matrix transpose. A, b, c are uniquely determined by f
under the condition A = AT .

We remark that, for any (2+1)-dimensional system, we can take M = 3 and
vector x = (t, x, y). Note that

∂f

∂xi
=

M∑
k=1

aikxk + bi = AT
i x+ bi,

∂2f

∂xi∂xj
= aij , 1 ≤ i, j ≤ M,

where Ai is the ith column vector of A for 1 ≤ i ≤ M . Now, substituting f into
(3.1), we get

P (D)f · f

= 2

M∑
i,j=1

qij [aijf − (AT
i x+ bi)

T (AT
j x+ bj)]

+2

M∑
i,j,k,l=1

pijkl(aijakl + aikajl + ailajk)

= 2c

M∑
i,j=1

aijqij − 2bTQb+ 2

M∑
i,j,k,l=1

pijkl(aijakl + aikajl + ailajk),

+2
[
(

M∑
i,j=1

aijqij)b
T − 2bTQA

]
x+ xT

[
(

M∑
i,j=1

aijqij)A− 2AQA
]
x.

If we introduce s = (
∑M

i,j=1 aijqij)/2, then f solves (3.1) if and only if
2cs− bTQb+

M∑
i,j,k,l=1

pijkl(aijakl + aikajl + ailajk) = 0,

sbT − bTQA = 0,

sA−AQA = 0.

(3.4)

We can solve the second and the third equations of (3.4) to obtain A and b. The
first equation of (3.4) is a scalar equation and when A, b are known, c is uniquely
detremined if s ̸= 0.

3.2. Application to the BKP equation
For the BKP equation (1.5), we take x1 = x, x2 = y, x3 = t. Then

Q =


3 0 0

0 0 1/2

0 1/2 0

 , p1112 = −1, pijkl = 0, ijkl ̸= 1112.
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Let

A =


a1 a2 a3

a2 a4 a5

a3 a5 a6

 , b =


a7

a8

a9

 , c = a10. (3.5)

It is easy to see that s = (3a1 + a5)/2. Using symbolic computation to solve (3.4),
we have four classes of solutions.

Case I: The set of solutions in terms of the parameters a1, a6, a7 and a9:

a2 = a3 = 0, a4 =
9a21
a6

, a5 = 3a1, a8 =
3a1a9
a6

, a10 =
a1a

2
9 + a6a

2
7

2a1a6
.

With these parameters and according to (3.3)–(3.5)

f =
a1x

2

2
+

9a21y
2

2a6
+

a6t
2

2
+ 3a1ty + a7x+

3a1a9y

a6
+ a9t+

a1a
2
9 + a6a

2
7

2a1a6

=
1

2a1a6
[a6(a1x+ a7)

2 + a1(3a1y + a6t+ a9)
2]

and
u =

4a1a6(a1x+ a7)

a6(a1x+ a7)2 + a1(3a1y + a6t+ a9)2
.

When a1, a6 are all positive, the denominator of u is never zero and globe solutions
of the BKP equation exist. Further more we have lim(x,y)→∞ u(t, x, y) = 0 for any
fixed t. Actully, we obtain lump solutions in this situation.

If a1a6 < 0, we get singular solutions, i.e., solutions are not defined for all
(t, x, y). In the case where initial or boundary conditions are imposed, the solutions
may blow up at some finite time. Consequently, we take parameters a1 = 1, a6 =
−1, a7 = −3, a9 = 2, and obtain the singular solution

u(20, x, y) =
4(x− 3)

x2 − 9y2 − 6x+ 108y − 315
.

The surface, contour and density plots of the function u when t = 20 are depicted
in Figure 1.

Case II: The set of solutions in terms of the parameters a2, a5, a8 and a9:

a1 = a3 = a6 = 0, a4 = −6a22
a5

, a7 =
a2a9
a5

, a10 =
a9(3a

2
2a9 + a25a8)

a35
.

In this case

f = −6a22
a5

y2 + a2xy + a5ty +
a2a9
a5

x+ a8y + a9t+
a9(3a

2
2a9 + a25a8)

a35

and

u =
2a2a

2
5(a5y + a9)

a25(−6a22y
2 + a2a5xy + a25ty + a2a9x+ a5a8y + a5a9t) + a9(3a22a9 + a25a8)

.
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Figure 1. A rational solution to the BKP equation

Figure 2. Another rational solution to the BKP equation

For nontrivial solutions (i.e. a2a5 ̸= 0), the quadratic part of f has both positive
and negative eigenvalues, and thus the solutions are always singular. A special
choice of the parameters a2 = 2, a5 = −2, a8 = −3, a9 = −2, yields

u(10, x, y) =
4(y + 1)

2xy + 6y2 + 2x− 23y − 29
.

The surface, contour and density plots of the function u when t = 20 are depicted
in Figure 2.

Case III: The set of solutions in terms of the parameters a1, a3, a7, a9 and a10:

a2 =
3a1a3(2a1a10 − a27)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
, a4 = − 9a21(2a1a10 − a27)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
,

a5 =
3(3a31a3 − a21a

2
9 + 2a1a

2
3a10 + 2a1a3a7a9 − 2a23a

2
7)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
,

a6 = −3a21a3 − a1a
2
9 − 2a23a10 + 2a3a7a9

2a1a10 − a27
,

a8 =
−3(2a21a9a10 − 4a1a3a7a10 − a1a

2
7a9 + 2a3a

3
7)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
.
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From (3.3)–(3.5) , we have

f =
a1
2
x2 − 9a21(2a1a10 − a27)

2(3a21a3 − a1a29 − 2a23a10 + 2a3a7a9)
y2

−3a21a3 − a1a
2
9 − 2a23a10 + 2a3a7a9

2(2a1a10 − a27)
t2

+
3a1a3(2a1a10 − a27)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
xy + a3xt

+
3(3a31a3 − a21a

2
9 + 2a1a

2
3a10 + 2a1a3a7a9 − 2a23a

2
7)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
yz + a7x

−3(2a21a9a10 − 4a1a3a7a10 − a1a
2
7a9 + 2a3a

3
7)

3a21a3 − a1a29 − 2a23a10 + 2a3a7a9
y + a9t+ a10.

and consequently,

u =
2(a1x+ a2y + a3t+ a7)

f
.

Case IV: The set of solutions in terms of the parameters a1, a3, a6 and a9:

a2 = −3a1a3
a6

, a4 =
9a21
a6

, a5 =
3(a1a6 − 2a23)

a6

a7 =
a1r

a3
, a8 = −3a1(2r − a9)

a6
, a10 =

a1(2ra9 + 3a1a3 − a29)

2a23
,

where r is a root of z2 − 2a9z − 3a1a3 + a29 = 0. It is easy to see that, if a1a3 ≥ 0
then r is real. In general,

f =
a1
2
x2 − 9a21

a6
y2 + a6t

2 − 3a1a3
a6

xy + a3xt+
3(a1a6 − 2a23)

a6
yz +

a1r

a3
x

−3a1(2r − a9)

a6
y + a9t+

a1(2ra9 + 3a1a3 − a29)

2a23

and

u =
2(a1x+ a2y + a3t+ a7)

f
.

For example, if a1 = 0 then r = a9. We have

f(t, x, y) = a3xt+ a6t
2 − 6a23

a6
yz + a9t,

and

u(t, x, y) =
2a3a6t

a3a6xt+ a26t
2 − 6a23yz + a6a9t

.

When a3 ̸= 0 the solution is singular.

In general, if a1a6 ̸= 0, any solution, if it exists, is singular since −9a21
a6

and a6

cannot be positive at same time.
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3.3. Lump solutions
Most rational functions are singular because they have poles and therefore these
functions are not defined for every (t, x, y). If a quadratic function f is positive,
then (ln f)x and (ln f)xx are analytic rational functions for all independent variables.
A positive quadratic function under certain conditions will generate a lump solution.

Lump solutions are a kind of analytical solutions, which are rationally localized
in all directions in space. For (2+1)-dimensional systems (e.g. the KP equation),
lump solutions may also be regarded as solitons [44]. The study of lump solutions
has a long history [27, 61] and recently new such solutions have been presented for
(2+1)-dimensional integrable equations including the KP and the BKP equations
[31, 40–42, 46, 48, 65, 66, 82]. For applications of lump solutions, we refer the reader
to [2, 25, 51, 56].

According to [42], the largest class of quadratic functions which generate lump
solutions to a (2+1)-dimensional nonlinear PDEs can be expressed as

f = f2
1 + f2

2 + a9, a9 > 0, (3.6)

with

f1(x, y, t) = a1x+ a2y + a1t+ a4, f2(x, y, t) = a5x+ a6y + a7t+ a8, (3.7)

where ai, 1 ≤ i ≤ 9 are real constants to be determined. Equation (1.11) therefore
leads to one class of lump solutions which we present below. From (1.11), we obtain
with the aid of a computer algebra system the following class of solutions:

a3 = −3(a21a2 + 2a1a5a6 − a2a
2
5)

a22 + a26
,

a7 =
3(a21a6 − 2a1a2a5 − a25a6)

a22 + a26
,

a9 =
(a22 + a26)(a

2
1 + a25)(a1a2 + a5a6)

(a1a6 − a2a5)2
.

(3.8)

The parameters a1, a2, a4, a5, a6 and a8 are all arbitrary with a1, a2, a5 and a6 sat-
isfying the condition

a1a6 − a2a5 ̸= 0 (3.9)

which ensures that a3, a7 and a9 are well-defined. For f to be positive, we require

(a1a2 + a5a6) > 0, (3.10)

so that f generates lump solutions to equation (1.5). Thus, f yields the following
solution to equation (1.5):

u =
4(a1f1 + a5f2)

f2
1 + f2

2 + a9
, (3.11)

where,

f1 = a1x+ a2y −
3(a21a2 + 2a1a5a6 − a2a

2
5)

a22 + a26
t+ a4, (3.12)

f2 = a5x+ a6y +
3(a21a6 − 2a1a2a5 − a25a6)

a22 + a26
t+ a8. (3.13)
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Figure 3. Lump solution to the BKP equation

Due to (3.9), the functions f1 and f2 are linearly independent for any fixed time t.
When all the parameters a1, a2, a4, a5, a6 and a8 are fixed, for any given t0, there is
only one solution

x0 = − t0(a3a7 − a2a4)

a1a6 − a2a5
, y0 =

t0(a3a5 − a1a7)

a1a6 − a2a5
(3.14)

of the linear equations a3t0 + a1x+ a2y = 0,

a7t0 + a5x+ a6y = 0,
(3.15)

where a3 and a7 are given by (3.8). Therefore, f1 and f2 can be rewritten as

f1 = −3(a21a2 + 2a1a5a6 − a2a
2
5)

a22 + a26
(t− t0) + a2(x− x0) + a3(y − y0) + a4,

f2 =
3(a21a6 − 2a1a2a5 − a25a6)

a22 + a26
(t− t0) + a6(x− x0) + a7(y − y0) + a8.

The function u is thus a solitary wave which moves with the velocity(
− a1a7 − a3a5

a2a7 − a3a6
,
a1a6 − a2a5
a2a7 − a3a6

)
.

We remark that u is an analytic rational function and has the property that it
decays in all directions for any fixed t (i.e. lim

x2+y2→∞
u = 0). It follows that u is

a lump solution to equation (1.5). When we take parameters a1 = 1, a2 = 2, a4 =
0, a5 = 3, a6 = 1 and a8 = 0, we get

u(t, x, y) =
4(2x+ y − 6t)

(x+ y)2 + (6t− x)2 + 2
.

The surface, contour and density plots of the function u when t = 0 are depicted in
Figure 3.
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Figure 4. The graphs of the −u when (a) t = −20, (b) t = −5, (c) t = 5, (d) t = 20.

4. Lump-kink solutions
In this section, we study the interaction of a soliton and a lump solution to the
BKP equation. We assume

f = f2
1 + f2

2 + a9 + g, a9 > 0, (4.1)

with

f1(x, y, t) = a1x+ a2y + a3t+ a4, f2(x, y, t) = a5x+ a6y + a7t+ a8,

g(x, y, t) = a10 exp(f3), f3(x, y, t) = a11x+ a12y + a13t,

where ai, 1 ≤ i ≤ 13 are real constants to be determined. Equation (1.11) therefore
leads to two classes of lump solutions which we present below. The corresponding
lump-soliton solutions are given by

u = 2(ln(f))x =
2a1f1 + 2a5f2 + a10a11 exp(f3)

f
.

Case I: We have solution

a1 = −a6a
2
11

2
, a2 =

2a5
a211

, a3 =
3a5a

2
11

2
, a7 =

3a6a
4
11

4
, a9 = 0, a12 =

2

a11
, a13 = −a311

2
.

Assume that a5, a6, a8, a10 and a11 ̸= 0 are arbitrary real constants. Then
h(t, x, y) =

(3a5a211
2

t− a6a
2
11

2
x+

2a5
a211

y + a4

)2

+
(3a6a411

4
t+ a5x+ a6y + a8

)2

,

g(t, x, y) = a10 exp
(
− a311

2
t+ a11x+

2

a11
y
)
,

f(t, x, y) = g(t, x, y) + h(t, x, y).

We also require a1a6−a2a5 ̸= 0 to guarantee that f1 and f2 are linearly independent
for any fixed t. Since for every (t, x, y), f(t, x, y) > 0, the solution u is bounded
locally when a10 > 0. If a10 ≤ 0 then the solution is singular. In the case of
a10 = 0, u is a proper rational function.

If we take a5 = 4, a6 = 2, a10 = a11 = 1, a4 = a8 = 0 then we get

u =
2(16x+ exp(−t/2 + x+ 2y))

(3t− 2x+ 4y)2 + (3t+ 2x+ 4y)2 + exp(−t/2 + x+ 2y)
.
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Figure 5. The graphs of the −u when (a) t = −20, (b) t = −5, (c) t = 5, (d) t = 20.

The 3D plots of the function −u when t = −20,−5, 5, 20 are depicted in Figure 4.
The graphs show that initially the kink part of the solution moves steadily and at
time t = −5, a lump appears and interacts with it. After the interaction they move
away from each other.

Case II: We have solution

a2 = 0, a3 = −3a1(4a
2
1 − a26a

4
11)

2a26a
2
11

, a5 =
4a21 − a26a

4
11

4a6a211
,

a7 = −3(16a41 − 24a21a
2
6a

4
11 + a46a

8
11)

16a36a
4
11

,

a9 =
(4a21 − a26a

4
11)(4a

2
1 + a26a

4
11)

2

64a21a
2
6a

6
11

, a12 = − 4a26a
3
11

4a21 + a26a
4
11

,

a13 = −12a21 − a26a
4
11

4a26a11
,

where a1, a4, a6, a8, a10 and a11 are any real parameters such that a1a6a11 ̸= 0 (a
necessary condition for the solutions to be well-defined) and 4a21−a26a

4
11 > 0 (which

guarantees that a9 > 0). Under the above conditions, the solution u given by (4.1)
is bounded if a9 > 0 and a10 > 0, and if a10 < 0 then the solution is singular.

Let us take the parameters a1 = a6 = 2, a10 = 1, a11 = −1, a4 = a8 = 0. Then
we have

u =
− 225

4 t+ 25x+ 12y − 2 exp( 114 t− x− 4
5y)

(−9t+ 2x)2 + ( 218 t+ 3
2x+ 2y)2 + 75

16 + exp( 114 t− x− 4
5y)

.

The 3D plots of the function −u when t = −20,−5, 5, 20 are depicted in Figure 5.
The graph of the solution depicts a lump and a kink moving toward each other at
first, but after interaction, the lump seems to be swallowed by the kink.

5. Concluding Remarks
In this paper, we have studied the BKP equation of fourth-order and its bilinear
form. We have proposed a new method to find quadratic function solutions to
bilinear equations. The proposed method worked out all the quadratic function so-
lutions to the bilinear BKP equation. The approach works for any (N+1) nonlinear
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partial differential equations. We remark, however, that it is not easy to extend
this method to third-order and higher-order polynomial solutions.

Furthermore, we have found kink-solitons and lumps for the BKP equation and
have also depicted and discussed the dynamics of interaction solutions as well. In
the first case of the interaction solutions, we observe the interaction of a lump and a
kink-soliton where the lump is swallowed by the kink-soliton. The other interaction
appears to be different in the sense that the two solutions move away in different
directions after collision. We remark that lump-kink and lump soliton solutions to
the 6th-order BKP equation were discussed in [74, 77], but such interaction behavior
was not observed.

There exists several interesting types of exact solutions that are worthy of further
studies. For example, it will be interesting to know whether the BKP equation
enjoys multiple lumps [59] and multiple rogue wave solutions [78] as well as multiple
multiple lump-soliton solutions [60]. We will investigate these in future projects.

Acknowledgements
The authors would like to thank the editor and the referees for their valuable com-
ments and suggestions.

References
[1] G. P. Agrawal, Nonlinear fiber optics, in Nonlinear Science at the Dawn of the

21st Century, Springer, 2000, 195–211.

[2] I. S. Aranson, A. Pikovsky, N. F. Rulkov and L. S. Tsimring, Advances in
Dynamics, Patterns, Cognition: Challenges in Complexity, 20, Springer, 2017.

[3] H. Aref, Point vortex dynamics: a classical mathematics playground, J. Math.
Phys., 2007, 48(6), 065401.

[4] H. Aref, Vortices and polynomials, Fluid Dyn. Res., 2007, 39(1–3), 5.

[5] H. Aref, P. K. Newton, M. A. Stremler et al., Vortex crystals, Adv. Appl.
Mech., 2003, 39, 2–81.

[6] I. Barashenkov and D. E. Pelinovsky, Exact vortex solutions of the complex
sine-gordon theory on the plane, Phys. Lett. B, 1998, 436(1–2), 117–124.

[7] S. J. Chen, W. X. Ma and X. Lü, Bäcklund transformation, exact solutions
and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like
equation, Commun. Nonlinear Sci. Numer. Simul., 2020, 83, 105135.

[8] L. Cheng and Y. Zhang, Wronskian and linear superposition solutions to gen-
eralized KP and BKP equations, Nonlinear Dyn., 2017, 90(1), 355–362.

[9] P. A. Clarkson and E. Dowie, Rational solutions of the boussinesq equation and
applications to rogue waves, Trans. Math. Its Appl., 2017, 1(1), tnx003.

[10] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soli-
ton equations, in Proceedings of RIMS Symposium 1981 (Edited by M. Jimbo
and T. Miwa), World Scientific Publishing Co., 1983, 39–120.



2486 Y. Zhou & S. Manukure

[11] P. Deligne, P. I. Etingof and D. S. Freed, Quantum fields and strings: a course
for mathematicians, 1, American Mathematical Society Providence, 1999.

[12] P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge Univer-
sity Press, Cambridge, 1989.

[13] S. Y. Eremenko, Atomic solitons as a new class of solitons, J. Nonlinear World,
2018, (6), 39–63.

[14] A. S. Fokas and M. J. Ablowitz, On the inverse scattering transform of multi-
dimensional nonlinear equations related to first-order systems in the plane, J.
Math. Phys., 1984, 25(8), 2494–2505.

[15] L. N. Gao, X. Y. Zhao, Y. Y. Zi et al., Resonant behavior of multiple wave
solutions to a Hirota bilinear equation, Comput. Math. Appl., 2016, 72, 1225–
1229.

[16] L. N. Gao, Y. Y. Zi, Y. H. Yin et al., Bäcklund transformation, multiple wave
solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equa-
tion, Nonlinear Dyn., 2017, 89(3), 2233–2240.

[17] C. R. Gilson and J. J. C. Nimmo, Lump solutions of the BKP equation, Phy.
Lett. A, 1990, 147, 2705–2712.

[18] R. Grimshaw, Korteweg de-vries equation, in Nonlinear waves in fluids: recent
advances and modern applications, Springer, 2005, 1–28.

[19] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple colli-
sions of solitons, Phys. Rev. Lett., 1971, 27, 1192–1194.

[20] R. Hirota, Exact solution of the modified Korteweg-de Vries equation for mul-
tiple collisions of solitons, J. Phys. Soc. Japan, 1972, 33, 1456–1458.

[21] R. Hirota, Exact solution of the sine-Gordon equation for multiple collisions of
solitons, J. Phys. Soc. Japan, 1972, 33, 1459–1463.

[22] R. Hirota, Soliton Solutions to the BKP Equations. I. the Pfaffian technique,
J. Phys. Soc. Japan, 1989, 58, 2285–2296.

[23] R. Hirota, Soliton Solutions to the BKP Equations. II. The Integral Equation,
J. Phys. Soc. Japan, 1989, 58, 2705–2712.

[24] R. Hirota, The direct method in soliton theory, Cambridge University Press,
Cambridge, 2004.

[25] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in
weakly dispersive media, Sov. Phys. Dokl., 1970, 15, 539–541.

[26] Y. Kang, Y. Zhang and L. Jin, Soliton solution to BKP equation in Wronskian
form, Appl. Math. Comput., 2013, 224, 250–258.

[27] D. J. Kaup, The lump solutions and the Bäcklund transformation for the three-
dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22 (6),
1176–1181.



Rational and interactive solutions to the BKP equation 2487

[28] L. Kaur and A. M. Wazwaz, Bright-dark lump wave solutions for a new form
of the (3+1)-dimensional bkp-boussinesq equation, Preprint.

[29] L. Kaur and A. M. Wazwaz, Dynamical analysis of lump solutions for (3+1)
dimensional generalized KP–Boussinesq equation and Its dimensionally reduced
equations, Phys. Scr., 2018, 93(7), 075203.

[30] L. Kaur and A. M. Wazwaz, Bright-dark optical solitons for Schrödinger-Hirota
equation with variable coefficients, Optik, 2019, 179, 479–484.

[31] L. Kaur and A. M. Wazwaz, Lump, breather and solitary wave solutions to new
reduced form of the generalized BKP equation, Int. J. Num. Meth. Heat Fluid
Flow, 2019, 29(2), 569–579.

[32] P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González, Emergent
nonlinear phenomena in Bose-Einstein condensates: theory and experiment,
45, Springer Science & Business Media, 2007.

[33] I. Kourakis and P. K. Shukla, Discrete breather modes associated with vertical
dust grain oscillations in dusty plasma crystals, Phys. Plasmas, 2005, 12(1),
014502.

[34] Y. Liang, G. Wei and X. Li, Painlevé integrability, similarity reductions, new
soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP
equation, Nonlinear Dyn., 2010, 62(1–2), 195–202.

[35] X. Lü, New bilinear Bäcklund transformation with multisoliton solutions for the
(2+1)-dimensional Sawada–Kotera model, Nonlinear Dyn., 2014, 76, 161–168.

[36] X. Lü and S. J. Chen, Interaction solutions to nonlinear partial differential
equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-
multi-soliton types, Nonlinear Dyn., 2021, 103, 947–977.

[37] X. Lü, S. J. Chen and W. X. Ma, Constructing lump solutions to a generalized
Kadomtsev–Petviashvili–Boussinesq equation, Nonlinear Dyn., 2016, 86, 523–
534.

[38] X. Lü, S. T. Chen and W. X. Ma, Constructing lump solutions to a generalized
Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 2016, 86, 523–
534.

[39] X. Lü, Y. F. Hua, S. J. Chen and X. F. Tang, Integrability characteristics
of a novel (2+1)-dimensional nonlinear model: Painleve analysis, soliton so-
lutions, Backlund transformation, Lax pair and infinitely many conservation
laws, Commun. Nonlinear Sci. Numer. Simul., 2021, 95, 105612.

[40] X. Lü and W. X. Ma, Study of lump dynamics based on a dimensionally reduced
Hirota bilinear equation, Nonlinear Dyn., 2016, 85, 1217–1222.

[41] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett.
A, 2015, 379, 1975–1978.

[42] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equa-
tions via Hirota bilinear forms, J. Diff. Eqs., 2018, 264, 2633–2659.



2488 Y. Zhou & S. Manukure

[43] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differ-
ential equations derived from generalized bilinear equations, Int. J. Mod. Phys.
B, 2016, 30, 1640018.

[44] S. V. Manakov, V. E. Zakhorov, L. A. Bordag et al., Two-dimensional solitons
of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A,
1977, 63, 205–206.

[45] S. Manukure, A. Chowdhury and Y. Zhou, Complexiton solutions to the asym-
metric Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. B, 2019, 33,
1950098.

[46] S. Manukure and Y. Zhou, A (2+1)-dimensional shallow water equation and
its explicit lump solutions, Int. J. Mod. Phys. B, 2019, 33(7), 1950038.

[47] S. Manukure and Y. Zhou, A study of lump and line rogue wave solutions to a
(2+1)-dimensional nonlinear equation, J. Geom. Phys., 2021, 167, 104274.

[48] S. Manukure, Y. Zhou and W. X. Ma, Lump solutions to a (2+1)-dimensional
extended KP equation, Comput. Math. Appl., 2018, 75(7), 2414–2419.

[49] Y. Matsuno, Exact multi-soliton solution of the benjamin-ono equation, J. Phys.
A Math. Gen, 1979, 12(4), 619.

[50] V. Matveev and M. Salle, Darboux transformations and solitons, Springer,
Berlin, 1991.

[51] J. McKenzie, The ion-acoustic soliton: A gas-dynamic viewpoint, Phys. Plas-
mas, 2002, 9(3), 800–805.

[52] J. J. C. Nimmo, Hall–littlewood symmetric functions and the BKP equation, J.
Phys. A, 1990, 23(5), 751–760.

[53] J. J. C. Nimmo and A. Orlov, A relationship between rational and multi-soliton
solutions of the BKP hierarchy, Glasgow Math. J., 2005, 47A, 149–168.

[54] Y. Ogawa, Generalized q-functions and uc hierarchy of b-type, Tokyo J. Math.,
2009, 32(2), 349–380.

[55] N. Olver and I. V. Barashenkov, Complex sine-gordon-2: A new algorithm for
multivortex solutions on the plane, Theor. Math. Phys., 2005, 144(2), 1223–
1226.

[56] D. E. Pelinovsky, Y. A. Stepanyants and Y. S. Kivshar, Self-focusing of plane
dark solitons in nonlinear defocusing media, Phys. Rev. E, 1995, 51(5), 5016.

[57] M. Peyrard, Nonlinear dynamics and statistical physics of dna, Nonlinearity,
2004, 17(2), R1.

[58] M. A. Porter, Experimental results related to dnls equations, in The Discrete
Nonlinear Schrödinger Equation, Springer, 2009, 175–189.

[59] H. O. Roshid and W. X. Ma, Dynamics of mixed lump-solitary waves of an
extended (2+1)-dimensional shallow water wave model, Phys. Lett. A, 2018,
382(45), 3262–3268.



Rational and interactive solutions to the BKP equation 2489

[60] W. J. Rui and Y. F. Zhang, Soliton and lump-soliton solutions in the grammian
form for the bogoyavlenskii–kadomtsev–petviashvili equation, Adv. Differ. Equ.,
2020, 2020(1), 1–12.

[61] J. Satsuma and M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive
systems, J. Math. Phys., 1979, 20(7), 1496–1503.

[62] J. Satsuma and Y. Ishimori, Periodic wave and rational soliton solutions of the
benjamin-ono equation, J. Phys. Soc. Japan, 1979, 46(2), 681–687.

[63] A. Scott, Davydov’s soliton, Phys. Rep., 1992, 217(1), 1–67.

[64] S. Singh, L. Kaur, K. Sakkaravarthi et al., Dynamics of higher-order bright
and dark rogue waves in a new (2+1)-dimensional integrable boussinesq model,
Phys. Scr., 2020, 95(11), 115213.

[65] B. Sun and A. M. Wazwaz, Interaction of lumps and dark solitons in the
Mel’nikov equation, Nonlinear Dyn., 2018, 92(2), 2049–2059.

[66] H. Wang, Lump and interaction solutions to the (2+1)-dimensional Burgers
equation, Appl. Math. Lett., 2018, 58, 27–34.

[67] A. M. Wazwaz, Two B-type Kadomtsev-Petviashvili equations of (2+1) and
(3+1) dimensions: multiple soliton solutions, rational solutions and periodic
solutions, Comput. Fluids, 2013, 86, 357–362.

[68] A. M. Wazwaz, Painlevé analysis for a new integrable equation combining the
modified Calogero-Bogoyavlenskii-Schiff (MCBS) equation with its negative-
order form, Nonlinear Dyn., 2018, 92, 877–883.

[69] A. M. Wazwaz and L. Kaur, Optical solitons for nonlinear Schrödinger (NLS)
equation in normal dispersive regimes, Optik, 2019, 184, 428–435.

[70] G. B. Whitham, Linear and nonlinear waves, 42, John Wiley & Sons, 2011.

[71] J. W. Xia, Y. W. Zhao and X. Lü, Predictability, fast calculation and simulation
for the interaction solution to the cylindrical Kadomtsev-Petviashvili equation,
Commun. Nonlinear Sci. Numer. Simul., 2020, 88, 105260.

[72] H. N. Xu, W. Y. Ruan, Y. Zhang and X. Lü, Multi-exponential wave solutions
to two extended Jimbo–Miwa equations and the resonance behavior, Appl. Math.
Lett., 2020, 99, 105976.

[73] J. Y. Yang and W. X. Ma, Lump solutions of the BKP equation by symbolic
computation, Int. J. Mod. Phys. B, 2016, 30, 1640028.

[74] J. Y. Yang, W. X. Ma and Z. Y. Qin, Abundant mixed lump-soliton solutions
to the bkp equation, East Asian J. Appl. Math., 2018, 8(2), 224–232.

[75] Y. H. Yin, S. J. Chen and X. Lü, Study on localized characteristics of lump
and interaction solutions to two extended Jimbo–Miwa equations, Chin. Phys.
B, 2020, 29, 120502.

[76] Y. H. Yin, W. X. Ma, J. G. Liu and X. Lü, Diversity of exact solutions to
a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput.
Math. Appl., 2018, 76, 1275–1283.



2490 Y. Zhou & S. Manukure

[77] J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation,
Comp. Math. Appl., 2017, 74, 591–596.

[78] J. Zhao, J. Manafian, N. E. Zaya and S. A. Mohammed, Multiple rogue wave,
lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton
solutions for the generalized kp equation, Math. Method. Appl. Sci., 2021, 44(6),
5079–5098.

[79] Y. Zhou and W. X. Ma, Applications of linear superposition principle to reso-
nant solitons and complexitons, Comput. Math. Appl., 2017, 73, 1697–1706.

[80] Y. Zhou and W. X. Ma, Complexiton solutions to nonlinear partial differential
equations by the direct method, J. Math. Phys., 2017, 58, 101511.

[81] Y. Zhou and S. Manukure, Complexiton solutions to the Hirota-Satsuma-Ito
equation, Math. Method Appl. Sci., 2019, 42, 1–8.

[82] Y. Zhou, S. Manukure and W. X. Ma, Lump and lump-soliton solutions to the
Hirota-Satsuma-Ito equation, Commun. Nonlin. Sci. Numer. Simul., 2019, 68,
56–62.

[83] Y. Zhou, S. Manukure and M. McAnally, Lump and rogue wave solutions
to a (2+1)-dimensional boussinesq type equation, J. Geom. Phys., 2021, 167,
104275.


	Introduction
	Solitons
	The one-soliton solution
	The two-soliton solution
	The N-soliton solution

	Rational solutions
	Quadratic solutions to a bilinear form
	Application to the BKP equation
	Lump solutions

	Lump-kink solutions
	Concluding Remarks

