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THE NUMBER OF RATIONAL SOLUTIONS OF
ABEL EQUATIONS∗

Xinjie Qian1,†, Yang Shen2 and Jiazhong Yang2

Abstract In this paper, we study rational solutions of the Abel differential
equations dy/dx = fm(x)y2 + gn(x)y

3, where fm(x) and gn(x) are real poly-
nomials of degree m and n respectively. The main result of the paper is as
follows: We give a systematic upper bound on the number of the nontrivial ra-
tional solutions of such equations in all these cases. Then we prove that these
upper bounds can be reached in most cases. Finally, we present some exam-
ples of Abel equations having exactly i nontrivial rational solutions, where
1 ≤ i ≤ 5.
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1. Introduction
The Abel differential equations

dy

dx
= fm(x)y2 + gn(x)y

3, (1.1)

where fm(x) and gn(x) are real polynomials of degree m and n respectively, with
the following explicit expressions

fm(x) =

m∑
i=0

aix
i, gn(x) =

n∑
i=0

bix
i, ambn ̸= 0 (1.2)

can be found in many models of real phenomena (see [1,10]) and have been studied
intensively. Much attention has been paid to, say, the center problem (see for
instance [3, 4]), the number of limit cycles (see [5, 8]), the polynomial solutions,
polynomial limit cycles, and nontrivial rational limit cycles (see [9, 11]).

The study of some particular solutions (as polynomial or rational solutions) of
the differential equations can be seen as an important way to understand the whole
set of solutions of the system. Concerning some well-known systems, Rainville [13]
in 1936 proved the existence of one or two polynomial solutions for the Riccati
differential equation y′ = b0(x)+ b1(x)y+y2, with b0(x) and b1(x) are polynomials.
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Behloul and Cheng [2] presented some methods to compute polynomial solutions of
the differential equation

a(x)y′ = b0(x) + b1(x)y + b2(x)y
2 + · · ·+ bn(x)y

n, (1.3)

where a(x) and bi(x), with 0 ≤ i ≤ n are real polynomials.
As to the polynomial solutions of equation (1.3), here is a very brief survey.

When a(x) = 1, and bn(x) ̸= 0, the authors in [9] proved that (1.3) has at most
n polynomials solutions. When n = 2, the authors in [7] give an estimate of the
number of polynomial solutions in terms of the degrees of all coefficient polynomials
involved. In [6] the authors treated the equation (1.3) in some other special cases.
Llibre and Valls [12,14] gave in detail the maximum number of polynomial solutions
in the case n = 3, b3(x) ̸= 0 and b0(x) = b2(x) = 0.

Notice that when n = 3, a(x) = 1 and b0(x) = b1(x) = 0, equation (1.3) turns
out to be the classical Abel equation of the form (1.1). For the Abel equation (1.1),
by using ideas from [9], one can easily see that this equation can have at most two
polynomial solutions, and we can found a concrete example y′ = y2(y−1) with two
(trivial) polymial solutions y = 0 and y = 1.

As we know beyond the polynomial solutions, the study of rational solutions is
also of great importance. But to the best of our knowledge, the number of rational
solutions of equation (1.1) have not been considered so far. By a rational solution
of (1.1), we mean a solution of the form y = P (x)/Q(x), where P (x) and Q(x)
are polynomials of their variable. Here we shall only consider nontrivial rational
solutions, i.e. the case Q(x) = const is not within our interest, since in this case,
P (x)/Q(x) is nothing but a polynomial.

The importance of study of (1.1) also relies on the intrinsic relation between
(1.1) and the Liénard system. In fact, by performing the change z = 1/y, equation
(1.1) can be transformed into a Liénard system,

ẋ = z, ż = −fm(x)z − gn(x), (1.4)

and a nontrivial rational solution is transformed into a rational invariant curve.
Hence, the number of nontrivial rational solutions of the equation (1.1) and the
number of the rational invariant curves of Liénard systems (1.4) coincide. While
considering the number of invariant curves is an useful way to study the integrability
of the planar polynomial differential system.

In this paper, we consider the maximum number of nontrivial rational solutions
of (1.1) in all cases. For convenience of stating our results, in terms of (1.1), we call
such an Abel equation of type (m,n). Notice that y = φ(x) is a nontrivial rational
solution of the equation (1.1) if and only if φ(x) = 1/R(x) and

R(x)R′(x) +R(x)fm(x) = −gn(x), (1.5)

where R(x) is a polynomial. Therefore a crucial point to consider the maximum
number of nontrivial rational solutions of the equation (1.1) will depend on the
analysis of the number of polynomial solutions of equation (1.5).

By comparing the degrees of the polynomials of two sides of equation (1.5), we
immediately know that if n ≤ m or n ≥ 2m + 2 with n even, then (1.1) of type
(m,n) has no nontrivial rational solutions. For the remaining cases, our results are
as follows.
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Theorem 1.1. If m+1 ≤ n ≤ 2m, or n ≥ 2m+3 and n is odd, then (1.1) of type
(m,n) has at most 2 nontrivial rational solutions, and this bound is sharp.

Theorem 1.2. If n = 2m+ 1 with m ≥ 1, then the equations (1.1) of type (m,n)
have at most m + 3 nontrivial rational solutions, and this bound is sharp in the
cases m = 1 and m = 2.

At that point, we wonder whether m+3 is the sharp upper bound on the number
of nontrivial rational solutions of equations (1.1) of type (m, 2m + 1) with m ≥ 3.
In fact, the answer is no in the case m = 3, and we shall give another method for
finding the maximum number of rational solutions in this case. Our result is stated
in the next theorem.

Theorem 1.3. The equations (1.1) of type (3, 7) have at most 5 nontrivial rational
solutions, and this bound is sharp.

We remark that with only one possible exception, n = 2m + 1 and m ≥ 4, all
these upper bounds given above are sharp, and our result can also be used to study
rational limit cycles.

The next two theorems give the existence of equations (1.1) of type (m, 2m+1)
with exactly i nontrivial rational solutions and equations (1.1) of type (4, 9) with
exactly 5 nontrivial rational solutions, where 1 ≤ i ≤ 4 and m ≥ 1.

Theorem 1.4. For any integer m ≥ 1, there exist equations (1.1) of type (m, 2m+1)
having exactly i nontrivial rational solutions, where 1 ≤ i ≤ 4.

Theorem 1.5. There are equations (1.1) of type (4, 9) having exactly 5 rational
invariant curves.

The rest of this paper is organized as follows. We prove Theorem 1.1 and
Theorem 1.2 in section 2 while leave the proof of Theorem 1.3 to section 3. Finally,
in section 4 we prove Theorem 1.4 and Theorem 1.5.

2. Proof of Theorem 1.1 and 1.2
The proof of Theorem 1.1 consists of two parts, the upper bound of the number of
nontrivial rational solutions and the explicit examples having 2 nontrivial rational
solutions.

Proposition 2.1. If m+1 ≤ n ≤ 2m, then the equations (1.1) of type (m,n) have
at most 2 nontrivial rational solutions.

Proof. If y = 1/R(x) is a nontrivial rational solution of equations (1.1), then from
(1.5), we immediately know that the degree of R(x) can only be n−m or m+ 1.

If the degree of R(x) is n−m, then we can assume

R(x) = cn−mxn−m + · · ·+ c1x+ c0, (2.1)

where cn−m ̸= 0. By substituting R(x), fm(x) and gn(x) into (1.5) and comparing
the coefficients of the polynomials of two sides, we can deduce that the values of
cn−m, cn−m−1, · · · , c0 are uniquely determined. It follows that if the degree of R(x)
is n−m then (1.1) has at most one nontrivial rational solution y = 1/R(x).
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If the degree of R(x) is m+ 1, then we assume

R(x) = − am
m+ 1

xm+1 − am−1

m
xm − · · · − a0x+ dn−mxn−m + · · ·+ d1x+ d0, (2.2)

where dn−m ̸= 0. By substituting the equations (2.2) and (1.2) into (1.5) and
comparing the coefficients of the polynomials of two sides,we can deduce that the
values dn−m, dn−m−1, · · · , d0 are uniquely determined.

Thus this type of equations (1.1) have at most one nontrivial rational solution
y = 1/R(x), with the degree of R(x) is m + 1. This completes the proof of the
Proposition.

Proposition 2.2. If n ≥ 2m + 3 and n is odd, then the equation (1.1) of type
(m,n) has at most 2 nontrivial rational solutions.

Proof. We assume n = 2k + 1, where k ≥ m+ 1 ∈ N . If y = 1/R(x) is a
nontrivial rational solution of equations (1.1), then the degree of R(x) can only be
k + 1. Denote

R(x) = ek+1x
k+1 + · · ·+ e1x+ e0, (2.3)

where ek+1 ̸= 0. By substituting the equations (2.3) and (1.2) into (1.5) and
comparing the coefficients of the highest degree terms of the equation, we obtain
the following equation,

−b2k+1 = (k + 1)e2k+1.

Thus ek+1 can have at most two different values.
Once we have determined the value of ek+1, we can uniquely determine the

values of ei by comparing the coefficients of the polynomials of the equation (1.5),
where 0 ≤ i ≤ k. Thus the equations (1.1) of type (m,n) have at most 2 nontrivial
rational solutions for n ≥ 2m + 3 with n is odd. The proof of the Proposition is
complete.

Below we present two explicit examples of equation (1.1) of type (m,n) having
exactly 2 nontrivial rational solutions. One is for the case m + 1 ≤ n ≤ 2m and
the other for the case n ≥ 2m + 3 with n is odd. Since the proof of Proposition
2.3 and Proposition 2.4 involves only tedious computation, therefore we omit the
details here.

Proposition 2.3. If m+ 1 ≤ n ≤ 2m, then the Abel differential equation

dy

dx
= −(xm + xn−m−1)y2 + (

1

n+ 1
xn +

m+ 1

(n+ 1)2
x2n−2m−1)y3 (2.4)

has 2 nontrivial rational solutions

y =
n+ 1

xn−m
and y =

(n+ 1)(m+ 1)

(n+ 1)xm+1 + (m+ 1)xn−m
.

Proposition 2.4. If n ≥ 2m+ 3 and n is odd, then the Abel differential equation

dy

dx
= −(2m+ n+ 3)xmy2 − (

n+ 1

2
xn − 2(1 + n)x2m+1)y3, (2.5)

has 2 nontrivial rational solutions

y =
1

x
n+1
2 + 2xm+1

and y =
−1

x
n+1
2 − 2xm+1

.
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Proof of Theorem 1.1. Proposition 2.1 and Proposition 2.2 provide the first part
of the theorem, which correspond to the upper bound of the statement. Proposition
2.3 and Proposition 2.4 give concrete Abel differential equations having exactly 2
nontrivial rational solutions. These facts prove the second part of the theorem.

Now we shall prove the Theorem 1.2. We also organize the proof of the theorem
in two parts, the uniform upper bound m+3 for n = 2m+1 and m ≥ 1, and some
examples having exactly 4 and 5 nontrivial rational solutions for m = 1 and m = 2,
respectively.

Proposition 2.5. If n = 2m+1 and m ≥ 1, then the equations (1.1) of type (m,n)
have at most m+ 3 nontrivial rational solutions.

Proof. First of all, it is easy to check that if y = 1/R(x) is a nontrivial rational
solution of equations (1.1), then the degree of R(x) can only be m+ 1. Set

R(x) = um+1x
m+1 + · · ·+ u1x+ u0, (2.6)

where um+1 ̸= 0. By substituting (2.6) and (1.2) into (1.5) and then comparing the
coefficients of the equation, we obtain the following relations:

(am + (m+ 1)um+1)um+1 = −b2m+1,

(am + (2m+ 1)um+1)um + am−1um+1 = −b2m,

· · · = · · · ,
(am + (m+ 1 + j)um+1)uj +Rj(uj+1, uj+2, · · · , um+1) = −bm+j ,

· · · = · · · ,
(a0 + u1)u0 = −b0,

where Rj(uj+1, uj+2, · · · , um+1) is a polynomial, and 0 ≤ j ≤ m. From the first
equation of the above system, we know that there are at most 2 solutions of this
equation, denoted by, u′

m+1 and u′′
m+1.

We can see that if am+iu′
m+1 ̸= 0 and am+iu′′

m+1 ̸= 0 with m+2 ≤ i ≤ 2m+1,
then once um+1 is determined, the value of uj with 0 ≤ j ≤ m is also uniquely
determined. Hence this equation can have at most 2 nontrivial rational solutions.

If there exist u′
m+1 such that am + iu′

m+1 = 0, i.e, u′
m+1 = −am/i, then by an

elementary way, we know u′′
m+1 = −(i −m − 1)am/(im + i). We claim that there

does not exist a natural number k ∈ [m + 2, 2m + 1] such that am + ku′′
m+1 = 0.

By contradiction, we assume that there exist a natural number k ∈ [m+2, 2m+ 1]
such that am + ku′′

m+1 = 0, then

i−m− 1

im+ i
=

1

k
,

k −m− 1

km+ k
=

1

i
.

Since i ∈ [m+ 2, 2m+ 1] and k ∈ [m+ 2, 2m+ 1], we obtain that

i−m− 1

im+ i
≤ m

im+ i
<

1

i
,

k −m− 1

km+ k
≤ m

km+ k
<

1

k
.

Hence
1

k
<

1

i
,

1

i
<

1

k
,

a contradiction. Hence the system can have at most one nontrivial rational solution
y = 1/R(x), with the leading coefficient of R(x) is u′′

m+1.
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On the other hand, if the leading coefficient of the term R(x) of the nontrivial
rational solution y = 1/R(x) is u′

m+1, then ui−m−1 is an independent variable, and
we may express u0, · · · , ui−m−2 in terms of ui−m−1. Substituting u0, · · · , ui−m−2

into the remaining equations, we may then obtain equations of higher degree in
ui−m−1.

In order to make the equations admit more solutions, we must assume am+(2m+
1)u′

m+1 = 0. In this case, the value of u′
m+1 is determined, and um is an independent

variable. Note that we can express um−k in terms of um from the k+2−th equation,
where 1 ≤ k ≤ m, namely, um−k =

cm−k,0

u′k
m+1

uk+1
m + · · ·+ cm−k,kum + cm−k,k+1, where

cm−k,0 > 0. Furthermore, substituting u0, · · · , um−1 into the m+ 3− th equation,
we obtain an equation of m+ 2 degree since the coefficients of the highest term of
this equation is dm/u′m

m+1, with dm > 0. Thus there are at most m+ 2 solutions of
the equations, namely, the equations (1.1) have at most m + 2 nontrivial rational
solutions in this case.

Basing on the above discussion, we know that the equations (1.1) have at most
m+ 3 nontrivial rational solutions. The Proposition follows.

In what follows we construct some explicit examples of the equations (1.1) of type
(1, 3) and (2, 5) which have exactly 4 and 5 nontrivial rational solutions, respectively.
Since all the computation of Proposition 2.6 and 2.7 is straightforward, therefore
we omit the tedious details.

Proposition 2.6. We consider the Abel differential equation (1.1) of type (1, 3)

dy

dx
= −3xy2 + (x3 − x)y3. (2.7)

This system has the following 4 nontrivial rational solutions,

y =
1

x2 − 1
, y =

2

x2 − 1
, y =

1

x2 − x
, y =

1

x2 + x
.

Proposition 2.7. We consider the Abel differential equation (1.1) of type (2, 5)

dy

dx
= −(5x2 − 15x+ 9)y2 + (2x5 − 15x4 + 40x3 − 45x2 + 18x)y3. (2.8)

This system has the following 5 nontrivial rational solutions,

y =
1

x3 − 11
2 x2 + 9x− 9

2

, y =
1

x3 − 5x2 + 6x

y =
1

x3 − 4x2 + 3x
, y =

1

x3 − 7
2x

2 + 3x
, y =

1
2
3x

3 − 3x2 + 3x
.

Proof of Theorem 1.2. Proposition 2.5 provides the first part of the theorem,
which correspond to the upper bound of the statement when n = 2m+1 and m ≥ 1.
Proposition 2.6 and Proposition 2.7 give concrete Abel differential equations of type
(1, 3) and (2, 5) having exactly 4 and 5 nontrivial rational solutions respectively.
These facts prove the second part of the theorem.

3. Proof of Theorem 1.3
In this section, we present a new method for finding the sharp upper bound on the
number of nontrivial rational solutions of Abel equations (1.1). Before giving the



Rational solutions... 2541

method, we need the following two useful lemmas. Firstly, Lemma 3.1 provides a
necessary condition for the existence of at least two nontrivial rational solutions of
the equations (1.1).

Lemma 3.1. Assume in equation (1.1)

g2m+1(x) = l(x− α1)(x− α2) · · · (x− α2m+1),

where l ∈ N and [m+1
2 ] ≤ l ≤ m. Let y = 1/P1(x) and y = 1/P2(x) be two nontrivial

rational solutions of equation (1.1). Set P1(x) = G(x)P̃1, P2(x) = G(x)P̃2, where

G(x) = gcd(P1(x), P2(x)) = (x− α1) · · · (x− αi),

P̃1 = (x− αi+1) · · · (x− αm+1), P̃2 = (x− αm+2) · · · (x− α2m+2−i),

with 1 ≤ i ≤ l and gcd(P̃1(x), P̃2(x)) = 1. Then if i = 1, we set G2(x) = 1. For
2 ≤ i ≤ l, let G2(x) = (x−α2m+3−i) · · · (x−α2m+1). Finally the following equations
hold:

P̃1 − P̃2 = C(x− αi1)
k1 · · · (x− αij )

kj , lG2(x)−G′(x) = G(x)

j∑
v=1

kv
x− αiv

(3.1)

where C is an constant, 1 ≤ i1 < i2 < · · · < ij ≤ i, kv ≥ 0, 1 ≤ v ≤ j and
k1 + · · ·+ kj = l − i.

Proof. Notice that y = 1/P1(x) and y = 1/P2(x) are two nontrivial rational
solutions of the equation (1.1), we know that

Pi(x)P
′
i (x) + Pi(x)fm(x) = −g2m+1(x), (3.2)

where 1 ≤ i ≤ 2. Thus we can express fm(x) in terms of P1(x) and P2(x), namely,

fm(x) =
P1(x)P

′
1(x)− P2(x)P

′
2(x)

P2(x)− P1(x)

= −(P̃1(x) + P̃2(x))G
′(x) +

G(x)(P̃1

′
(x)P̃1(x)− P̃2

′
(x)P̃2(x))

P̃2(x)− P̃1(x)

= −(P̃1(x) + P̃2(x))G
′(x)−G(x)P̃1

′
(x) +

G(x)P̃2(x)(P̃1

′
(x)− P̃2

′
(x))

P̃2(x)− P̃1(x)
.

Then since fm(x) is a polynomial, we deduce that a root of P̃2(x) − P̃1(x) must
be a root of G(x)P̃2(x). Moreover, note that (P̃1(x), P̃2(x)) = 1, so a root of
P̃2(x)− P̃1(x) must be a root of G(x), in other words, we can obtain the following
equation,

P̃1 − P̃2 = C(x− αi1)
k1 · · · (x− αij )

kj ,

where 1 ≤ i1 < i2 < · · · < ij ≤ i, kv ≥ 0 with 1 ≤ v ≤ j.
On the other hand, from (3.2), we obtain that

P ′
1(x) + fm(x) = −lP̃2(x)G2(x), P

′
2(x) + fm(x) = −lP̃1(x)G2(x).

It follows that
P ′
1(x)− P ′

2(x) = lG2(x)(P̃1(x)− P̃2(x)).
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Consequently,

lG2(x)−G′(x) = G(x)
P̃1

′
(x)− P̃2

′
(x)

P̃1(x)− P̃2(x)
= G(x)

j∑
v=1

kv
x− αiv

. (3.3)

By comparing the leading coefficient of the equation (3.3), we obtain that k1+ · · ·+
kj = l − i. Thus the proof of the lemma ends.

Then we give a necessary condition for the existence of at least three nontrivial
rational solutions y = 1/Pi(x) of equations (1.1), with Pi(0) = 0 and 1 ≤ i ≤ 3.

Lemma 3.2. Assume an equation (1.1) with at least three nontrivial rational solu-
tions y = 1/Pi(x), with Pi(0) = 0 and 1 ≤ i ≤ 3. Set

P1(x) = u1,m+1x
m+1 + u1,mxm + · · ·+ u1,n1

xn1 ,

with 1 ≤ n1 ≤ m, and u1,n1
̸= 0. Then the term pk(x) of all the other nontrivial

rational solutions y = 1/Pk(x) with Pk(0) = 0 can be express as

Pk(x) = uk,m+1x
m+1 + uk,mxm + · · ·+ uk,n1

xn1 ,

where k ≥ 2 and uk,n1
̸= 0. Furthermore, uk,n1

with k ≥ 2 can take only two
possible values:

(i) all the values are the same;
(ii) there exists a natural number k1 such that uk1,n1

̸= u1,n1
and uk,n1

≡ u1,n1
or

uk,n1
≡ uk1,n1

, with k, k1 ≥ 2 and k ̸= k1.

Proof. We assume without loss of generality that y = 1/Pi(x), with

pi(x) = ui,m+1x
m+1 + ui,mxm + · · ·+ ui,ni

xni ,

ni ≥ 1, ui,ni ̸= 0 and 1 ≤ i ≤ 3 are three given nontrivial rational solutions of an
equation (1.1) of type (m, 2m+ 1). Hence

P ′
i (x) + fm(x) = −g2m+1(x)

Pi(x)
. (3.4)

It follows that
(P ′

i1
− P ′

i2
)

(Pi1 − Pi2)
· Pi1Pi2 = g2m+1(x), (3.5)

where 1 ≤ i1 < i2 ≤ 3.
Set the multiplicity of root 0 in the term g2m+1(x) is l. Then by comparing the

smallest degree of the non-zero term of the polynomials on each side of equation
(3.5), we get that l = ni1 + ni2 − 1. Consequently,

n1 = n2 = n3 =
l + 1

2
.

Finally, for any nontrivial rational solution y = 1/Pk(x), with

Pk(x) = xnkRk(x) = uk,m+1x
m+1 + uk,mxm + · · ·+ uk,nk

xnk ,
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nk ≥ 1, uk,nk
̸= 0 and k ≥ 4, repeating the above progress, we deduce that

nk = (l + 1)/2 = n1. This complete the proof of the first part of the lemma.
Now we start to consider the coefficients of the term xn1 of Pk(x), with k ≥ 1.

In fact, if the coefficients of the term xn1 of Pk(x), with k ≥ 2 are equal to u1,n1 ,
then the lemma follows. Hence we only need to consider the case that there exists
k1 ∈ [2,+∞) such that uk1,n1

̸= u1,n1
. In this case, from the equation (3.5), we

obtain that
P ′
1 − P ′

k1

P1 − Pk1

· P1Pk1
= g2m+1(x). (3.6)

By comparing the coefficients of the smallest degree term of the polynomials on
each side of equation (3.6), we get that

n1(u1,n1
− uk1,n1

)

u1,n1 − uk1,n1

· u1,n1
uk1,n1

= n1u1,n1
uk1,n1

= b2n1−1.

Hence the coefficients of the term xn1 of Pk(x), with k ≥ 2 and k ̸= k1 must be
equal to u1,n1

, or uk1,n1
.

Then we shall prove that all the coefficients of the term xn1 of Pk(x), with
k ≥ 2 and k ̸= k1 are the same. By contradiction, we assume that there exist
k2 ≥ 2, k3 ≥ 2 and k1, k2 and k3 are mutually different natural numbers such
that uk2,n1

̸= uk3,n1
. Without loss of generality, we get that uk2,n1

= u1,n1
and

uk3,n1
= uk1,n1

. By substituting Pk1
, Pk2

, Pk3
and P1 into the equation (3.5), and

comparing the coefficients of the smallest degree term of the polynomials on each
side of these equations, we obtain that

h1u1,n1uk2,n1 = h1u
2
1,n1

= b2n1−1, h2uk3,n1uk1,n1 = h2u
2
k1,n1

= b2n1−1,

where h1 > n1, h2 > n1, and h1 and h2 are the smallest degree of the non-zero term
of P1(x)− Pk2(x) and Pk1(x)− Pk3(x) respectively.

Hence
h1h2u

2
1,n1

u2
k1,n1

= n2
1u

2
1,n1

u2
k1,n1

= b22n1−1,

a contradiction with the fact h1 > n1 and h2 > n1. Thus all the coefficients of the
term xn1 of Pk(x), with k ≥ 2 and k ̸= k1 have the same value which is equal to
u1,n1 , or uk1,n1This completes the proof of the lemma.

Now We shall use the above two lemmas to give the sharp upper bound on the
number of nontrivial rational solutions of equations (1.1) of type (3, 7).

Proposition 3.1. The equations (1.1) of type (3, 7) have at most 5 nontrivial
rational solutions.

Proof. If y = 1/R(x), with R(x) = u4x
4 + · · ·+ u1x+ u0 is a nontrivial rational

solution of the equations (1.1) of type (3, 7), then by the proof of Proposition 2.5,
we deduce that u4 can have at most two values, u′

4 and u′′
4 . Moreover, the equation

(1.1) of type (3, 7) have at least four nontrivial rational solutions only if a3+7u′
4 = 0

or a3 + 7u′′
4 = 0.

We only have to consider the case a3 = −7u′
4. In fact, if a3 = −7u′

4, then
u′′
4 = − 3

28a3 and there are at most 6 nontrivial rational solutions, y = 1/Pi(x), with
1 ≤ i ≤ 6, and the leading coefficient of Pi(x), with 1 ≤ i ≤ 5 are u′

4, while the
leading coefficient of P6(x) is u′′

4 .
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To simplify the calculation, we assume that a3 = −7, b0 = 0 and α1 = 0, then

u′
4 = 1, u′′

4 = 3
4 , and b7 = 3. Let g7(x) = 3

7∏
i=1

(x−αi). We shall now give a proof of

Proposition 3.1 by contradiction. Suppose otherwise, namely there exist a system
(1.1) of type (3, 7) having five nontrivial rational solutions y = 1/Pi(x), with the
leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 5.

Set P1(x) =
4∏

i=1

(x − αi) ( it is abbreviated as P1(x) = {1234} ). Notice that

changing αk → ασ(k) we can change P1(x), · · · , Pj(x) into R1(x), · · · , Rj(x), with
1 ≤ k ≤ 7 and j ≥ 2. We say that this two cases are equivalent, where σ ∈ S7, and
S7 is the symmetric group on seven letters. In the following discussion, we only list
a representative of each equivalent class. We shall now give all the possible cases of
Pi(x), where 1 ≤ i ≤ 5.

We first use the Pigeonhole principle to give the form of Pi(x), where 1 ≤ i ≤ 3.
Since there are five nontrivial rational solutions, we have 20 objectives. Moreover,
there are seven boxes α1, · · · , α7. By putting objectives into boxes, we obtain that
there is a box with at least three objectives, namely P1(x), P2(x) and P3(x) must
have a comma factor (x−α1). Then use the Pigeonhole principle again, we deduce
without loss of generality that P1(x) and P2(x) have a comma factor (x− α2).

For the sake of simplicity, we set Gi1,i2(x) is a greatest common divisor of two
polynomials Pi1(x) and Pi2(x), with 1 ≤ i1 < i2 ≤ 4, and denote by A the collection
of G1,2(x), G1,3(x) and G2,3(x), namely, A = {G1,2(x), G1,3(x), G2,3(x)}. We will
distinguish three cases depending on the degree of G1,2(x), G1,3(x) and G2,3(x).
(I) [Case of at least two elements of A of the degree 3]: We can assume without
loss of generality that the degree of G1,2(x) and G1,3(x) is 3. Hence we can choose
P2(x) = {1235} as a representative. Then we know that P3(x) ∈ B1, where B1 =
{1236}, {1245}, {1246}}. By Lemma 3.2, we obtain that the coefficients of the non-
zero term of the smallest degree of Pi(x) have at most two values, where 1 ≤ i ≤ 3.
Hence P3(x) = {1246}.

When P3(x) = {1246}, by Lemma 3.2, we deduce that α2α4α6 = α2α3α5. Then
by submitting P1(x) and P2(x) , P2(x) and P3(x) into the Lemma 3.1 respectively,
we obtain the equations,

2α2 + 2α3 = 3α6 + 3α7, α2α3 = 3α6α7, 2α2 = 3α7, α4α6 = α3α5.

Hence α2 = α7 = 0, α3 = 3
2α6, and α4 = 3

2α5. Thus the nontrivial rational solution
y = 1/P3(x) exists. Now we start to study the existence of the nontrivial rational
solution y = 1/P4(x) in this case. Firstly, by Lemma 3.2, we deduce that the
constant term of P4(x) is not zero.

It follows that P4(x) = {3456}. By submitting P1(x) and P4(x) into Lemma
3.1, we obtain that α3 = α6 = 0, a contradiction. Hence the nontrivial rational
solution y = 1/P4(x) doesn’t exist in this case. Thus there are at most three
nontrivial rational solutions y = 1/Pi(x), with the leading coefficient of Pi(x) is 1,
and 1 ≤ i ≤ 3.
(II) [Case of one element of A of the degree 3]: We can assume without loss of
generality that the degree of G1,2(x) is 3. Hence we can choose P2(x) = {1235} as
a representative. By submitting P1(x) and P2(x) into Lemma 3.1, we obtain the
equations

2α2 + 2α3 = 3α6 + 3α7, α2α3 = 3α6α7. (3.7)
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We shall now consider the equivalent class of P3(x). In fact, we deduce that P3(x) ∈
B2, where B2 = {{1267}, {1456}, {1467}}. Finally, the proof is done with a case by
case study on the form of P3(x).

(II-i) if P3(x) = {1267},then by submitting P1(x) and P3(x) into Lemma 3.1,
we obtain the equations

2α2 − 3α5 = β1, β1(α6 + α7 − α3 − α4) = α6α7 − α3α4, (3.8)

where β1 = 0 or β1 = α2.
We observe that if α2 = 0, then α5 = 0. By Lemma 3.2, we know that α4 =

α5 = 0, a contradiction. Thus α2 ̸= 0. Similarly to the above proof, we get that
α3 ̸= 0. Then by solving the equations (3.7) and (3.8), we deduce that the nontrivial
rational solution y = 1/P3(x) exists.

Now we study the existence of nontrivial rational solution y = 1/P4(x). Firstly
we give a list of all the possible cases of P4(x). Actually, if the degree of G1,4(x)
is 2, then P4(x) can have at most five representatives, namely P4(x) ∈ D1, where
D1 = {{1367}, {1467},{1456},{3456},{3467}}. If the degree of G1,4(x) is 1, then
P4(x) = {4567}.

Secondly, by Lemma 3.2, we obtain that the case P4(x) = {1367} and the case
P4(x) = {1467} never happens. For the other cases, by submitting P1(x) and
P4(x) into Lemma 3.1, we obtain the necessary equations for αi, where 1 ≤ i ≤ 7.
Combing with equations (3.7) and (3.8), we obtain a system of equations for the
coefficients αi, with 1 ≤ i ≤ 7. We reduce the study of the existence of P4(x) to
the study of the existence of the solutions of the above system of equations.

In fact, if P4(x) = {1456}, by submitting P1(x) and P4(x) into Lemma 3.1, we
obtain the equations

2α4 − 3α7 = β2, β2(α5 + α6 − α2 − α3) = α5α6 − α2α3, (3.9)

where β2 = 0 or β2 = α4. From the equations (3.7), (3.8) and (3.9), we get that

α2 =
9

2
α7, α3 =

12

5
α7, α4 =

3

2
α7, α5 = 3α7, α6 =

18

5
α7.

Hence this case happens.
Finally since the proof of the remaining cases are similar, we shall only discuss

the case P4(x) = {3456} in detail. If P4(x) = {3456}, by submitting P1(x) and
P4(x) into Lemma 3.1, we obtain the equations

2α3 + 2α4 − 3α7 = β3, β3(α5 + α6 − α2) = α5α6, (3.10)

where β3 = α3, or β3 = α4. From the equations (3.7), (3.8) and (3.10), we get that
α2 = 0 or α3 = 0, a contradiction. Thus this case never happens. Similarly to the
above proof, we obtain that the remaining cases also never happen.

In conclusion, we know that P4(x) can only be {1456}. Hence there are at most
four nontrivial rational solutions y = 1/Pi(x), with the leading coefficient of Pi(x)
is 1, and 1 ≤ i ≤ 4.

Since the structure and techniques of the discussion of these cases P3(x) =
{1456}, or P3(x) = {1467} are almost the same as proof of the case P3(x) = {1267},
we only give a list of all equivalent classes of P4(x), and point out the existing cases
in the following proof.
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(II-ii) P3(x) = {1456}. If the degree of G1,4(x) is 2, then P4(x) can have at
most five representatives, namely P4(x) ∈ D2 = {{1457}, {1467}, {2456}, {2457},
{2467}}. If the degree of G1,4(x) is 1, then P4(x) = {4567}. Examining all these
cases, we obtain that P4(x) can only be {2467}. Hence there are at most four
nontrivial rational solutions y = 1/Pi(x), with the leading coefficient of Pi(x) is 1,
and 1 ≤ i ≤ 4.

(II-iii) P3(x) = {1467}. If the degree of G1,4(x) is 2, then P4(x) = {2467}. If
the degree of G1,4(x) is 1, then P4(x) can have at most there representatives, namely
P4(x) ∈ D3 = {{1567}, {2567}, {4567}}. Examining all these cases, we obtain that
these four cases never happen. Hence there are at most three nontrivial rational
solutions y = 1/Pi(x), with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(III) [Case of none of A of the degree 3]: Firstly, the degree of G1,2(x) can only be
2, i.e, P2(x) = {1256}. By submitting P1(x) and P2(x) into Lemma 3.1, we obtain
the equations

2α2 − 3α7 = β5, β5(α5 + α6 − α3 − α4) = α5α6 − α3α4, (3.11)

where β5 = 0, or β5 = α2. Then we deduce that P3(x) can have only one represen-
tative, namely P3(x) = {1357}.

When P3(x) = {1357}. By submitting P1(x) and P3(x) into Lemma 3.1, we
obtain the equations

2α3 − 3α6 = β6, β6(α5 + α7 − α2 − α4) = α5α7 − α2α4, (3.12)

where β6 = 0, or β6 = α3. Similarly to the proof of case (II-i), we obtain that
α2 ̸= 0. Solving the equations (3.11) and (3.12), we know that the nontrivial
rational solution y = 1/P3(x) exists. Then the proof is done with a case by case
study on the existence of the nontrivial rational solution y = 1/P4(x). Firstly, we
know that the degree of G1,4(x) can only be 2. Hence P4(x) can have at most three
representatives, namely P4(x) ∈ D4 = {{1467}, {2367}, {2467}} .

Similarly to the proof of case (II-i), we obtain that the case P4(x) = {1467}
never happens. For cases P4(x) = {2367} and P4(x) = {2467}, by submitting
P1(x) and P4(x) into Lemma 3.1, we obtain the equations,

2α2 + 2α3 − 3α5 = β7, β7(α6 + α7 − α4) = α6α7, (3.13)

and
2α2 + 2α4 − 3α5 = β8, β8(α6 + α7 − α3) = α6α7, (3.14)

where β7 = α2, or β7 = α3, and β8 = α2, or β8 = α3. Solving the system of the
equations (3.11), (3.12) and (3.13), we obtain three solutions. Hence the nontrivial
rational solution y = 1/P4(x) with P4(x) = {2367} exists. On the other hand,
solving the system of equations (3.11), (3.12) and (3.14), we obtain another three
solutions. Hence the nontrivial rational solution y = 1/P4(x) with P4(x) = {2467}
exists. But these two curves cannot exist at the same time, because ∀σ ∈ S7,
changing αk → ασ(k) with 1 ≤ k ≤ 7 we cannot change the solutions of the system
of equations (3.11), (3.12) and (3.13) into the solution of (3.14). Hence there are at
most four nontrivial rational solutions y = 1/Pi(x), with the leading coefficient of
Pi(x) is 1, and 1 ≤ i ≤ 4.
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Therefore we have shown that in all these cases the systems (1.1) of type (3, 7)
have at most 4 nontrivial rational solutions y = 1/Pi(x), with the leading coeffi-
cient of Pi(x) is 1, and 1 ≤ i ≤ 4, a contradiction. Furthermore, by the proof of
Proposition 2.5, we know that there are at most one nontrivial rational solution
y = 1/Q(x), with the leading coefficient of Q(x) is 3/4. Hence the the Proposition
follows.

The next result gives the equations (1.1) of type (3, 7) with exactly 5 nontrivial
rational solutions. Since an easy computation can proof Proposition 3.2, we omit
the proof here.

Proposition 3.2. We consider the equation (1.1) of type (3, 7)

dy

dx
=−(7x3+

7

3
x2− 7

3
x− 1

3
)y2+(3x7+

7

3
x6− 28

9
x5− 70

27
x4+

7

81
x3+

7

27
x2+

2

81
x)y3,

this equation has the following 5 nontrivial rational solutions,

y =
1

x4 + 1
3x

3 − 11
9 x2 − 1

3x+ 2
9

, y =
1

x4 + 1
9x

3 − x2 − 1
9x

,

y =
1

x4 + x3 − 1
9x

2 − 1
9x

, y =
1

x4 − 7
9x

2 − 2
9x

, y =
1

3
4x

4 + 1
3x

3 − 13
18x

2 − 1
3x− 1

36

.

Proof of Theorem 1.3. The proof of the theorem follows from collecting the
above two propositions.

4. Proof of Theorem 1.4 and 1.5
The strategy of the proof of Theorem 1.4 and 1.5 are rather straightforward. Namely,
we construct equations (1.1) of type (m, 2m+ 1) having exactly i nontrivial ratio-
nal solutions, and the equation (1.1) of type (4, 9) with exactly 5 nontrivial rational
solutions, where m ≥ 1 and 1 ≤ i ≤ 4.

Proposition 4.1. For m ≥ 1, consider the eqaution (1.1) of type (m, 2m+ 1)

dy

dx
= −(2m+ 2)xmy2 + (m+ 1)x2m+1y3,

and the equation
dy

dx
= 2xmy2 +

3

4(m+ 1)
x2m+1y3.

Then these two equations have exactly 1 and 2 nontrivial rational solutions, respec-
tively.

Proof. For the first equation, if y = 1/P (x) is a nontrivial rational solution of
this equation, then we have

P (x)(P ′(x) + fm(x)) = −g2m+1(x).

Since g2m+1(x) = (m + 1)x2m+1, and a root of P (x) must be a root of g2m+1(x),
we get that

P (x) = a1x
m+1.
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Substituting P (x) into the above equation, we have a1 = 1. Hence this equation
have exactly one nontrivial rational solution.

Similar to the above discussion, we can deduce that the nontrivial rational so-
lution y = 1/Q(x) of the second equation must be of the form Q(x) = b1x

m+1.
Substituting Q(x) into the above equation, we get that

b1 = − 1

2(m+ 1)
, or b1 = − 3

2(m+ 1)
.

Hence this equation have exactly two nontrivial rational solutions.

Proposition 4.2. If m = 1, then the following equation (1.1) of type (1, 3),

dy

dx
= −(3x− 7)y2 + (x3 − 7x2 + 6x)y3,

have exactly 3 nontrivial rational solutions. For m ≥ 2, consider the equation (1.1)
of type (m, 2m+ 1),

dy

dx
=− ((2m+ 1)xm − 4m(2m− 1)

m− 1
xm−1 +

3m(2m− 1)

m− 1
xm−2)y2

+mx2m−3(x− m

m− 1
)(x− 3m

m− 1
)(x− 3)(x− 1)y3.

Then these equations have exactly 3 nontrivial rational solutions,

y =
1

P1(x)
, y =

1

P2(x)
, y =

1

P3(x)
,

with

P1(x) = xm−1(x− m

m− 1
)(x− 3),

P2(x) = xm−1(x− 3m

m− 1
)(x− 1),

P3(x) = xm−1(x− m

m− 1
)(x− 3m

m− 1
).

Proof. Firstly, for 1 ≤ m ≤ 3, an easy computation can proof the Proposition, so
we omit the proof here. When m ≥ 4, with a tedious computation we know that
y = 1/P1(x), y = 1/P2(x), and y = 1/P3(x) are three nontrivial rational solutions
of the Abel equation. Now we shall prove that there are no other nontrivial rational
solutions of the Abel equation.

By contradiction, we assume y = 1/P4(x) is another nontrivial rational solution,
then the leading coefficient of P4(x) can only be 1 and m/(m + 1). If the leading
coefficient of P4(x) is 1, by Lemma 3.2, we obtain that P4(x) can have at most there
representatives, namelyP4(x) ∈ E1, where

E1 = {xm−1(x− m

m− 1
)(x− 1), xm−1(x− 3m

m− 1
)(x− 3), xm−1(x− 1)(x− 3)}.

With a tedious computation we get that

P4(x)(P
′
4(x) + fm(x)) ̸= −g2m+1(x)
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when P4(x) ∈ E1. Thus this case never happens.
Now we obtain that the leading coefficient of P4(x) can only be m/(m+1). Set

P4(x) =
m

m+ 1
xm+1 + umxm + · · ·+ u0.

It follows from the equation

P4(x)(P
′
4(x) + fm(x)) = −g2m+1(x)

that um = − 4m(2m−1)
(2m+1)(m−1) . Moreover, since a root of P4(x) must be a root of

g2m+1(x), and the multiplicity of root 0 in the polynomial P4(x) is m− 1, we know
that um ∈ E2, where

E2 ={− 4m2

(m− 1)(m+ 1)
,− (2m− 1)m

(m− 1)(m+ 1)
,− (4m− 3)m

(m− 1)(m+ 1)
,− (4m− 1)m

(m− 1)(m+ 1)
,

− (6m− 3)m

(m− 1)(m+ 1)
,− 4m

m+ 1
}.

Since for 1 ≤ m ∈ N , − 4m(2m−1)
(2m+1)(m−1) /∈ E2, we deduce that the nontrivial rational

solution y = 1
P4(x)

with the leading coefficient of P4(x) is m/(m+ 1) doesn’t exist.
Hence the Proposition follows.

Proposition 4.3. If m = 2, then the following equation (1.1) of type (2, 5),

dy

dx
= −(5x2 − 50

3
x+

32

3
)y2 + (2x5 − 50

3
x4 +

140

3
x3 − 160

3
x2 +

64

3
x)y3,

have exactly 4 nontrivial rational solutions. For m ≥ 3, consider the system (1.1)
of type (m, 2m+ 1),

dy

dx
=− ((2m+ 1)xm− 6m2−5m+1

m
xm−1 +

24m4−76m3+82m2−37m+6

4m2(m− 1)
xm−2

+
−8m4+36m3−54m2+31m−6

4m2(m− 1)
xm−3)y2+mx2m−5(x−m−1

m
)(x− 2m−1

2m
)

× (x− 1)(x− 2m− 1

2(m− 1)
)(x− (2m− 1)(m− 2)

2m2
)(x− (2m− 1)(m− 2)

2m(m− 1)
)y3.

Then these equations have exactly 4 nontrivial rational solutions,

y =
1

P1(x)
, y =

1

P2(x)
, y =

1

P3(x)
, y =

1

P4(x)

with

P1(x) = xm−2(x− 2m− 1

2(m− 1)
)(x− m− 1

m
)(x− 2m− 1

2m
),

P2(x) = xm−2(x− 2m− 1

2m
)(x− 1)(x− (2m− 1)(m− 2)

2m(m− 1)
),

P3(x) = xm−2(x− 2m− 1

2(m− 1)
)(x− 1)(x− (2m− 1)(m− 2)

2m2
),

P4(x) = xm−2(x− 2m− 1

2(m− 1)
)(x− m− 1

m
)(x− (2m− 1)(m− 2)

2m(m− 1)
).
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Proof. Firstly, for 2 ≤ m ≤ 5, a tedious computation can proof the Proposition,
so we omit the proof here. When m ≥ 6, with an easy computation we know
that y = 1/P1(x), y = 1/P2(x), y = 1/P3(x) and y = 1/P4(x) are four nontrivial
rational solutions of the Abel equation. Now we shall prove that there are no other
nontrivial rational solutions of the Abel equation.

By contradiction, we assume y = 1/P5(x) is another nontrivial rational solution,
then the leading coefficient of P5(x) can only be 1 and m/(m + 1). If the leading
coefficient of P5(x) is 1, by Lemma 3.2,we get that the multiplicity of root 0 in the
polynomial P5(x) must be m− 2.

For convenience of stating our proof, we set

Y1 = x− 2m− 1

2(m− 1)
, Y2 = x− m− 1

m
, Y3 = x− 2m− 1

2m
,

Y4 = x− 1, Y5 = x− (2m− 1)(m− 2)

2m2
, Y6 = x− (2m− 1)(m− 2)

2m(m− 1)
.

Since the multiplicity of root 0 in the polynomial P5(x) must be m− 2, we get that
P4(x) can have at most sixteen representatives. Namely, P5(x) ∈ F1, where

F1 ={xm−2Y1Y2Y4, xm−2Y1Y2Y5, xm−2Y1Y3Y4, x
m−2Y1Y3Y5, xm−2Y1Y3Y6,

xm−2Y1Y4Y6, xm−2Y1Y5Y6, xm−2Y2Y3Y4, xm−2Y2Y3Y5, xm−2Y2Y3Y6,

xm−2Y2Y4Y5, xm−2Y2Y4Y6, xm−2Y2Y5Y6, xm−2Y3Y4Y5, xm−2Y3Y5Y6,

xm−2Y4Y5Y6}.

Since y = 1/Pi(x) and y = 1/P5(x) are nontrivial rational solutions of this
equation, we obtain that

(P ′
i − P ′

5)

(Pi − P5)
· PiP5 = g2m+1(x), (4.1)

where 1 ≤ i ≤ 4. If the degree of the common factor of the polynomials Pi and P5

is m, i.e,
Pi(x) = xm−2Yi1Yi2Yk, P5(x) = xm−2Yi1Yi2Yj , (4.2)

where 1 ≤ i1 < i2 ≤ 6, and Yk ̸= Yj . By substituting the equations (4.2) into (4.1),
we deduce that

(m− 2)Yi1Yi2 + xYi1 + xYi2 = m

6∏
i=1

Yi

Yi1Yi2YjYk
. (4.3)

Basing on the equation (4.3), with a simple computation, we obtain that all these
sixteen cases never happen.

Now we obtain that the leading coefficient of P5(x) can only be m/(m+1). Set

P5(x) =
m

m+ 1
xm+1 + umxm + · · ·+ u0.

It follows from the equation P5(x)(P
′
5(x) + fm(x)) = −g2m+1(x) that

um = − (3m− 1)(2m− 1)

(2m+ 1)m
.
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Moreover, since a root of P5(x) must be a root of g2m+1(x), and the multiplicity
of root 0 in the polynomial P5(x) is m− 2, we know that um ∈ F2, where

F2 = {
∑

1≤j1<j2<j3≤6

− m

m+ 1
(uj1 + uj2 + uj3)},

where

u1 =
2m− 1

2(m− 1)
, u2 =

m− 1

m
, u3 =

2m− 1

2m
, u4 = 1,

u5 =
(2m− 1)(m− 2)

2m2
, u6 =

(2m− 1)(m− 2)

2m(m− 1)
.

Since for 1 ≤ m ∈ N , − (3m−1)(2m−1)
(2m+1)m /∈ F2, we deduce that the nontrivial

rational solution y = 1/P5(x) with the leading coefficient of P5(x) is m/(m + 1)
doesn’t exist. Hence the Proposition follows.
Proof of Theorem 1.4. The proof of the theorem follows from collecting the
above three propositions.
Proof of Theorem 1.5. Consider the equation (1.1) of type (4, 9)

dy

dx
= −(9x4 − 252

5
x3 +

576

5
x2 − 576

5
x+

192

5
)y2 + (4x9 − 252

5
x8 +

7368

25
x7

−25536

25
x6 +

56448

25
x5 − 16128

5
x4 +

72192

25
x3 − 36864

25
x2 +

8192

25
x)y3,

this equation has the following 5 nontrivial rational solutions,

y =
1

4
5x

5 − 28
5 x4 + 88

5 x3 − 128
5 x2 + 64

5 x
,

y =
1

x5 − 36
5 x4 + 24x3 − 192

5 x2 + 128
5 x

,

y =
1

x5 − 37
5 x4 + 128

5 x3 − 224
5 x2 + 192

5 x− 64
5

,

y =
1

x5 + (− 34
5 + 4

5I) x
4 + ( 965 − 16

5 I) x3 + (− 128
5 + 16

5 I) x2 + 64
5 x

,

y =
1

x5 + (− 34
5 − 4

5I) x
4 + ( 965 + 16

5 I) x3 + (− 128
5 − 16

5 I) x2 + 64
5 x

.
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