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PROPERTIES AND UNIQUE POSITIVE
SOLUTION FOR FRACTIONAL BOUNDARY

VALUE PROBLEM WITH TWO PARAMETERS
ON THE HALF-LINE∗
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Abstract Based on the theory of cone and operators, this paper concerned
with the existence of unique positive solution for a class of nonlinear fractional
boundary value problem with two parameters (one is called an eigenvalue pa-
rameter and another is a disturbance parameter) on the half-line. More impor-
tant, the solutions dependence on two parameters was discussed, which shows
that different parameters have different effects on the properties of positive so-
lutions, and the results reflect an interesting fact different from our inference.
Some examples are given to illustrate the main results.
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1. Introduction
Fractional boundary value problems (FBVP for short) on infinite intervals have
important applications in some fields of mathematics and physics such as the prob-
lems of radially symmetric solutions of nonlinear elliptic equations, velocity of the
unsteady flow of a gas, electrostatic measurement of solid-propellant rockets, and
so forth [1]. For this reason, in recent years, many researchers studied fractional
boundary value problems on infinite intervals, see [2, 4, 6, 8–10, 14, 15, 17, 19–22, 26]
and references therein, and many of these works focused on fractional boundary
value problems on infinite intervals with parameters, for example, authors of [12]
investigated the following fractional boundary value problem on infinite interval
with a disturbance parameter λ in the boundary conditionsD

α
0+x(t) + a(t)f(t, x(t)) = 0, t ∈ (0,∞),

x(0) = Dα−1
0+ x(∞) = 0, Dα−2

0+ x(0) =
+∞∑
i=1

g(ξi)D
α−1
0+ x(ξi) + λ,

(1.1)
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where 2 < α < 3, and obtained the existence and multiplicity results of positive
solutions for (1.1) by the method of upper and lower solutions, fixed point index
theory, and the Schauder fixed point theorem.

In addition, Zhai et. al [25] considered the fractional boundary value problems
on half line with a parameter as followsD

α
0+x(t) + µa(t)f(t, x(t)) = 0, t ∈ (0,∞),

x(0) = x′(0) = 0, Dα−1
0+ x(∞) =

m−2∑
i=1

βix(ξi),
(1.2)

where 2 < α < 3, a : [0,+∞) → [0,+∞) and f : [0,+∞) × [0,+∞) → [0,∞) are
continuous. When the nonlinearity f(t, x) is increasing and φ− concave in x, the
authors obtained some sufficient conditions of the existence of unique positive solu-
tion for (1.2) and properties depend on the parameter µ. In order to distinguish the
disturbance parameter, which involved in boundary value condition of a boundary
value problem, we call the parameter µ an eigenvalue parameter which is involved
in equation of the problem.

By discussions of (1.1) and (1.2), an interesting question was raised: for a frac-
tional boundary value problem with both an eigenvalue parameter and a disturbance
parameter, whether the solution still has the similar properties of dependence on
these two parameters as those of the problem with an eigenvalue parameter, if the
nonlinearity conditions keep the same. To our knowledge, there is no any answer
to this question, which inspire us to study the following FBVP on infinite intervals
with two parameters

Dα
0+x(t) + µ

(
f(t, x(t)) + q(t)g(x(t))

)
= 0, t ∈ (0,∞),

x(0) = 0, x′(0) = 0,

Dα−1
0+ x(∞) = β

∫ η
0
x(s)ds+ λ,

(1.3)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, 2 < α < 3,

β, η > 0 and Γ(α + 1) > βηα; µ, λ ≥ 0 are so called a eigenvalue parameter and
disturbance parameter respectively; R+ = [0,∞), q : R+ → R+ and

∫ +∞
0

q(s)ds >
0; f : R+ ×R+ → R+ is measurable in t for every x ∈ R+, and continuous in x for
a.e.t ∈ R+, in addition f is φ-concave(or convex) in x; g : R+ → R+ is continuous
and subhomogeneous (or hyperhomogeneous).

In this paper, we discuss the existence of a unique positive solution for the
problem (1.3), more important, we consider the dependence properties on these two
parameters of the positive solution by means of the operator theory and analytical
technique. On the other hand, it is clear that the problem{

Dα
0+x(t) + µf(t, x(t)) = 0, t ∈ [0,∞),

x(0) = x′(0) = 0, Dα−1
0+ x(∞) = β

∫ η
0
x(s)ds.

(1.4)

is the special case of (1.3) with λ = 0 and g(x) ≡ 0 for x ∈ R+, however, under the
same condition on f(t, x) of (1.3), we can not obtain directly the corollary for (1.4)
from the result of (1.3), which is also interesting and encourage us to do this work.

2. Preliminaries and Lemmas
In this section, we shall introduce some definitions and lemmas.
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A function f : R+ × R+ → R+ is said to be φ-concave (or φ-convex ) in x, if
for any r ∈ (0, 1) there exists φ(r) ∈ (r, 1) such that

f(t, rx) ≥ φ(r)f(t, x)
(
or f(t, rx) ≤ 1

φ(r)
f(t, x)

)
, t ∈ R+, x ∈ R+. (2.1)

A function g : R+ → R+ is called subhomogeneous (or hyperhomogeneous), if

g(rx) ≥ rg(x)
(
or g(rx) ≤ r−1g(x)

)
, r ∈ (0, 1), x ∈ R+. (2.2)

Remark 2.1. It is clear that (2.1) is equivalent to

f(t, sx) ≤ 1

φ(s−1)
f(t, x) (or f(t, sx) ≥ φ(s−1)f(t, x) ), s > 1, t ∈ R+, x ∈ R+;

and (2.2) is equivalent to

g(sx) ≤ sg(x) (or g(sx) ≥ s−1g(x)), s > 1, x ∈ R+.

In addition, if f is φ-concave ( or φ-convex) in x, then f is subhomogeneous( or
hyperhomogeneous) in x, but not vice versa.

Remark 2.2. The nonlinearity function f(t, x) + q(t)g(x) in this paper may not
have any φ- concave property, even if f is some a φ0-concave in x and g is sub-
homogeneous. For example, f(t, x) = e−tx

1
2 , g(x) = x and q(t) = e−t, it is clear

that f is φ0-concave where φ0(r) = r
1
2 , and g is the subhomogeneous, but for any

φ : (0, 1) → (0, 1) with φ(r) ∈ (r, 1),

f(t, rx) + q(t)g(rx) ⩾̸ φ(r)
(
f(t, x) + q(t)g(x)

)
, r ∈ (0, 1), t ∈ R+, x ∈ R+;

in addition, the function f(t, x) + q(t)g(x) may not be monotonic, even if f and g
are monotonic. That is to say, the properties of nonlinearity function for (1.3) are
different from the one of [25].

Basic notations and related results on Riemann-Liouville fractional integral and
fractional derivative can be found in [11,16,18].

For y ∈ L[0,+∞), consider the linear fractional boundary value problem
Dα

0+x(t) + y(t) = 0, 0 < t < +∞,

x(0) = 0, x′(0) = 0,

Dα−1
0+ x(∞) = β

∫ η
0
x(s)ds+ λ,

(2.3)

where 2 < α < 3, β, η > 0 and λ ≥ 0.
Similarly, by Lemma 3.1 in [15], we can easily obtain the following results.

Lemma 2.1. Suppose that y ∈ L[0,+∞), then FBVP(2.3) has a unique solution

x(t) =

∫ +∞

0

G(t, s)y(s)ds+ λκtα−1, t ∈ R+,

where
κ =

α

Γ(α+ 1)− βηα
,
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and

G(t, s) = G1(t, s) + κβtα−1G2(η, s), t, s ∈ R+,

G1(t, s) =
1

Γ(α)

 tα−1 − (t− s)α−1, 0 ≤ s ≤ t < +∞,

tα−1, 0 ≤ t ≤ s < +∞,

G2(t, s) =
1

Γ(α+ 1)

 tα − (t− s)α, 0 ≤ s ≤ t < +∞,

tα, 0 ≤ t ≤ s < +∞.

Lemma 2.2. The functions G(t, s), G1(t, s) and G2(t, s) defined by Lemma 2.1
satisfy the following properties:

(i) G(t, s) is continuous on R+ ×R+;
(ii) 0 ≤ G1(t, s) ≤ 1

Γ(α) t
α−1, 0 ≤ G2(t, s) ≤ 1

Γ(α+1) t
α for t, s ∈ R+, moreover,

0 ≤ G(t, s) ≤ κtα−1 for t, s ∈ R+.

Following definitions and known results can be found from [5,7, 23,24].
Let E be a real Banach space which is partially ordered by a cone P ⊂ E, that

is, x ≤ y iff y − x ∈ P . If x ≤ y and x ̸= y, then we mean x < y or y > x. By θ
we denote the zero element of E. A cone P is said to be normal if there exists a
positive number N such that θ ≤ x ≤ y implies ∥x∥ ≤ N∥y∥. For u, v ∈ E, u ≤ v,
denote [u, v] = {x ∈ E|u ≤ x ≤ v}. Given e > 0 (i.e., e ∈ P and e ̸= θ ), set

Pe = {x ∈ E | there exist l1(x), l2(x) > 0 such that l1(x)e ≤ x ≤ l2(x)e}. (2.4)

Let D ⊂ E. An operator T : D → E is said to be increasing (decreasing) if
x, y ∈ D,x ≤ y ⇒ Tx ≤ Ty(Tx ≥ Ty). An element x∗ ∈ D is called a fixed point
of T if Tx∗ = x∗; An operator T : D × D → E is said to be mixed monotone, if
xi, yi ∈ D(i = 1, 2), x1 ≤ y1, x2 ≥ y2 ⇒ T (x1, x2) ≤ T (y1, y2). An element x∗ ∈ D
is called a fixed point of T if T (x∗, x∗) = x∗.

Lemma 2.3 (Theorem 2.1, [23]). Let P be a normal cone in E, and T : Pe → Pe
satisfy one of the following conditions:

(L1) T is an increasing operator, and for any r ∈ (0, 1), there exists α(r) ∈ (0, 1)
such that T (rx) ≥ rα(r)Tx for x ∈ Pe and r ∈ (0, 1);

(L2) T is a decreasing operator, and for any r ∈ (0, 1), there exists α(r) ∈ (0, 1)
such that T (rx) ≤ r−α(r)Tx for x ∈ Pe and r ∈ (0, 1).
Then T has a unique fixed point x∗ in Pe. Moreover, for any initial value u0 ∈ Pe
and a sequence un = Tun−1(n = 1, 2, · · · ), one has lim

n→+∞
∥un − x∗∥ = 0.

Lemma 2.4 (Theorem 2.1, [24]). Let P be a normal cone in E and e ∈ P with
e ̸= θ, C : P × P → P be a mixed monotone operator. Suppose that

(L3) C(e, e) ∈ Pe;
(L4) for every r ∈ (0, 1), there exists φ(r) ∈ (r, 1] such that

C(rx,
1

r
y) ≥ φ(r)C(x, y), x, y ∈ P.

Then C has a unique fixed point x∗ in Pe. Moreover, for any initial value x0, y0 ∈ Pe,
constructing successively the sequence

xn = C(xn−1, yn−1), yn = C(yn−1, xn−1), n = 1, 2, · · · ,
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one has ∥xn − x∗∥ → 0 and ∥yn − x∗∥ → 0 as n→ +∞.

Lemma 2.5 (Theorem 2.3, [24]). Suppose that operator C satisfies the conditions
of Lemma 2.4. Let xλ(λ > 0) denote the unique solution of operator equation
T (x, x) = λx in Pe. If φ(r) > r

1
2 , then xλ is strictly decreasing in λ.

In this paper, we always set

X =: Cα−1[0,+∞) = {x ∈ C[0,+∞)| sup
t∈[0,+∞)

|x(t)|
1 + tα−1

< +∞},

then X is a Banach space with the norm ∥x∥ = sup
t∈[0,+∞)

|x(t)|
1+tα−1 . Denote

P = {x ∈ X | x(t) ≥ 0, t ∈ [0,+∞)},

then P is a normal cone in X, and the normal constant is 1, see [25]. Let

e(t) = tα−1, t ∈ [0,+∞),

and define Pe as (2.4).
In this paper, the following hypotheses will be used.
(H1) f(t, x) is increasing and φ- concave in x ∈ [0,+∞), and f(t, 1+ tα−1) ∈

L1[0,+∞).
(H2) f(t, x) is decreasing and φ- convex in x ∈ [0,+∞), and f(t, 0) ∈ L1[0,+∞).
(H3) g(x) is increasing and subhomogeneous on [0,+∞), and g(∞)= lim

x→+∞
g(x)<

+∞.
(H4) g(x) is decreasing and hyperhomogeneous on [0,+∞).
If f satisfies one of (H1) and (H2), and g satisfies (H3) or (H4), then the solution

of FBVP(1.3) is equivalent to the solution of the following integral equation

x(t) = µ

∫ +∞

0

G(t, s)
(
f(s, x(s)) + q(s)g(x(s))

)
ds+ λκtα−1, x ∈ X. (2.5)

Define the operator T(µ,λ) by

T(µ,λ)x = µAx+B(µ,λ)x, x ∈ P, (2.6)

where
(Ax)(t) =

∫ +∞

0

G(t, s)f(s, x(s))ds, x ∈ P,

and
(B(µ,λ)x)(t) = µ

∫ +∞

0

G(t, s)q(s)g(x(s))ds+ λκtα−1, x ∈ P.

Then, T(µ,λ)(P ) ⊂ P , which together with (2.5) implies that x is a positive solution
of FBVP(1.3) if and only if x is a non-zero solution of T(µ,λ)x = x in P .

For convenience, we introduce the following binary operator

C(µ,λ)(x, y) = µAx+B(µ,λ)y, x, y ∈ P, (2.7)

and
C∗

(µ,λ)(x, y) = C(µ,λ)(y, x) = µAy +B(µ,λ)x, x, y ∈ P. (2.8)
Then

T(µ,λ)x = C(µ,λ)(x, x) = C∗
(µ,λ)(x, x), x ∈ P. (2.9)
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Lemma 2.6 (Lemma 2.2, [13]). Let W be a bounded subset of X. If the following
conditions holds:

(i) { x(t)
1+tα−1 | x ∈W} is equicontinuous on any compact interval of [0,+∞);

(ii) { x(t)
1+tα−1 | x ∈W} is equiconvergent at infinity.

Then W is relatively compact in X.

3. Existence and Uniqueness
In this section, we shall discuss the existence of unique positive solution for BVP(1.3).

Theorem 3.1. Assume that one of the following four assumptions is satisfied.
(i) (H1) and (H3) hold; (ii) (H1) and (H4)hold;

(iii) (H2) and (H4) hold; (iv) (H2) and (H3) hold.
Then FBVP(1.3) has a unique positive solution x(µ,λ) for any µ ≥ 0 and λ > 0.
Moreover, for any x0 ∈ P , set

xn(t) = µ

∫ +∞

0

G(t, s)
(
f(s, xn−1(s)) + q(s)g(xn−1(s))

)
ds+ λκtα−1, (3.1)

n = 1, 2, · · · , we have

lim
n→∞

sup
t∈[0,+∞)

|xn(t)− x(µ,λ)(t)|
1 + tα−1

= 0. (3.2)

Proof. It is clear that λκtα−1 is the unique positive solution of FBVP(1.3) for
µ = 0 and λ > 0.

In the sequel, consider FBVP(1.3) for µ > 0 and λ > 0 under different conditions
(i),(ii),(iii) and (iv), respectively.

(i) If (H1) and (H3) hold, T(µ,λ) : P → P is an increasing operator, and

λκtα−1 ≤ (T(µ,λ)x)(t) = µ

∫ +∞

0

G(t, s)
(
f(s, x(s)) + q(s)g(x(s))

)
ds+ λκtα−1

≤ κ
(
µ

∫ +∞

0

(
(1 + ∥x∥)f(s, 1 + sα−1) + g(∞)q(s)

)
ds+ λ

)
tα−1, x ∈ P,

which implies that
T(µ,λ)(P ) ⊂ Pe. (3.3)

In order to discuss the properties of operator T(µ,λ), we first prove that the
operator B(µ,λ) satisfies

B(µ,λ)(rx) ≥ ϕ(µ, λ, r)B(µ,λ)x, r ∈ (0, 1), x ∈ Pe, (3.4)

where

ϕ(µ, λ, r) =
λφ(r) + rµg(∞)

∫ +∞
0

q(s)ds

λ+ µg(∞)
∫ +∞
0

q(s)ds
, r ∈ (0, 1). (3.5)

Indeed, by (3.5) we have r < ϕ(µ, λ, r) ≤ φ(r) < 1, and(
ϕ(µ, λ, r)− r

)
µg(∞)

∫ +∞

0

q(s)ds =
(
φ(r)− ϕ(µ, λ, r)

)
λ <

(
1− ϕ(µ, λ, r)

)
λ.
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Note that ∫ +∞

0

G(t, s)q(s)g(x(s))ds ≤ κtα−1g(∞)

∫ +∞

0

q(s)ds, x ∈ Pe,

then(
ϕ(µ, λ, r)− r

)
µ

∫ +∞

0

G(t, s)q(s)g(x(s))ds ≤
(
1− ϕ(µ, λ, r)

)
λκtα−1, x ∈ Pe.

Therefore,

B(µ,λ)(rx)(t) ≥rµ
∫ +∞

0

G(t, s)q(s)g(x(s))ds+ λκtα−1

≥ϕ(µ, λ, r)
(
µ

∫ +∞

0

G(t, s)q(s)g(x(s))ds+ λκtα−1
)

=ϕ(µ, λ, r)(B(µ,λ)x)(t), t ∈ R+, x ∈ Pe,

which means that (3.4) holds.
Set a(µ, λ, r) = lnϕ(µ,λ,r)

ln r , then a(µ, λ, r) ∈ (0, 1). By (3.4) and (H1),

T(µ,λ)(rx) = µA(rx) +B(µ,λ)(rx) ≥ φ(r)µAx+ ϕ(µ, λ, r)B(µ,λ)x

≥ ϕ(µ, λ, r)
(
µAx+B(µ,λ)x

)
= ra(µ,λ,r)T(µ,λ)x, r ∈ (0, 1), x ∈ Pe.

The application of Lemma 2.3 can show that T(µ,λ) has a unique fixed point x(µ,λ)
in Pe, furthermore for any x0 ∈ Pe, setting xn = T(µ,λ)xn−1, n = 1, 2, · · · , then
lim
n→∞

∥xn−x(µ,λ)∥ = 0. By (3.3), the fixed point x(µ,λ) is a unique positive solution
of FBVP(1.3), and (3.1) and (3.2) are satisfied.

(ii) Consider the operator C(µ,λ) defined by (2.7). If (H1) and (H4) hold, then
C(µ,λ) : P × P → P is a mixed monotone operator. In addition, for any x, y ∈ P
we have

λκtα−1 ≤ (C(µ,λ)(x, y))(t) = µ

∫ +∞

0

G(t, s)
(
f(s, x(s)) + q(s)g(y(s))

)
ds+ λκtα−1

≤ κ
(
µ

∫ +∞

0

(
(1 + ∥x∥)f(s, 1 + sα−1) + g(0)q(s)

)
ds+ λ

)
tα−1, t ∈ R+,

which means that
C(µ,λ)(P × P ) ⊂ Pe. (3.6)

For the operator B(µ,λ), by using (H4) and arguments similar to (3.4), we can
prove that

B(µ,λ)(rx) ≤
1

ψ(µ, λ, r)
B(µ,λ)x, r ∈ (0, 1), x ∈ Pe, (3.7)

where

ψ(µ, λ, r) =
µg(0)

∫ +∞
0

q(s)ds+ λ
µ
r g(0)

∫ +∞
0

q(s)ds+ λ
φ(r)

, r ∈ (0, 1). (3.8)



2498 W. Wang & X. Liu

It is clear that
r < ψ(µ, λ, r) ≤ φ(r), r ∈ (0, 1). (3.9)

Thus, it follows from (H1),(3.7) and (3.9) that

C(µ,λ)(rx,
1

r
y) = µA(rx) +B(µ,λ)(

1

r
y) ≥ φ(r)µAx+ ψ(µ, λ, r)B(µ,λ)y

≥ ψ(µ, λ, r)C(µ,λ)(x, y), r ∈ (0, 1), x, y ∈ Pe.

Therefore, Lemma 2.4 together with (3.6) tells us C(µ,λ) has a unique fixed point
x(µ,λ) in P\{θ} which is a unique positive solution of (1.3). Moreover, for any
x0, y0 ∈ P , set

xn = C(µ,λ)(xn−1, yn−1), yn = C(µ,λ)(yn−1, xn−1), n = 1, 2, · · · ,

then
lim
n→∞

∥xn − x(µ,λ)∥ = 0, lim
n→∞

∥yn − x(µ,λ)∥ = 0.

Taking x0 = y0, then xn = yn, n = 1, 2, · · · , so (3.1) and (3.2) are satisfied.
(iii) When (H2) and (H4) hold, we still consider the operator T(µ,λ) defined by

(2.6). Obviously, T(µ,λ) : P → P is decreasing, and T(µ,λ)(P ) ⊂ Pe. In addition, by
the proof of the above (ii) we know that B(µ,λ) satisfies (3.7). Taking ā(µ, λ, r) =
lnψ(µ,λ,r)

ln r , then ā(µ, λ, r) ∈ (0, 1), and

T(µ,λ)(rx) = µA(rx) +B(µ,λ)(rx) ≤
µ

φ(r)
Ax+

1

ψ(µ, λ, r)
B(µ,λ)x

≤ 1

ψ(µ, λ, r)
(T(µ,λ)x) = r−ā(µ,λ,r)T(µ,λ)x, r ∈ (0, 1), x ∈ Pe.

Similarly to the proof of (i), the application of Lemma 2.3 finishes the proof of this
part.

(iv) When (H2) and (H3) hold, we consider the operator C∗
(µ,λ)(x, y) = µAy +

B(µ,λ)x defined as (2.8). It is evident that C∗
(µ,λ) : P ×P → P is a mixed monotone

operator, and C∗
(µ,λ)(P × P ) ⊂ Pe.

By the above proof (i), B(µ,λ) satisfies (3.4) where φ is given by (H2), and

C∗
(µ,λ)(rx,

1

r
y) = µA(

1

r
y) +B(µ,λ)(rx) ≥ φ(r)µAy + ϕ(µ, λ, r)B(µ,λ)x

≥ ϕ(µ, λ, r)C∗
(µ,λ)(x, y), r ∈ (0, 1), x, y ∈ Pe.

Using similar arguments as the proof of (ii) and Lemma 2.4, the proof is finished.

Remark 3.1. If λ = 0, then Theorem 3.1 may not be true. Indeed, when µ = λ =
0, it is easy to check that FBVP(1.3) has a unique zero solution, but no positive
solution; when λ = 0 and µ > 0, we can not guarantee the existence of unique
positive solution of FBVP(1.3) under the conditions of Theorem 3.1, but we can
give some sufficient conditions of existence of unique positive solution for FBVP(1.3)
with λ = 0 and g ≡ 0 (see Theorem 5.1). We use the following Table 1 to show this
concisely.
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Table 1. The effect of parameters on the existence of unique positive solution

Parameters Condition of g Condition of f Unique solution

Existence

λ > 0 µ ≥ 0 (H3) or (H4) (H1) or (H2) Yes

λ = 0
µ > 0 g ̸≡ 0; (H3) or (H4) (H1) or (H2) Uncertain
µ > 0 g ≡ 0 (H1) or (H2) Yes

λ = 0 µ = 0 Arbitrary Arbitrary No

4. Dependence of solution on parameters
For any given µ ≥ 0 and λ > 0, by Theorem 3.1, FBVP(1.3) has a unique positive
solution under some conditions. Based on this fact, we regard the unique positive
solution as a function of parameter pair of (µ, λ) denoted by x(µ,λ), and discuss the
monotonic and continuous properties of x(µ,λ) with respect to (µ, λ).

Set
w0(t) = κe(t) = κtα−1, t ∈ R+.

Theorem 4.1. Under the condition (i) of Theorem 3.1, the following results hold.
(a) for any fixed µ ≥ 0, x(µ,λ) is increasing and continuous with respect to λ for

λ > 0, and lim
λ→∞

∥x(µ,λ)∥ = +∞;
(b) for any fixed λ > 0, x(µ,λ) is increasing and continuous with respect to µ

for µ ≥ 0, and lim
µ→0+

∥x(µ,λ) − λw0∥ = 0, in addition, lim
µ→+∞

∥x(µ,λ)∥ = +∞ if∫ +∞
1

G2(η, s)f(s, 1)ds > 0;
(c) for µ = νλ, ν ≥ 0, λ > 0, x(µ,λ) is increasing and continuous with respect to

λ for λ > 0, lim
λ→+∞

∥x(µ,λ)∥ = +∞ and lim
λ→0+

∥x(µ,λ)∥ = 0.

Proof. (a) For any fixed µ ≥ 0, it is easy to see that T(µ,λ)x is increasing with
respect to λ and x for λ > 0 and x ∈ P . Next to show x(µ,λ) is increasing with
respect to λ for λ > 0. Let λ1, λ2 ∈ (0,+∞) with λ1 ≤ λ2 and

u0 = λ1w0, un = T(µ,λ1)un−1, n = 1, 2, · · · , (4.1)

then u0 ≤ λ2w0 ≤ x(µ,λ2). Moreover, we have

T(µ,λ1)u0 ≥ u0, T(µ,λ1)x(µ,λ2) ≤ T(µ,λ2)x(µ,λ2) = x(µ,λ2),

which, together with (4.1), leads to

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ x(µ,λ2), n = 1, 2, · · · . (4.2)

Note that x(µ,λ1) is the unique positive fixed point of T(µ,λ1), then it follows from
Theorem 3.1 and (4.2) that ∥un−x(µ,λ1)∥ → 0 as n→ +∞ and x(µ,λ1) ∈ [u0, x(µ,λ2)],
which means that x(µ,λ1) ≤ x(µ,λ2), that is, x(µ,λ) is increasing with respect to λ for
λ > 0.

Next to prove that x(µ,λ) is continuous with respect to λ for λ > 0, we take
λ0 ∈ (0,+∞) and any sequence {λn} satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ≤ λ0 and lim
n→+∞

λn = λ0.



2500 W. Wang & X. Liu

Set
D = {x(µ,λn)|x(µ,λn) = T(µ,λn)x(µ,λn), n = 1, 2, · · · },

then D ⊂ Pe and

x(µ,λ1) ≤ x(µ,λ2) ≤ · · · ≤ x(µ,λn) ≤ · · · ≤ x(µ,λ0). (4.3)

The normality of the cone P implies that D is a bounded subset. In addition, by
(H1),(H3) and Lemma 2.2, { x(t)

1+tα−1 | x ∈ D} is equicontinuous on any compact
interval of [0,+∞), and equiconvergent at infinity. Hence, it follows from Lemma
2.6 that D is a relatively compact. This, together with (4.3), implies that there
exists x∗ ∈ [x(µ,λ1), x(µ,λ0)] ⊂ Pe such that lim

n→+∞
∥x(µ,λn) − x∗∥ = 0. Note that

x(µ,λn)(t) = µ

∫ +∞

0

G(t, s)
(
f(s, x(µ,λn)(s)) + q(s)g(x(µ,λn)(s))

)
ds+ κλnt

α−1,

by the Lebesgue dominated convergence theorem, we have

x∗(t) = µ

∫ +∞

0

G(t, s)
(
f(s, x∗(s)) + q(s)g(x∗(s))

)
ds+ κλ0t

α−1,

which means that x∗ is a fixed point of T(µ,λ0) in Pe. The uniqueness of the fixed
point of T(µ,λ0) implies x∗ = x(µ,λ0), so lim

λ→λ−
0

∥x(µ,λ) − x(µ,λ0)∥ = 0. Similar argu-

ment can show lim
λ→λ+

0

∥x(µ,λ) − x(µ,λ0)∥ = 0. Therefore, x(µ,λ) is continuous with

respect to λ for λ > 0.
In addition, noticing that x(µ,λ)(t) =

(
T(µ,λ)x(µ,λ)

)
(t) ≥ λκtα−1 for t ∈ R+, we

have ∥x(µ,λ)∥ ≥ λκ which implies that lim
λ→+∞

∥x(µ,λ)∥ = +∞.

(b) For any fixed λ > 0, since T(µ,λ)x is increasing in µ and x for µ ≥ 0 and
x ∈ P . Similarly to the proof of above (a) we can show that x(µ,λ) is increasing and
continuous with respect to µ for µ > 0.

Note that x(µ,λ) ≤ x(1,λ) for any µ ∈ (0, 1), then for any µ ∈ (0, 1),

0 ≤x(µ,λ)(t)− λw0(t) ≤ µκtα−1

∫ +∞

0

(
f(s, x(1,λ)(s)) + q(s)g(∞)

)
ds

≤µκtα−1

∫ +∞

0

(
(1 + ∥x(1,λ)∥)f(s, 1 + sα−1) + q(s)g(∞)

)
ds, t ∈ R+,

which implies that lim
µ→0+

∥x(µ,λ) − λw0∥ = 0.

Now, we take µ0 ≥ 1. Because of x(µ0,λ) ∈ Pe, there exists a number l ∈ (0, 1)
such that

x(µ,λ)(t) ≥ x(µ0,λ)(t) ≥ le(t) = ltα−1, t ∈ R+, µ ≥ µ0.

Moreover, it follows from (H1) and (H3) that

x(µ,λ)(t) =T(µ,λ)x(µ,λ)(t) ≥ µβκtα−1

∫ +∞

0

G2(η, s)f(s, ls
α−1)ds

≥µβκltα−1

∫ +∞

1

G2(η, s)f(s, 1)ds, t ∈ R+, µ ≥ µ0,



Properties and unique solution for FBVP 2501

which together with
∫ +∞
1

G2(η, s)f(s, 1)ds > 0 leads to lim
µ→+∞

∥x(µ,λ)∥ = +∞.

(c) For µ = νλ, ν ≥ 0, λ > 0, the unique positive solution x(µ,λ) is denoted by
xλ. Noticing that

xλ(t) = λ
(
ν

∫ +∞

0

G(t, s)
(
f(s, xλ(s)) + q(s)g(xλ(s))

)
ds+ w0(t)

)
,

the conclusion (c) can be present similarly. The proof is complete.
Similarly to the above proofs we can obtain the following result.

Theorem 4.2. Under the condition (ii) in Theorem 3.1, we have the following
results:

(a) for any fixed µ ≥ 0, lim
λ→+∞

∥x(µ,λ)∥ = +∞;
(b) for any fixed λ > 0, lim

µ→0+
∥x(µ,λ) − λw0∥ = 0, in addition, lim

µ→+∞
∥x(µ,λ)∥ =

+∞ if
∫ +∞
1

G2(η, s)f(s, 1)ds > 0;
(c) for µ = νλ, ν ≥ 0, λ > 0, lim

λ→+∞
∥x(µ,λ)∥ = +∞ and lim

λ→0+
∥x(µ,λ)∥ = 0.

Theorem 4.3. Under the condition (iii) of Theorem 3.1, we have the following
results:

(a) for any fixed µ ≥ 0, lim
λ→+∞

∥x(µ,λ)∥ = +∞;
(b) for any fixed λ > 0, x(µ,λ) is increasing and continuous with respect to µ

for µ ≥ 0, and lim
µ→0+

∥x(µ,λ) − λw0∥ = 0, in addition, lim
µ→+∞

∥x(µ,λ)∥ = +∞ if∫ 1

0
G2(η, s)f(s, 1)ds > 0;
(c) for µ = νλ, ν ≥ 0, λ > 0, x(µ,λ) is increasing and continuous in λ for λ > 0,

lim
λ→+∞

∥x(µ,λ)∥ = +∞ and lim
λ→0+

∥x(µ,λ)∥ = 0.

Proof. By (H2) and (H4), T(µ,λ)x is increasing with respect to µ and λ for µ ≥ 0
and λ > 0, and decreasing with respect to x for x ∈ P . The conclusion (a) is easy
to be proved. Next we prove (b). Any given λ > 0, in order to show that x(µ,λ) is
increasing with respect to µ for µ ≥ 0, we let µ1, µ2 ∈ [0,+∞), µ1 ≤ µ2. If µ1 = 0,
then x(µ1,λ) = λw0 ≤ x(µ2,λ). Thus, we only need to prove x(µ1,λ) ≤ x(µ2,λ) for
µ1 > 0. Noting that x(µ1,λ), x(µ2,λ) ∈ Pe, there exists ϵ > 0 such that ϵx(µ1,λ) ≤
x(µ2,λ). Set

r0 = sup{r > 0 | rx(µ1,λ) ≤ x(µ2,λ)},

then 0 < r0 < +∞ and r0x(µ1,λ) ≤ x(µ2,λ). We assert that r0 ≥ 1. Suppose, to the
contrary, that 0 < r0 < 1. By (3.7) we have

x(µ2,λ) = T(µ2,λ)x(µ2,λ) ≤ T(µ2,λ)(r0x(µ1,λ)) ≤
1

ψ(µ2, λ, r0)
T(µ2,λ)x(µ1,λ),

which, together with

(T(µ2,λ)x(µ1,λ))(t) ≤
µ2

µ1

[
µ1

∫ +∞

0

G(t, s)
(
f(s, x(µ1,λ)(s)) + q(s)g(x(µ1,λ)(s))

)
ds

+ λκtα−1
]

=
µ2

µ1
(T(µ1,λ)x(µ1,λ))(t) =

µ2

µ1
x(µ1,λ)(t), t ∈ R+,
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implies that
µ1ψ(µ2, λ, r0)

µ2
x(µ2,λ) ≤ x(µ1,λ).

Since 0 < µ1ψ(µ2,λ,r0)
µ2

< 1, it follows from (H2) and (H4) that

x(µ1,λ)(t) = T(µ1,λ)x(µ1,λ)(t) ≤ T(µ1,λ)

(µ1ψ(µ2, λ, r0)

µ2
x(µ2,λ)

)
(t)

= µ1

∫ +∞

0

G(t, s)
(
f
(
s,
µ1ψ(µ2, λ, r0)

µ2
x(µ2,λ)(s)

)
+ q(s)g

(µ1ψ(µ2, λ, r0)

µ2
x(µ2,λ)

))
ds+ κλtα−1

≤ µ2

ψ(µ2, λ, r0)

∫ +∞

0

G(t, s)
(
f(s, x(µ2,λ)(s))

+ q(s)g(x(µ2,λ)(s))
)
ds+ κλtα−1

≤ 1

ψ(µ2, λ, r0)
(T(µ2,λ)x(µ2,λ))(t)

=
1

ψ(µ2, λ, r0)
x(µ2,λ)(t), t ∈ R+.

So, by the definition of r0 and (3.9) we have r0 < ψ(µ2, λ, r0) ≤ r0, which is a
contradiction. Hence r0 ≥ 1. Moreover, x(µ1,λ) ≤ x(µ2,λ).

In addition, arguing similarly to Theorem 4.1, other results in the conclusion
(b) can be proved.

The proof of the conclusion (c) can be finished by the similar way as the above
conclusion (b). This completes the proof.

Theorem 4.4. Under the condition (iv) of Theorem 3.1, the following results hold.
(a) for any fixed µ ≥ 0, lim

λ→+∞
∥x(µ,λ)∥ = +∞;

(b) for any fixed λ > 0, lim
µ→0+

∥x(µ,λ) − λw0∥ = 0, in addition, lim
µ→+∞

∥x(µ,λ)∥ =

+∞ if
∫ 1

0
G2(η, s)f(s, 1)ds > 0;

(c) for µ = νλ, ν ≥ 0, λ > 0, (c-1) lim
λ→+∞

∥x(µ,λ)∥ = +∞ and lim
λ→0+

∥x(µ,λ)∥ = 0;
(c-2) x(µ,λ) is increasing and continuous with respect to λ for λ > 0 if ν = 0 or
0 < νg(∞)

∫ +∞
0

q(s)ds < 1 and φ(r) > r
1
2 for r ∈ (0, 1).

Proof. We only prove the conclusion (c-2), other conclusions can be proved sim-
ilarly to Theorem 4.1.

For µ = νλ, ν ≥ 0, λ > 0, we consider two cases. If ν = 0 then µ = 0, thus
x(µ,λ)(t) = λκtα−1, and (c-2) is obvious. If ν > 0, we consider the operator C∗

(µ,λ)

defined as (2.8), and have

C∗
(µ,λ)(x, y) = νλAy +B(νλ,λ)x = λ(νAy +B(ν,1)x) =: C∗

λ(x, y), x, y ∈ P.

It is clear that C∗
λ : P × P → Pe is a mixed monotone operator. In addition, we

claim that the operator B(ν,1) satisfies the following property

B(ν,1)(rx) ≥ rδB(ν,1)x, r ∈ (0, 1), x ∈ Pe, (4.4)
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where

δ =
νg(∞)

∫ +∞
0

q(s)ds

1 + νg(∞)
∫ +∞
0

q(s)ds
.

Indeed, it is clear that 0 < δ < 1
2 . By straightforward calculations, for any r ∈ (0, 1)

we have
1− rδ

rδ − r
> lim
r→1−

1− rδ

rδ − r
=

δ

1− δ
≥ νg(∞)

∫ +∞

0

q(s)ds.

Hence,

rδ
(
νg(∞)

∫ +∞

0

q(s)ds+ 1
)
< rνg(∞)

∫ +∞

0

q(s)ds+ 1,

which implies that

B(ν,1)(rx)(t) ≥rν
∫ +∞

0

G(t, s)q(s)g(x(s))ds+ κtα−1

≥rδ
(
ν

∫ +∞

0

G(t, s)q(s)g(x(s))ds+ κtα−1
)

=rδ(B(ν,1)x)(t), r ∈ (0, 1), x ∈ Pe, t ∈ R+.

This show that B(ν,1) satisfies (4.4). Moreover, let

φ(r) = min{φ(r), rδ}, r ∈ (0, 1),

then

C∗
λ(rx,

1

r
y) ≥ λ

(
νφ(r)Ay + rδB(ν,1)x

)
≥ φ(r)C∗

λ(x, y), x, y ∈ Pe, r ∈ (0, 1).

Note that 0 < δ < 1
2 and φ(r) > r

1
2 , then φ(r) > r

1
2 for r ∈ (0, 1). Applying Lemma

2.5 we obtain that x(µ,λ) is increasing with respect to λ for λ > 0. Moreover, the
continuity of x(µ,λ) with respect to λ can be proved similarly to Theorem 4.1. This
ends the proof.

Remark 4.1. In order to clearly show the dependence properties of solution on
parameters in different cases, we give a conclusion in following Table 2. In this
table, “inc.” means “increasing ”, and “cont.” means “continuous”.

Table 2. Continuous dependence of the solution on two parameters

Parameters Dependence (H1),(H3) (H1),(H4) (H2),(H4) (H2),(H3)
Fixed µ inc. and cont. in λ yes uncertain uncertain uncertain
Fixed λ inc. and cont. in µ yes uncertain yes uncertain
µ = νλ inc. and cont. in λ yes uncertain yes yes

Other cases cont. in (λ, µ) uncertain uncertain uncertain uncertain
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5. The boundary condition without disturbance pa-
rameter

For the problem (1.4), although we can not derive the corollary from Theorem 3.1,
we can obtain the different result. In section, we shall consider FBVP(1.4). To be
clear, we present it again{

Dα
0+x(t) + µf(t, x(t)) = 0, t ∈ [0,∞),

x(0) = x′(0) = 0, Dα−1
0+ x(∞) = β

∫ η
0
x(s)ds.

It is clear that x is a positive solution of FBVP(1.4) if and only if x is a fixed
point of the operator µA in P\{θ}.

By the proofs of Theorem 3.1, Theorem 4.1 and Theorem 4.3, we can obtain the
following result.

Theorem 5.1. Assume that one of the following assumptions conditions is satisfied.
(F1) (H1) holds and

∫ +∞
1

G2(η, s)f(s, 1)ds > 0;
(F2) (H2) holds and

∫ 1

0
G2(η, s)f(s, 1)ds > 0.

Then (1.4) has a unique positive solution xµ in Pe for any µ > 0. Furthermore, for
any x0 ∈ P0, constructing successively the sequence

xn(t) = µ

∫ +∞

0

G(t, s)f(s, xn−1(s))ds, n = 1, 2, · · · ,

then
lim
n→∞

sup
t∈[0,+∞)

|xn(t)− xµ(t)|
1 + tα−1

= 0.

In addition, such a positive solution xµ is increasing and continuous in µ for µ > 0,
lim
µ→0+

∥xµ∥ = 0, and lim
µ→+∞

∥xµ∥ = +∞.

6. Examples
Consider the fractional boundary value problem on half line

D
8
3

0+x(t) + µ
(
e−t

3
2
(
1+t

5
3 +

√
x(t)

)p(
1+t

5
3

)4+p + e−t(1+ax(t))
1+bx(t)

)
= 0, t ∈ [0,∞),

x(0) = 0, x′(0) = 0,

D
5
3

0+x(∞) = 1
951

∫ 22

0
x(s)ds+ λ,

(6.1)

where 0 < |p| < 2 and a, b > 0, a ̸= b. That is, in FBVP(1.3), α = 8
3 , β = 1

951 , η =

22, q(t) = e−t, f(t, x) = e−t
3
2
(
1+t

5
3 +

√
x
)p(

1+t
5
3

)4+p and g(x) = 1+ax
1+bx . Then

βηα =
3
√
228

951
≈ 3.9959 < 4.0124 ≈ 80

27
Γ(

2

3
) = Γ(α+ 1), κ ≈ 161.6162,

and
∫ +∞
0

q(s)ds = 1 > 0.



Properties and unique solution for FBVP 2505

It is easy to check that g(∞) = a
b , and g : R+ → R+ is not only continuous but

also increasing for a > b, and decreasing for a < b. In addition, for any r ∈ (0, 1),

g(rx) =
r( 1r + ax)

1 + brx
≥ rg(x), and g(rx) =

1 + arx

r( 1r + bx)
≤ 1

r
g(x).

So, (H3) holds for a > b and (H4) holds for a < b.
It is clear that f(t, x) is continuous. Two cases are considered on p.
Case 1 p ∈ (0, 2). In this case, f(t, x) is increasing in x, moreover,

f(t, 1 + tα−1) =
e−t

3
2
(
1 + t

5
3 +

√
1 + t

5
3

)p(
1 + t

5
3

)4+p ≤ 2pe−t
3
2
(
1 + t

5
3

)−4 ≤ 2pe−t
3
2 ,

which implies that f(t, 1 + t
5
3 ) ∈ L1[0,+∞).

In addition,

f(t, rx) =
r

p
2 e−t

3
2
(
1+t

5
3√
r

+
√
x
)p(

1 + t
5
3

)4+p ≥ r
p
2 f(t, x), x ≥ 0, r ∈ (0, 1),

and

f(t, 1) =
e−t

3
2
(
2 + t

5
3

)p(
1 + t

5
3

)4+p ≥ e−t
3
2
(
1 + t

5
3

)−4
.

Thus, (H1) is satisfied and
∫ +∞
1

G2(η, s)f(s, 1)ds > 0
Case 2 p ∈ (−2, 0). In this case, f(t, x) is decreasing in x, and

f(t, 0) = e−t
3
2
(
1 + t

5
3

)−4 ≤ e−t
3
2 ,

which implies that f(t, 0) ∈ L1[0,+∞).
In addition,

f(t, rx) =
1

r−
p
2 et

3
2
(
1 + t

5
3

)4+p( 1+t
5
3√
r

+
√
x
)−p ≤ 1

r
|p|
2

f(t, x), x ≥ 0, r ∈ (0, 1),

and
f(t, 1) ≥ e−t

3
2
(
2 + t

5
3

)−4
.

Hence, (H2) is satisfied and
∫ 1

0
G2(η, s)f(s, 1)ds > 0.

Theorem 3.1 shows that FBVP(6.1) has a unique positive solution x(µ,λ) for any
µ ≥ 0 and λ > 0, and for any x0 ∈ P , set

xn(t) = µ

∫ +∞

0

G(t, s)
(e−s 3

2
(
1 + s

5
3 +

√
xn−1(s)

)p(
1 + s

5
3

)4+p +
e−s(1 + axn−1(s))

1 + bxn−1(s)

)
ds+λκt

5
3

for n = 1, 2, · · · , we have

lim
n→∞

sup
t∈[0,+∞)

|xn(t)− x(µ,λ)(t)|
1 + tα−1

= 0.
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Next to discuss the dependence of such a solution x(µ,λ) on parameters µ and λ
in four cases.

Case 1. If p ∈ (0, 2) and a > b, then all conditions of Theorem 4.1 are satisfied.
Hence, the positive solution x(µ,λ) satisfies all conclusions in Theorem 4.1.

Case 2. If p ∈ (0, 2) and a < b, then all conditions of Theorem 4.2 are satisfied,
so we can obtain all conclusions in Theorem 4.2 for the positive solution x(µ,λ).

Case 3. If p ∈ (−2, 0) and a < b, then all conditions of Theorem 4.3 are satisfied,
So, all conclusions in Theorem 4.3 hold for the positive solution x(µ,λ).

Case 4. If p ∈ (−2, 0) and a > b, then (H2) and (H3) are satisfied and∫ 1

0
G2(η, s)f(s, 1)ds > 0. So, we can obtain conclusions (a),(b) and (c-1) in Theorem

4.4 for the positive solution x(µ,λ). In addition, we can conclude by the conclusion
(c-2) in Theorem 4.4 that the positive solution x(µ,λ) is continuous and increasing
in λ for 0 ≤ ν < b

a , µ = νλ, λ > 0 and −1 < p < 0.
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