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PEAKON AND PSEUDO-PEAKON IN A
GENERALIZED CAMASSA-HOLM TYPE

EQUATION∗

Rong Wu1 and Yan Zhou1,†

Abstract This paper studies traveling wave solutions of a nonlinear gener-
alization of the Camassa-Holm equation introduced by Anco et al. in 2015
and 2019. Under given parameter conditions, the corresponding traveling sys-
tem is a singular system of the first class defined in [8]. The bifurcations
of traveling wave solutions in the parameter space are investigated from the
perspective of dynamical systems. The existence of solitary wave solution, pe-
riodic peakon solutions and peakon, pseudo-peakon are proved. Possible exact
explicit parametric representations of various solutions are given.
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1. Introduction
In 2015 and 2019, as a nonlinear generalization of the Camassa-Holm equation
with peakon solutions, Anco et al., [1–3] suggested to study the following equation
(gCH−equation):

ut−uxxt =
1

2
(p+1)(p+2)upux−

1

2
p(p−1)up−2u3

x−2pup−1uxuxx−upuxxx, p ̸= 0.

(1.1)
This equation reduces to the CH−equation when p = 1 and shares one of the
Hamiltonian structures of CH−equation. For all p > 0, the authors of [1] proved
that system (1.1) admits a peakon solution. They stated that it is worth to further
study gCH−equation and understand how its nonlinearity affects properties of its
solutions compared to the CH− equation. We notice that these authors did not
study the bifurcations and possible exact solutions for the corresponding traveling
wave systems of equation (1.1). In this paper, we consider these problems for the
solutions of the corresponding traveling wave systems of equation (1.1) depending
on the parameters.

To study the traveling wave solutions of equation (1.1), we set u(x, t) = ϕ(x +
ct) ≡ ϕ(ξ), where ξ = x + ct and c is the wave speed. We always assume that
p > 0, c > 0 in this paper. Substituting u(x, t) = ϕ(x + ct) ≡ ϕ(ξ) into (1.1) and
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integrating the obtained equation once, we obtain

(ϕp − c)ϕ′′ = −1

2
pϕp−1(ϕ′)2 +

(
1

2
p+ 1

)
ϕp+1 − cϕ+ g, (1.2)

where g is an integral constant, and the prime stands for the derivative with respect
to ξ. Equation (1.2) is equivalent to the following planar dynamical system with
three-parameter group (p, c, g):

dϕ

dξ
= y,

dy

dξ
=

− 1
2pϕ

p−1y2 +
(
1
2p+ 1

)
ϕp+1 − cϕ+ g

ϕp − c
. (1.3)

System (1.3) has a first integral as follows:

H(ϕ, y) = y2(ϕp − c)− (ϕp+2 − cϕ2 + 2gϕ) = h. (1.4)

Clearly, on the straight lines ϕ = c
1
p , system (1.3) is discontinuous. Such a

system is called a singular traveling wave system of the first class defined by Li and
Chen in [8] and Li in [7].

It is interesting to find that the singular traveling system has peakon, pseudo-
peakon, periodic peakon and compacton solution family. Periodic peakon is a clas-
sical solution with two time-scales of a singular traveling system. Peakon is a
limit solution of a family of periodic peakons or a limit solution of a family of
pseudo-peakons under two classes of limit senses (see [9–11]). Compacton family is
a solution family of a singular system, for which all solutions ϕ(ξ) have finite sets
of support, i.e., the defined region of every ϕ(ξ) with respect to ξ is finite and the
value region of ϕ is bounded. Corresponding to different types of phase orbits, in
Li and Chen [8] and Li [7], a classification for different wave profiles of ϕ(ξ) was
given.

In this paper, the above-mentioned theory of singular traveling wave systems
is used to analyze the wave profiles of the wave function ϕ(ξ) in the solutions of
systems (1.3). By considering the dynamics of the traveling wave solutions de-
termined by the travelling wave system (1.3), all possible exact explicit parametric
representations for the traveling wave solutions of equation (1.1) will be given under
different parameter conditions.

Our main result is given below.

Theorem 1.1. (i) For a given fixed parameter pair (c, p), when g is varied, system
(1.3) has the bifurcations of phase portraits shown in Fig.1 and Fig.2.

(ii) For any p > 0, equation (1.1) has a peakon solution of Camassa-Holm type
given by (3.3). While when p is an even number, equation (1.1) has a peakon solution
and an anti-peakon solution of Camassa-Holm type given by (3.3) and (3.4).

(iii) When p = 2, 0 < g < 2c
3

√
c
3 , equation (1.1) has an exact solitary solution

given by (3.6) and an exact periodic peakon solution given by (3.8).

The proof of this theorem is given in next sections.
This paper is organized as follows. In section 2, we discuss the bifurcations of

phase portraits of system (1.3) depending on the changes of parameter g when c
and p are fixed. In section 3, we investigate exact solitary wave solution, peakon,
periodic peakon, and give possible exact explicit parametric representations for
these solutions.
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2. Bifurcations of phase portraits of system (1.3)

We first consider all possible phase portraits of system (1.3). It is known that system
(1.3) has the same invariant curve solutions as the associated regular system:

dϕ

dζ
= y(ϕp − c),

dy

dζ
= −1

2
pϕp−1y2 +

(
1

2
p+ 1

)
ϕp+1 − cϕ+ g, (2.1)

where dξ = (ϕp − c)dζ, for ϕp − c ̸= 0.
To find the equilibrium points of system (2.1), we write that f(ϕ) = (p +

2)ϕp+1 − 2cϕ + 2g, f ′(ϕ) = (p + 1)(p + 2)ϕp − 2c. Obviously, when ϕ = ϕ̃0 =(
2c

(p+1)(p+2)

) 1
p

, f ′(ϕ̃0) = 0. And f(ϕ̃0) = 2g− 2cpϕ̃0

p+1 . When p is not an even number,

since f(∓∞) = ∞, function f(ϕ) has two zeros ϕ1 and ϕ2 for g < cpϕ̃0

p+1 . Correspond-
ingly, system (2.1) has two equilibrium points E1(ϕ1, 0) and E2(ϕ2, 0) on the ϕ−axis.
While when p is an even number, because f ′(±ϕ̃0) = 0, f(−∞) = −∞, f(∞) = ∞,
system (2.1) has three equilibrium points Ej(ϕj , 0), j = 1, 2, 3 on the ϕ−axis for
g < | cpϕ̃0

p+1 |.

When p is not an even number and g > g1 = − 1
2pc

1+ 1
p , on the straight line

ϕ = ϕs = c
1
p , system (2.1) has two equilibrium points S+

∓(ϕs,∓ys), where ys =
√
Ys, Ys =

(p+2)ϕp+1
s −2cϕs+2g

pϕp−1
s

. In addition, when p is an even number and g <

−g1 = 1
2pc

1+ 1
p , on the straight line ϕ = −ϕs, system (2.1) has two equilibrium

points S−
∓(−ϕs,∓ys1), where ys1 =

√
Ys1, Ys1 = (p+2)(−ϕs)

p+1−2c(−ϕs)+2g
p(−ϕs)p−1 .

Let M(ϕj , 0) be the coefficient matrix of the linearized system of (2.1) at the
equilibrium point Ej(ϕj , 0). We have

J(ϕj , 0) = detM(ϕj , 0) = − 1
2 (ϕ

p
j − c)f ′(ϕj),

J(ϕs, ys) = detM(ϕs, ys) = −p2y2sϕ
2p−2
s < 0,

J(−ϕs, ys1) = detM(−ϕs, ys1) = −p2y2s1ϕ
2p−2
s < 0.

(2.2)

By the theory of planar dynamical systems (see [7]), for an equilibrium point of
a planar integrable system, if J < 0, the equilibrium point is a saddle point; if
J > 0 and (TraceM)2 − 4J < 0 (> 0), the equilibrium point is a center point (a
node point); if J = 0 and the Poincaré index of the equilibrium point is 0, this
equilibrium point is a cusp.

We write that hj = H(ϕj , 0), hs = H(ϕs, ys), hs1 = H(ϕs1, ys1), where H is
given by (1.4).

By the above discussion, for a fixed parameter pair (c, p), when p is not even
number and p > 0, we have the bifurcations of phase portraits of system (1.3) shown
in Fig.1 by varying the value of g.

When p is an even number, for a fixed parameter group (c, p), we obtain the
bifurcations of phase portraits of system (3.1) shown in Fig.2 by changing the value
of g.
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(a) g < g1 = −pc
1+ 1

p (b) g = g1, ys = 0 (c) g1 < g < 0, ys > 0

(d) g = 0 (e) 0 < g <
cpϕ̃0
p+1 (f) g =

cpϕ̃0
p+1

Figure 1. The bifurcations of phase portraits of system (1.3) when p is not an even number

3. Exact peakon solutions and solitary wave solu-
tions determined by the orbits of system (1.3)

We see from (1.4) that y2 = h+2gϕ−cϕ2+ϕp+2

(ϕp−c) . By using the first equation of (1.3),
we obtan

ξ =

∫ ϕ

ϕ0

(c− ϕp)dϕ√
−(c− ϕp)(h+ 2gϕ− cϕ2 + ϕp+2)

. (3.1)

(i) Exact explicit peakon solution
Supposing g = 0, we consider the heteroclinic triangles in Fig.1 (d) and Fig.2

(f) defined by the level curve of H(ϕ, y) = 0. Then (3.1) becomes

ξ =

∫ ϕs

ϕ

(c− ϕp)dϕ

ϕ
√

(c− ϕp)2
=

∫ ϕs

ϕ

dϕ

ϕ
. (3.2)

From (3.2), the peakon solution of Camassa-Holm type equation (1.3) follows (see
Camassa, et al., [5, 6]):

ϕ(ξ) = ϕse
−|ξ|. (3.3)

Fig.3 (a) shows the profile of this peakon solution.
When p is an even number, there are two heteroclinic triangles in Fig.2 (f).

Besides the peakon solution (3.3), we also have an anti-peakon solution:

ϕ(ξ) = −ϕse
−|ξ|. (3.4)
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(a) g < g1 (b) g = g1 = −pc
1+ 1

p (c) g1 < g < − cpϕ̃0
p+1

(d) g = − cpϕ̃0
p+1 (e) − cpϕ̃0

p+1 < g < 0 (f) g = 0

(g) 0 < g <
cpϕ̃0
p+1 (h) g =

cpϕ̃0
p+1 (i) cpϕ̃0

p+1 < g < −g1

(j) g = −g1 = pc
1+ 1

p (k) g > −g1

Figure 2. The bifurcations of phase portraits of system (1.3) when p is an even number

(ii) Exact explicit pseudo-peakon solutions or solitary wave solutions
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for p = 2

We consider the homoclinic orbit in Fig.2 (g) to the equilibrium point E2(ϕ2, 0),
which is defined by H(ϕ, y) = h2 when p = 2. Now, (3.1) can be written as

ξ =

∫ ϕM

ϕ

(c− ϕ2)dϕ√
(c− ϕ2)(h2 + 2gϕ− cϕ2 + ϕ4)

=

∫ ϕM

ϕ

(c− ϕ2)dϕ

(ϕ− ϕ2)
√
(
√
c− ϕ)(ϕM − ϕ)(ϕ− ϕl)(ϕ+

√
c)

= −
∫ ϕM

ϕ

(ϕ2 + ϕ)dϕ√
(
√
c− ϕ)(ϕM − ϕ)(ϕ− ϕl)(ϕ+

√
c)

+ (c− ϕ2
2)

∫ ϕM

ϕ

dϕ

(ϕ− ϕ2)
√

(
√
c− ϕ)(ϕM − ϕ)(ϕ− ϕl)(ϕ+

√
c)
.

(3.5)

Thus, (3.5) gives rise to the following exact solitary wave and pseudo-peakon
solution (when |h− hs| ≪ 1) of equation (1.3) (see Fig.3 (b)):

ϕ(χ) =
√
c−

√
c− ϕM

1− α̂2
1sn2(χ, k)

, χ ∈ (−χ
01
, χ

01
),

ξ(χ) =
2√

(
√
c− ϕl)(

√
c+ ϕM )

[(
(c− ϕ2

2)(ϕM − ϕl)

(ϕM − ϕ2)(
√
c− ϕl)

− ϕ2 −
√
c

)
χ

+ (
√
c− ϕM )Π(arcsin(sn(χ, k)), α̂2

1, k)

+
(
√
c+ ϕ2)(

√
c− ϕM )

(ϕM − ϕ2)
Π(arcsin(sn(χ, k)), α̂2

2, k)

]
,

(3.6)

where α̂2
1 = ϕM−ϕl√

c−ϕl
, α̂2

2 =
α̂2

1(
√
c−ϕ2)

ϕM−ϕ2
, k2 =

2α̂2
1

√
c

ϕM−
√
c
, χ

01
= sn−1

√
ϕM−ϕ2

α̂2
1(

√
c−ϕ2)

, sn(·, k),
cn(·, k) are Jacobin elliptic functions, and Π(·, ·, k) is the elliptic integral of the third
kind (see [4]).

(iii) Exact explicit periodic peakon solutions for p = 2

We now consider the the arch orbit in Fig.2 (g) connecting the equilibrium points
S−
∓(−ϕs,∓ys1), which is defined by H(ϕ, y) = hs1 when p = 2, ϕs =

√
c. Now, (3.1)

can be written as

ξ =

∫ ϕ

−
√
c

(ϕ2 − c)dϕ√
(ϕ2 − c)(hs1 + 2gϕ− cϕ2 + ϕ4)

=

∫ ϕ

−
√
c

(ϕ+
√
c)dϕ√

(ϕ− ϕM )(ϕ+
√
c)[(ϕ− b1)2 + a21]

=
√
c

∫ ϕ

−
√
c

dϕ√
(ϕ− ϕM )(ϕ+

√
c)[(ϕ− b1)2 + a21]

+

∫ ϕ

−
√
c

ϕdϕ√
(ϕ− ϕM )(ϕ+

√
c)[(ϕ− b1)2 + a21]

.

(3.7)
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By using (3.7), we obtain the following periodic peakon solution (see Fig.3 (c)):

ϕ(χ) = A1 +
B1

1 + α̃cn(χ, k) , χ ∈ (−χ02 , χ02),

ξ(χ) =
1√
AB

[
−
(
B(ϕM +

√
c

B −A

)√
cχ−

(
(
√
cA+ ϕMB)(α̂− α̂2)

(A−B)

)
×
∫ χ

0

dχ

1 + α̂cn(χ, k)

]
,

(3.8)

where A2=(ϕM − b1)
2+a21, B2=(

√
c+b1)

2+a21, A1=
ϕMB+

√
cA

A−B , B1=
2(A2√c+B2ϕM )

B2−A2 ,

k2= (ϕM+
√
c)2−(A−B)2

4AB , α̂= A−B
A+B , α̂2 = −

√
cA+ϕMB

ϕMB−
√
cA

, χ
01

= cn−1
(

A1+B1−ϕM

α̃(ϕM−A1)

)
.

(a) Peakon (b) Solitary wave (c) Periodic peakon

Figure 3. Profiles of traveling waves of equation (1.1)
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