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A DELAYED SEMILINEAR PARABOLIC
PREDATOR-PREY SYSTEM WITH HABITAT
COMPLEXITY AND HARVESTING EFFECTS

Haicheng Liu1, Bin Ge1,†, Qiyuan Liang1 and Jiaqi Chen1

Abstract In this paper, we propose a delayed reaction-diffusive system with
habitat complexity and harvesting effects, and study dynamic behaviors of the
system. Firstly, for the system without time delay, the stability of equilibria
is studied. It is found that when habitat complexity reaches a certain critical
value, the positive equilibrium will change from unstable to locally asymptoti-
cally stable. Secondly, time delay effect on the dynamic behaviors of diffusion
system is studied. The existence conditions of Hopf bifurcation are given, and
the properties of bifurcating periodic solutions are studied by using the center
manifold and normal form theories, including the direction of Hopf bifurca-
tion, the stability of bifurcating periodic solutions and the period. Finally, the
corresponding numerical simulations and biological interpretation are made to
verify the results of theoretical analysis.
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1. Introduction
1.1. Development of the model
Since American mathematician Lotka and Italian mathematician Volterra proposed
the population dynamic models [16], in the predator-prey system, functional re-
sponse is an essential factor, it reflects predator’s ability to prey, representing
the quantity of prey taken by a single predator per unit time. After the concept
“functional response” was put forward, the study of predator-prey system with
Holling type functional response has become a mainstream direction of biomathe-
matics [6, 10, 18], the theory and method of dynamic system are applied more and
more widely in biomathematics, which has attracted the attention of many schol-
ars [1, 2, 5, 13, 15, 20, 23, 24, 26, 28, 29]. Meanwhile, more and more biological effects
are interpreted and applied to the predator-prey system, such as habitat complex-
ity effect [3], shelter effect [7], delay effect [17] and harvesting effect [4]. Studying
on the predator-prey systems with biological effects is better consistent with and
explains some natural phenomena.

Time-delay systems often exhibit complex dynamic behaviors, such as stabil-
ity switch, periodic solution phenomenon, bifurcation and chaos, etc [12, 14, 21].
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Time-delay effect occurs in almost all ecosystems, which is the key factor of pop-
ulation dynamic change. More and more scholars introduce delay effect into the
predator-prey system, and make a comprehensive research on the corresponding
dynamic system. From the perspective of ecology and economics, an important
and interesting problem is how to find a reasonable harvest strategy. In order to
find reasonable control measures, we must first understand the impact of harvesting
effect on resources, therefore, the research on predator-prey system with harvesting
effect attracts the attention of lots of scholars [8, 11,22].

1.2. Model Building
In [19], the following predator-prey system with Holling type functional response is
established: 

dx

dt
= rx(1− x(t− τ)

K
)− c(1− β)xny

1 + ch(1− β)xn
,

dy

dt
=

ec(1− β)xny

1 + ch(1− β)xn
− dy,

x (ξ) = ϕ (ξ) > 0, y (ξ) = ψ (ξ) > 0, ξ ∈ (−τ, 0],

(1.1)

where, x (t) and y (t) represent prey and predator densities at time t respectively, the
other parameters are positive. τ is production delay of prey, r is the intrinsic growth
rate of prey, K is the maximum environmental capacity of prey, c(1−β)xn

1+ch(1−β)xn , n ≥ 1

represents Holling function response, c is the attack rate of predator on prey, h
indicates the handling time, e(0 < e < 1) is the conversion efficiency, and d is
the mortality of predator, that is, the death number of predators per unit time,
β(0 < β < 1) indicates the intensity of habitat complexity effect.

In order to make system (1.1) more consistent with biological significance, we
introduce the linear harvesting effect of prey, and establish a delayed predator-
prey system with habitat complexity and linear harvesting effects. Meanwhile,
considering that the state of predator-prey system depends not only on time but also
on space, we introduce the reaction-diffusion term and establish a delayed reaction-
diffusion predator-prey model with habitat complexity and linear harvesting effects:

∂u
∂t = d1∆u+ ru(1− u(x,t−τ)

K )− c(1−β)unv
1+ch(1−β)un − qEu,

∂v
∂t = d2∆v +

ec(1−β)unv
1+ch(1−β)un − dv,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω = (0, lπ).

(1.2)

Where q represents capture coefficient and E represents harvesting intensity.

1.3. Existence of the steady state solutions
In the following, we discuss the conditions which ensure the existence of equilibria
and biological significance. By calculation, we can obtain three equilibria of system
(1.2):

P0 = (0, 0) , P1 =

(
K

(
1− qE

r

)
, 0

)
, P ∗ = (u0, v0),
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where

u0 = (
1

1− β
)

1
n

(
d

c (e− dh)
)

1
n

, v0 =
e

d
u0

[
r(1− u0

K
)− qE

]
,

u0 can be regarded as function of β, suppose u0 = u(β). For convenience, denote
β∗ = 1− drn

c(e−dh)Kn(r−qE)n , and make the following assumptions:

Assumption 1.1. (A0) h < e/d and n ≥ 1, r > qE.

Assumption 1.2. (A1) β < β∗.

Theorem 1.1. Suppose that (A0) and (A1) hold, then system (1.2) has only one
positive equilibrium.

2. Stability of diffusion system without delay
When τ = 0, system (1.2) becomes

∂u
∂t = d1∆u+ ru(1− u

K )− c(1−β)unv
1+ch(1−β)un − qEu,

∂v
∂t = d2∆v +

ec(1−β)unv
1+ch(1−β)un − dv,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω = (0, lπ).

(2.1)

Define the real-valued Sobolev space

X :=
{
(u, v)

T ∣∣u, v ∈ H2 (0, lπ) , (ux, vx) |x=0,lπ = (0, 0)
}
,

and let the complexification of X be

XC := X ⊕ iX = {x1 + ix2 |x1, x2 ∈ X } .

Let
U = (u, v) ∈ H2 (0, lπ) , D = diag (d1, d2) , F (η, U) = (f, g) ,

then system (2.1) can be abstracted as

U̇ (t) = D∆U (t) + F (η, U) .

Use J (F ) to represent the Jacobian matrix of F , then the linearized operator of
the steady-state system corresponding to system (2.1) at (η, 0, 0) is

L (η) = D
∂2

∂x2
+ J (F ) |U≡0 =

a11 + d1
∂2

∂x2 a12

a21 a22 + d2
∂2

∂x2

 .

Use µn = n2

l2 , n ∈ N0 ≜ {0} ∪ N to represent the nth eigenvalue of −φxx =
µφ,φx |x=0,lπ = 0 , define the linear operator

Ln (η) =

a11 − d1µn a12

a21 a22 − d2µn

 ,
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then the eigenvalue of L (η) can be given by the eigenvalue of Ln (η), and the
characteristic equation of Ln (η) is

λ2 + En (η)λ+ Fn (η) = 0, (2.2)

where

En (η) = −tr (Ln (η)) = − (a11 + a22) + (d1 + d2)µn,

Fn (η) = |Ln (η)| = d1d2µn
2 − (a11d2 + a22d1)µn + a11a22 − a12a21.

2.1. Stability of the positive steady state
The Jacobian matrix of system (2.1) at the positive equilibrium P ∗ = (u0, v0) isa11 a12

a21 a22

 ,

where

a11 =

(
r − 2ru0

K

)
+ n

(
1− dh

e

)(
r − ru0

K

)
− qE,

a12 = − c (1− β)u0
n

1 + ch (1− β)u0n
= −d

e
,

a21 = nr
(
1− u0

K

)
(e− dh) , a22 = 0,

Ln =

(r − 2ru0

K

)
+ n

(
1− dh

e

) (
r − ru0

K

)
− qE − d1µn −d

e

nr
(
1− u0

K

)
(e− dh) −d2µn

 ,

En = −tr (Ln) = −
((

r − 2ru0
K

)
+ n

(
1− dh

e

)(
r − ru0

K

)
− qE

)
+ (d1 + d2)µn,

Fn = |Ln| = d1d2µn
2 −

((
r − 2ru0

K

)
+ n

(
1− dh

e

)(
r − ru0

K

)
− qE

)
d2µn

+
d

e
nr
(
1− u0

K

)
(e− dh) .

The characteristic roots of (2.2) are

λ
(n)
1,2 =

−En ±
√
En

2 − 4Fn

2
, n ∈ N0.

Lemma 2.1. Suppose that (A0) and (A1) hold, and dh < e < n
n−1dh satisfies,

then we have the following conclusions.

(i) If 1− drn[(n−2)e−ndh]n

c(e−dh)Kn(r−qE)n[(n−1)e−ndh]n < β < β∗, then En > 0, Fn > 0, thus all
the roots of Eq. (2.2) have negative real parts;

(ii) If β < 1− drn[(n−2)e−ndh]n

c(e−dh)Kn(r−qE)n[(n−1)e−ndh]n , then E0 < 0, thus Eq. (2.2) has at
least one root with positive real part.

Theorem 2.1. Suppose that (A0) and (A1) hold, and dh < e < n
n−1dh satisfies,

then we have the following conclusions.
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(i) If 1 − drn[(n−2)e−ndh]n

c(e−dh)Kn(r−qE)n[(n−1)e−ndh]n < β < β∗, then the steady state P ∗ =

(u0, v0) is locally asymptotically stable;
(ii) If β < 1 − drn[(n−2)e−ndh]n

c(e−dh)Kn(r−qE)n[(n−1)e−ndh]n , then the steady state P ∗ = (u0, v0)

is unstable.

2.2. Stability of the boundary equilibria
The corresponding characteristic roots at P0 = (0, 0) are

λn01 = r − qE − d1µn, λn02 = −d− d2µn < 0, n ∈ N0.

The corresponding characteristic roots at P1 =
(
K
(
1− qE

r

)
, 0
)

are

λn11 = − (r − qE)− d1µn < 0, λn12 =
ec (1− β)Kn

1 + ch (1− β)Kn
− d− d2µn, n ∈ N0.

Theorem 2.2. For system (2.1), the following results are true.

(i) The trivial steady state P0 = (0, 0) is unstable;
(ii) Suppose that (A0) holds, if β > β∗, then the semi-trivial steady state P1 =(

K
(
1− qE

r

)
, 0
)

is locally asymptotically stable; otherwise, it is unstable.

Theorem 2.3. For system (2.1), if β > β∗, then the semi-trivial steady state
P1 =

(
K
(
1− qE

r

)
, 0
)

is globally asymptotically stable.

Proof. According to the first equation,

∂u

∂t
− d1∆u = ru(1− u

K
)− c(1− β)unv

1 + ch(1− β)un
− qEu ≤ u

[
r(1− u

K
)− qE

]
.

Using the comparison principle, we have lim
t→∞

max
x∈[0,lπ]

u (x, t) ≤ K
(
1− qE

r

)
.

According to the second equation,

∂v

∂t
− d2∆v =

ec(1− β)unv

1 + ch(1− β)un
− dv(t)

= v(t)(
ec(1− β)

1/un + ch(1− β)
− d)

≤ v(t)(
ec(1− β)

1/Kn + ch(1− β)
− d) < 0,

hence ( ec(1−β)un

1+ch(1−β)un − d)v < 0. Therefore, for any ε > 0, there exist T > 0, v (x, t) ≤
ε, we can obtain

∂u

∂t
− d1∆u = ru(1− u

K
)− c(1− β)unv

1 + ch(1− β)un
− qEu

≥ u[r(1− u

K
)− c(1− β)un−1ε− qE]

≥ u[r(1− u

K
)− c(1− β)

(
K

(
1− qE

r

))n−1

ε− qE].
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Applying the comparison principle again,

u (x, t) ≥ K

1−
c (1− β)

(
K
(
1− qE

r

))n
ε+ qE

r

 , t > T, x ∈ [0, lπ] ,

thereby, lim
t→∞

max
x∈[0,lπ]

u (x, t) = K
(
1− qE

r

)
, that is, the semi-trivial steady state

P1 =
(
K
(
1− qE

r

)
, 0
)

is globally asymptotically stable.

2.3. Existence of Hopf bifurcation at the positive coexistence
System (2.1) has a unique positive equilibrium P ∗ = (u0, v0), let δ := u0 =

( 1
1−β )

1
n ( d

c(e−dh) )
1
n , vδ := v0 = e

dδ
[
r(1− δ

K )− qE
]
. Next, we select δ as bifurca-

tion parameter, the diffusion terms di, i = 1, 2 can be regard as function of δ, we
can get some results about diffusion effect on dynamics of the system. The Jacobian
matrix of (2.1) at P ∗ = (u0, v0) is as follows:a11(δ) a12(δ)

a21(δ) a22(δ)

 ,

with

a11(δ) = r

(
1− 2δ

K

)
+ nr

(
1− dh

e

)(
1− δ

K

)
− qE,

a12(δ) = − c (1− β) δn

1 + ch (1− β) δn
= −d

e
,

a21 = nr

(
1− δ

K

)
(e− dh) , a22 = 0,

Ln(δ) =

 a11(δ)− d1µn −d
e

nr
(
1− δ

K

)
(e− dh) −d2µn

 ,

En(δ) = −tr (Ln) = −a11(δ) + (d1 + d2)µn,

Fn(δ) = |Ln(δ)| = d1d2µn
2 − a11(δ)d2µn +

d

e
nr

(
1− δ

K

)
(e− dh) .

The characteristic roots of Eq. (2.2) are

λ
(n)
1,2 =

−En(δ)±
√
En

2(δ)− 4Fn(δ)

2
, n ∈ N0.

According to [27], we have the following lemma.

Lemma 2.2. At some critical point δ0, the sufficient conditions for system (2.1) to
generate Hopf bifurcation are as follows:

(i) There exists n ∈ N0 such that En (δ0) = 0, Fn (δ0) > 0, Ej (δ0) ̸= 0, Fj (δ0) ̸=
0, j ̸= n;
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(ii) Denote α(η)± iω(η) as a pair of complex characteristic roots near pure imag-
inary roots, then we have α (δ0) = 0, ω (δ0) ̸= 0, α′ (δ0) ̸= 0.

According to Theorem 2.1, if K (r−qE)e+nr(e−dh)
2re+nr(e−dh) < δ < K

(
1− qE

r

)
, then the

system is locally asymptotically stable at P ∗ = (u0, v0) , therefore, any possi-
ble Hopf bifurcation point must be within

(
0, (r−qE)e+nr(e−dh)

2re+nr(e−dh) K
]
. For any δ0 ∈(

0, (r−qE)e+nr(e−dh)
2re+nr(e−dh) K

]
, let α(δ)± iω(δ) be the eigenvalues of Ln(δ), then

α(δ) =
a11(δ)

2
− (d1 + d2)

2
µn, ω(δ) =

√
Fn(δ)− α2(δ).

By calculation, we have

α′(δ0) =
a′11(δ0)

2
= − r

2K

[
2 + n

(
1− dh

e

)]
< 0,

so the transversality condition holds. Through the above analysis, studying Hopf
bifurcation points can be translated into studying δ0 which satisfies Ei (δ0) =
0, Fi (δ0) > 0, Ej (δ0) ̸= 0, Fj (δ0) ̸= 0, j ̸= i in the following set

∆ :=

{
δ| δ ∈

(
0,

(r − qE) e+ nr(e− dh)

2re+ nr(e− dh)
K

]}
.

Let δH0 := (r−qE)e+nr(e−dh)
2re+nr(e−dh) K, clearly δH0 ∈ ∆. And because for any j ≥ 1,

E0

(
δH0
)
= 0, Ej

(
δH0
)
> 0; for any i ∈ N0, Fi

(
δH0
)
> 0, then δH0 is the bifurca-

tion point where the system produces spatially homogeneous periodic solutions.
In the following, we discuss spatially inhomogeneous periodic solutions generated

by the system when i ≥ 1. Because a11(δH0 ) = 0 and a11(δ) is decreasing in
(
0, δH0

)
,

we have a11(δ) > 0. Define li = i
√

d1+d2

M , i ∈ N, where M = r − qE + nr
(
1− dh

e

)
.

For li < l < li+1 and j ∈ N, let δHj be a solution of a11(δ) = (d1+d2)j
2

l2 , where
0 < δHj < δH0 , these points satisfy 0 < δH1 < δH2 < δH3 < · · · < δHn−1 < δHn < δH0 ,
for i ̸= j, Ej(δ

H
j ) = 0, Ei(δ

H
j ) ̸= 0. We only need to verify that when i ∈ N0,

Fi(δ
H
j ) ̸= 0, specifically, Fi(δ

H
j ) > 0. Next, we discuss the conditions of Fi(δ) > 0

for all δ ∈
(
0, δH0

]
. We know that the following inequality is true:

Fi(δ) ≥ d1d2µn
2 −Md2µn + dn

(r + qE) (e− dh)

2e+ n(e− dh)
.

To make g(y) = d1d2y
2 −Md2y + dn (r+qE)(e−dh)

2e+n(e−dh) to be positive, we only need to
guarantee d1

d2
> M2

4dn(r+qE)

(
2e

e−dh + n
)

holds. Make the following hypothesis:

Assumption 2.1. (A2)
d1

d2
> M2

4dn(r+qE)

(
2e

e−dh + n
)
.

Theorem 2.4. Suppose that (A0) − (A2) hold, for any li < l ≤ li+1, i ∈ N, there
exist i bifurcation points (0 < δH1 < δH2 < δH3 < · · · < δHi−1 < δHi < δH0 ) which
make Hopf bifurcation occur at δ = δHj and δ = δH0 . When δ = δH0 , the bifurcating
periodic solutions are spatially homogeneous; when δ = δHj , the bifurcating periodic
solutions are spatially non-homogeneous.
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3. Hopf bifurcation properties of the system with
time delay

In this section, we shall study time delay effect on the dynamic properties of diffusion
system (1.2).

3.1. Existence of Hopf bifurcation induced by delay
Assume that (A0) and (A1) are true, system (1.2) has a unique positive equilibrium
P ∗ = (u0, v0). For convenience, we make the transformations û = u−u0, v̂ = v−v0
to move P ∗ = (u0, v0) to (0, 0). Here we still use u, v to represent û, v̂, then system
(1.2) becomes

∂u
∂t = d1∆u+ r(u+ u0)(1− u(x,t−τ)+u0

K )− c(1−β)(u+u0)
n(v+v0)

1+ch(1−β)(u+u0)
n − qE(u+ u0),

∂v
∂t = d2∆v +

ec(1−β)(u+u0)
n(v+v0)

1+ch(1−β)(u+u0)
n − d(v + v0),

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω = (0, lπ).

(3.1)
Let

u1 (t) = u (·, t) , u2 (t) = v (·, t) , U = (u1, u2)
T
, X = C

(
[0, lπ] ,R2

)
,

in phase space Cτ = C ([−τ, 0] , X), (3.1) can be abstracted as

U̇ (t) = D∆U (t) + L (Ut) + F (Ut) , (3.2)

where φ = (φ1, φ2)
T
, D = diag(d1, d2), L : Cτ → X,F : Cτ → X are defined as

follows:

L (φ) =

a1 a2
a3 0

φ1 (0)

φ2 (0)

+

c1 0

0 0

φ1 (−τ)

φ2 (−τ)

 , F (ϕ) =

F1(ϕ)

F2(ϕ)

 ,

with

F1(ϕ) = r (ϕ1(0) + u0)

(
1− ϕ1(−τ) + u0

K

)
− c(1− β)(ϕ1(0) + u0)

n
(ϕ2(0) + v0)

1 + ch(1− β)(ϕ1(0) + u0)
n

− qE (ϕ1(0) + u0) −a1ϕ1(0)− a2ϕ2 (0)− c1ϕ1(−τ),

F2(ϕ) =
ec(1− β)(ϕ1(0) + u0)

n
(ϕ2(0) + v0)

1 + ch(1− β)(ϕ1(0) + u0)
n − d(ϕ2(0) + v0) + a3ϕ2(0),

a1 = n

(
1− dh

e

)[
r
(
1− u0

K

)
− qE

]
u0, a2 = −d

e
,

a3 = rn
(
1− u0

K

)
(e− dh) , c1 = −ru0

K
.

Then, the linearized equation of (3.1) at (0, 0) is

U̇ (t) = D∆U (t) + L (Ut) , (3.3)
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where

L (Ut) = L1U + L2Ut, L1 =

a1 a2
a3 0

 , L2 =

c1 0

0 0

 .

For −φ′′ = µφ, x ∈ (0, lπ) , φ′ (0) = φ′ (lπ) = 0, bn = cos nπ
l , n ∈ N0 are

the eigenvectors corresponding to the eigenvalues µn = n2/l2 , n ∈ N0. λ is the

eigenvalue of (3.3). Substitute y =
∞∑

n=0

y1n
y2n

 cos nπ
l into λy − d∆y − L(eλy) = 0,

we can obtain a1 + c1e
−λτ − d1µn a2

a3 −d2µn

y1n
y2n

 = λ

y1n
y2n

 .

The corresponding characteristic equation is

det
(
λI + µnD − L1 − L2e

−λτ
)
= 0.

So the characteristic equation is equivalent to

λ2 +Anλ+Bn + Cne
−λτ = 0, (3.4)

where
An = (d1 + d2)µn − a1,

Bn = d1d2µn
2 − a1d2µn − a2a3,

Cn = −c1(λ+ d2µn).

Make the following assumptions:

Assumption 3.1. (A3) a1 < 0.

Assumption 3.2. (A4) c1 < a1.

Assumption 3.3. (A5) a1
2 + 2a2a3 − c1

2 > 0.

Lemma 3.1. If (A0) − (A3) are true, the following conclusions can be drawn for
n ∈ N0.

(i) When τ = 0, all the characteristic roots of Eq. (3.4) have negative real parts,
system (3.1) is locally asymptotically stable at P ∗ = (u0, v0);

(ii) λ = 0 is not the root of Eq. (3.4).

Lemma 3.2. Suppose that (A3) holds, when τ ̸= 0, we have the following results.

(i) If (A4) holds, then Eq. (3.4) has a pair of pure imaginary roots ±iω+
n at

τ = τ j,+n for N1 ≤ n ≤ min {N2, N3};
(ii) If (A4) holds, then Eq. (3.4) has a pair of pure imaginary roots ±iω+

n at
τ = τ j,+n for max {N1, N3} < n < N2;

(iii) If (A4) holds, then when 0 ≤ n ≤ min {N1, N3} or N2 < n < N3, Eq. (3.4)
has two pairs of pure imaginary roots ±iω±

n at τ j,±n ;
(iv) If (A4) is true, then when n > max {N2, N3} or N3 < n < N1, Eq. (3.4) has

no pure imaginary roots;



2570 H. Liu, B. Ge, Q. Liang & J. Chen

(v) If (A5) is true, then Eq. (3.4) has no pure imaginary roots for n ≥ 0,

where

N1 =



[
N̂= l

√
1

2d1d2

[
(a1−c1)d2−

√
((a1−c1)d2)2+4d1d2a2a3

]]
, N̂ /∈ N,[

N̂= l

√
1

2d1d2

[
(a1−c1)d2−

√
((a1−c1)d2)2+4d1d2a2a3

]]
−1, N̂ ∈ N,

N2=



[
N̄= l

√
1

2d1d2

[
(a1−c1)d2+

√
((a1−c1)d2)2+4d1d2a2a3

]]
, N̄ /∈ N,[

N̄= l

√
1

2d1d2

[
(a1−c1)d2+

√
((a1−c1)d2)2+4d1d2a2a3

]]
−1, N̄ ∈ N,

N3=


[
Ñ= l

√
1

(d2
1+d

2
2)

[
a1d1+

√
d21a1

2−(d21+d
2
2) (a1

2+2a2a3−c12)
]]
, Ñ /∈ N,[

Ñ= l

√
1

(d2
1+d2

2)

[
a1d1+

√
d21a1

2−(d21 + d22) (a1
2+2a2a3−c12)

]]
− 1, Ñ ∈N,

τ j,±n =
1

ω±
n
arccos

(Dn+c1An) (ω
±
n )

2−DnBn

Dn
2+c12(ω

±
n )

2 +
2jπ

ω±
n
, j∈N0,

ω±
n =

√√√√−(An
2 − 2Bn − c12)±

√
(An

2 − 2Bn − c12)
2 − 4(Bn

2 −Dn
2)

2
.

Proof. Let λ = iω (ω > 0) be a solution of Eq. (3.4), for some n ∈ N0, ω satisfies

−ω2 + iωAn +Bn + c1(iω + d2µn) (cosωτ − i sinωτ) = 0.

Then we have  c1ω sinωτ + c1d2µn cosωτ = ω2 −Bn,

c1d2µn sinωτ − c1ω cosωτ = Anω.
(3.5)

Let Dn = c1d2µn, then

ω4 + (An
2 − 2Bn − c1

2)ω2 +Bn
2 −Dn

2 = 0. (3.6)

Let z = ω2, then (3.6) can be changed into

z2 + (An
2 − 2Bn − c1

2)z +Bn
2 −Dn

2 = 0. (3.7)

By direct computation,

Bn −Dn = d1d2µn
2 − (c1 + a1)d2µn − a2a3 > 0,

Bn +Dn = d1d2µn
2 + (c1 − a1)d2µn − a2a3,

An
2 − 2Bn − c1

2 = (d1
2 + d2

2)µn
2 − 2a1d1µn + a1

2 + 2a2a3 − c1
2.

Under (A4), when N1 ≤ n ≤ N2, Bn + Dn < 0, so Bn
2 − Dn

2 < 0. When
n > N2 or 0 < n ≤ N1, Bn + Dn > 0, then Bn

2 − Dn
2 > 0. We can obtain that

An
2 − 2Bn − c1

2 < 0 for 0 ≤ n ≤ N3; An
2 − 2Bn − c1

2 ≥ 0 for n > N3.



A delayed semilinear parabolic predator-prey system. . . 2571

If (A5) is true, An
2 − 2Bn − c1

2 increases monotonically with respect to n, then
for any n ≥ 0, An

2 − 2Bn − c1
2 > 0, and Bn +Dn > 0, so Bn

2 −Dn
2 > 0.

In conclusion, the conclusions are true, and the roots of Eq.(3.7) are

z± =
−(An

2 − 2Bn − c1
2)±

√
(An

2 − 2Bn − c12)
2 − 4(Bn

2 −Dn
2)

2
.

Then Eq. (3.6) has at least one positive root ω+
n =

√
z+n .

For convenience, we consider cases (i) and (ii) in Lemma 3.2. Denote τ j,+n

as τ jn, setting λ (τ) = α (τ) + iβ (τ) to be the roots of Eq. (3.4) which satisfies
α
(
τ jn
)
= 0, β

(
τ jn
)
= ωn when τ is sufficiently close to τ jn, then we have the following

transversality condition.

Lemma 3.3. Suppose (A3) holds, then α′ (τ jn) = dλ
dτ

∣∣∣τ=τj
n
> 0.

Proof. Differentiating (3.4) with respect to τ , we have(
dλ

dτ

)−1

=
(2λ+An)e

λτ + c1
c1λ(λ+ d2µn)

− τ

λ
,

then

sign

{
Re

(
dλ

dτ

∣∣∣τ=τj
n

)−1
}

=sign

{
Re

(
(2λ+An)e

λτ + c1
c1λ(λ+ d2µn)

− τ

λ

)}
τ=τ

j
n

=sign

{
2ω2 − 2Bn +An

2 − c1
2

c12ω2 +Dn
2

}

=sign


√
(An

2 − 2Bn − c1)
2 − 4(Bn

2 −Dn
2)

c12ω2 +Dn
2

 > 0.

Therefore, when τ = τ jn, the transversality condition α′ (τ jn) = dλ
dτ

∣∣∣τ=τj
n
> 0 holds.

Obviously, τ0n = min
j∈N0

{
τ jn
}

, let τ0∗ = min
N1≤n≤min{N2,N3}

{
τ0n
}

, we have the follow-
ing theorem.

Theorem 3.1. Suppose that (A0)− (A3) hold, if (A4)(or(A5))satisfies, for system
(3.1), the following results are true.

(i) When τ ∈ [0, τ0∗ ), the equilibrium P ∗ = (u0, v0) is locally asymptotically stable;
(ii) When τ > τ0∗ , the equilibrium P ∗ = (u0, v0) is unstable;

(iii) When τ = τ j0 , j ∈ N0, the system undergoes Hopf bifurcation at P ∗ = (u0, v0),
and the bifurcating periodic solutions are homogeneous; When τ ∈ {τ jn : τ jn ̸=
τ im,m ̸= n,N1 ≤ n,m ≤ min {N2, N3} , j, i ∈ N0}/{τk0 |k ∈ N0 }, the system
undergoes Hopf bifurcation at P ∗ = (u0, v0), and the bifurcating periodic so-
lutions are inhomogeneous.
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3.2. Direction and periodic solution of Hopf bifurcation
In this section, based on the method of Hassard et al. [9], we shall apply the cen-
tral manifold theorem and normal form principle to discuss the direction of Hopf
bifurcation and the stability of bifurcating periodic solutions. Fix j ∈ N0, N1 ≤
n ≤ min {N2, N3}, denote τ̃ = τ jn, setting ū(x, t) = u(x, τt)−u0, v̄(x, t) = v(x, τt)−
v0, τ = τ̃ + µ, u1(t) = u(·, t), u1(t) = u(·, t), u2(t) = v(·, t), U = (u1, u2)

T , omitting
”-”, system (2.1) can be rewritten as

∂u
∂t =τ

[
d1∆u+r (u+u0)

(
1− u(t−τ)+u0

k

)
− c(1−β)(u+u0)

n(v+v0)
1+ch(1−β)(u+u0)

n − qE (u+ u0)
]
,

∂v
∂t =τ

[
d2∆v +

ec(1−β)(u+u0)
n(v+v0)

1+ch(1−β)(u+u0)
n − d(v + v0)

]
.

(3.8)
Then system (3.8) can be written as an abstract form in the phase space ℓ1 :=

C([−1, 0], X):
dU(t)

dt
= τ̃D∆U(t) + Lτ̃ (Ut) + F (Ut, µ) , (3.9)

where Lµ (ϕ) and F (ϕ, µ) are defined by

Lµ(ϕ) = µ

a1ϕ1(0) + a2ϕ2(0) + c1ϕ1(−1)

a3ϕ2(0)

 , (3.10)

F (ϕ, µ) = µD∆ϕ+ Lµ(ϕ) + f(ϕ, µ),

f(ϕ, µ) = (τ̃ + µ)(F1(ϕ, µ), F2(ϕ, µ))
T
,

(3.11)

with

F1(ϕ, µ) =r (ϕ1(0) + u0)

(
1− ϕ1(−1) + u0

K

)
− c(1− β)(ϕ1(0) + u0)

n
(ϕ2(0) + v0)

1 + ch(1− β)(ϕ1(0) + u0)
n

−qE (ϕ1(0) + u0)− a1ϕ1(0)− a2ϕ2 (0)− c1ϕ1(−1),

F2(ϕ, µ) =
ec(1− β)(ϕ1(0) + u0)

n
(ϕ2(0) + v0)

1 + ch(1− β)(ϕ1(0) + u0)
n − d(ϕ2(0) + v0)− a3ϕ2(0).

The linearized equation of Eq. (3.8) is

Lµ (Ut) = K1U +K2Ut, (3.12)

where

K1 =

a1 a2
a3 0

 , K2 =

c1 0

0 0

 , U = (u, v)
T
, Ut = (ut, vt)

T
,

a1 = fu = n

(
1− dh

e

)[
r
(
1− u0

K

)
− qE

]
u0, a2 = fv = −d

e
,

a3 = gu = rn
(
1− u0

K

)
(e− dh) , c1 = fut

= −ru0
K
.

The characteristic Eq. (3.12) has a pair of pure imaginary eigenvalues Λn =
{iωnτ̃ ,−iωnτ̃}, consider

dU(t)

dt
= −τ̃Dn

2

l2
Ut + Lτ̃ (Ut) , (3.13)
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by Risze theorem, there exists ηk (τ̃ , θ) (−1 ≤ θ ≤ 0) such that for any ϕ ∈ C,ψ ∈
C∗ = C

(
[0, 1],R2

)
, −τ̃Dφ(0) + Lτ̃ (φ) =

∫ 0

−1
dηk (τ̃ , θ)φ (θ).

Select

ηk (τ̃ , θ) =


−τ̃K2, θ = −1,

0, θ ∈ (−1, 0),

τ̃(K1 − µkD), θ = 0.

(3.14)

Let A (τ̃) be the infinitesimal generators of the solution semigroup of (3.13), define
the bilinear paring

(ψ(s), ϕ(θ)) = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

= ψ(0)ϕ(0) + τ̃

∫ 0

−1

ψ(ξ + 1)

 0 0

a21 0

ϕ(ξ)dξ.

(3.15)

Under the bilinear pairing, A (τ̃) is the adjoint operator of A∗. We know ±iωnτ̃ are
the eigenvalues of A (τ̃) and A∗. Denote P and P ∗ as the eigenspaces of A (τ̃) and
A∗ corresponding to Λn, then P ∗ and P are conjugate, dimP = dimP ∗ = 2. And
q(θ) = q(0)eiωnτ̃θ(−1 ≤ θ ≤ 0), q̂∗(s) = q̂∗(0)eiωnτ̃s(0 ≤ s ≤ 1), in which, q(0) =1

a

 , q̂∗(0) =

 b

1

. q(θ) is the eigenvector of operator A (τ̃) corresponding to

eigenvalue iωnτ̃ , q̂
∗(s) is the eigenvector of operator A∗ corresponding to eigenvalue

−iωnτ̃ . namely, (
iωnI + µkD −K1 −K2e

−iωnτ̃
)
q(0) = 0,(

−iωnI + µkD −KT
1 −KT

2 e
iωnτ̃

)
q̂∗(0) = 0.

Then b = d1µn−iωn

a2
, a = a3

d2µn+iωn
. According to q∗ =Mq̂∗ and (q∗, q) = 1, we have

M=
1(

q̂∗, q̄
)=(d1c1µne

−iωnτ̃+d1µn−iωnc1e
−iωnτ̃−iωn

a2
+
a3 (d2µn+iωn)

(d2µn)
2
+ωn

2

)−1

.

Let Φ = (Φ1,Φ2) and Ψ∗ = (Ψ∗
1,Ψ

∗
2)

T , then

Φ1(θ) =
q(θ) + q(θ)

2
=

 Re
(
eiωnτ̃θ

)
Re
(
Meiωnτ̃θ

)
 ,

Φ2(θ) =
q(θ)− q(θ)

2i
=

 Im
(
eiωnτ̃θ

)
Im
(
Meiωnτ̃θ

)
 , θ ∈ (−1, 0),

Ψ∗
1(s) =

q∗(s) + q∗(s)

2
=

 Re
(
e−iωnτ̃s

)
Re
(
Ne−iωnτ̃s

)
 ,

Ψ∗
2(s) =

q∗(s)− q∗(s)

2i
=

 Im
(
e−iωnτ̃s

)
Im
(
Ne−iωnτ̃s

)
 , s ∈ (0, 1).
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Define

(Ψ∗,Φ) =

 (Ψ∗
1,Φ1) (Ψ

∗
1,Φ2)

(Ψ∗
2,Φ1) (Ψ

∗
2,Φ2)

 ,

construct a basis Ψ of P ∗, Ψ = (Ψ1Ψ2)
T
= (Ψ∗,Φ)

−1
Ψ∗, then (Ψ,Φ) = I2. Define

fn =
(
φ1
n, φ

2
n

)
and

α · fn = α1φ
1
n + α2φ

2
n, α = (α1, α2)

T ∈ C.

In addition, in Hilbert space XC , define the inner product ⟨·, ·⟩ of the complex value
L2: for any U1 = (u1, u2) , U2 = (v1, v2) ∈ XC ,

⟨U1, U2⟩ =
1

lπ

∫ lπ

0

(u1v̄1 + u2v̄2)dx,

and for ϕ ∈ C([−1, 0], X), ⟨ϕ, f1⟩ =
(〈
ϕ, β1

1

〉
,
〈
ϕ, β2

1

〉)
. So when α = 0, the central

subspace of (3.12) is PCNC, and

PCNC(ϕ) = Φ (Ψ, ⟨ϕ, f1⟩) · f1, ϕ ∈ C,

PSC = {(q(θ)z + q̄(θ)z̄) · f1, z ∈ C} .

Decompose C into C = PCNC ⊕ PSC, where PSC is the complementary subspace
of PCNC in C. Let Aτ̃ be the infinitesimal generators of semigroup included by the
solutions of (3.12), then Eq. (3.9) can be written in abstract form

dU(t)

dt
= Aτ̃Ut +X0F (Ut, µ) , (3.16)

where X0(θ) =

0,−1 ≤ θ < 0,

I, θ = 0.
Then the solution of (3.16) is

Ut = Φ(Ψ, < Ut, fn >) fn + h (x1, x2, µ) ,

U(t) = Φ

x1

x2

 fn + h (x1, x2, µ) , (3.17)

in which,
h (x1, x2, µ) ∈ PsC, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

Therefore, on the central manifold, the solution of Eq. (3.9) is

Ut = Φ

x1(t)

x2(t)

 fn + h (x1, x2, 0) . (3.18)

Let z = x1 − ix2 and p1 = Φ1 + iΦ2, then we have

Ut =
1

2
(p1z + p1z) fn+h

(
z + z̄

2
,

i(z − z̄)

2
, 0

)
=

1

2
(p1z + p1z̄) fn+W (z, z̄). (3.19)
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By [25], z satisfies
ż = iωnτ̃ z + g(z, z̄), (3.20)

where
g(z, z̄) = (Ψ1(0)− iΨ2(0)) ⟨F (Ut, 0) , fn⟩ , (3.21)

Set

W (z, z̄) =W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · , (3.22)

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · . (3.23)

Comparing coefficients, we can obtain

g20 = M̄

{
b̄

[
rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n− 1− 2n

dh

e

)
−2nd

e− dh

e2
1

u0
a− 2

r

K
e−iωnτ̃

]
+

[
rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)
+2nd

(
1− dh

e

)
1

u0
a

]}
,

g11 = M̄

{
b̄

[
rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n− 1− 2n

dh

e

)
−nde− dh

e2
1

u0
(a+ ā)− r

K

(
eiωnτ̃ + e−iωnτ̃

)]
+

[
rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)
+nd

(
1− dh

e

)
1

u0
(a+ ā)

]}
,

g02=M̄

{
b̄

[
rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n−1−2n

dh

e

)
−2nde− dh

e2
1

u0
ā−2

r

K
eiωnτ̃

]
+

[
rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)
+2nd

(
1− dh

e

)
1

u0
ā

]}
,

g21 =
3

8
M̄
(
b̄Q1 +Q2

)
+ M̄

b̄∫
Ω

Q3b
2
kdx+

∫
Ω

Q4b
2
kdx

 , bk = cos
kπ

l
, k ∈ N0,

where

Q1 = rn

(
1− dh

e

)(
1

u02
− 1

u0K

)(
n− 2− 2n

dh

e
− 2n2dh

e− dh

e2

)
+

1

u02
nd

(
1− dh

e

)
[e(n− 1)− 2nd] (2a+ ā),

Q2 = rn (e− dh)

(
1

u02
− 1

u0K

)(
n− 2− 2n

dh

e
− 2n2dh

e− dh

e2

)
+

1

u02
nd (e− dh) [e(n− 1)− 2nd] (2a+ ā),

Q3 = rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n− 1− 2n

dh

e

)(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
− 2nd

e− dh

e2
1

u0

(
1

2
W

(2)
20 (0) +

ā

2
W

(1)
20 (0) + aW

(1)
11 (0) +W

(2)
11 (0)

)
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− 2
r

K

(
1

2
W

(1)
20 (−1) +

1

2
W

(1)
20 (0)eiωnτ̃ +W

(1)
11 (−1) +W

(1)
11 (0)e−iωnτ̃

)
,

Q4 = rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
− 2nd

(
1− dh

e

)
1

u0

(
1

2
W

(2)
20 (0) +

ā

2
W

(1)
20 (0) + aW

(1)
11 (0) +W

(2)
11 (0)

)
.

Because g21 depends onW20 (θ) andW11 (θ), so we calculateW20 (θ) andW11 (θ) , θ ∈
[−1, 0] below. By [25], we have

Ẇ (z, z̄) =W20(θ)zż +W11(θ)żz̄ +W11(θ)zz̄ +W02(θ)z̄ż + · · · , (3.24)

Aτ̃W = Aτ̃W20(θ)
z2

2
+Aτ̃W11(θ)zz̄ +Aτ̃W02(θ)

z̄2

2
+ · · · . (3.25)

We know that Ẇ (z, z̄) satisfies Ẇ = Aτ̃W +H(z, z̄, θ), and

Ẇ = u̇t − żqbk − z̄ q̄bk =

W − 2Re{g(z, z̄)q(θ)}bk, θ ∈ [−1, 0),

AW − 2Re{g(z, z̄)q(θ)}bk + F̃ , θ = 0,
(3.26)

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Clearly,

H20(θ) =

−g20q(θ)bk − ḡ02q̄(θ)bk, θ ∈ [−1, 0),

−g20q(0)bk − ḡ02q̄(0)bk + F̃ ′′
zz, θ = 0,

H11(θ) =

−g11q(θ)bk − ḡ11q̄(θ)bk, θ ∈ [−1, 0),

−g11q(0)bk − ḡ11q̄(0)bk + F̃ ′′
zz̄, θ = 0.

According to Eqs. (3.24) and (3.26),

(Aτ̃ − 2iωnτ̃)W20(θ) = −H20(θ), Aτ̃W11(θ) = −H11(θ), · · · . (3.27)

Through calculation, we have

W20(θ) = − g20
iω0τ̃

q(0)eiωnτ̃θbk − ḡ02
3iω0τ̃

q̄(0)e−iωnτ̃θbk + E1e
2iωnτ̃θ,

W11(θ) =
g11
iωnτ̃

q(0)eiωnτ̃θbk − ḡ11
iωnτ̃

q̄(0)e−iωnτ̃θbk + E2. (3.28)

When θ = 0, from (3.27) and (3.28), we have

(2iωnτ̃ −Aτ̃ )E1e
2iωnτ̃θ

∣∣
θ=0

= F20b
2
k, Aτ̃E2|θ=0 = −F11b

2
k,
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where F20 =
(
F

(1)
20 , F

(2)
20

)T
, F11 =

(
F

(1)
11 , F

(2)
11

)T
, with

F
(1)
20 = rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n− 1− 2n

dh

e

)
− 2nd

e− dh

e2
1

u0
a− 2

r

K
e−iωnτ̃ ,

F
(2)
20 = rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)
− 2nd

(
1− dh

e

)
1

u0
a,

F
(1)
11 = rn

(
1

u0
− 1

K

)(
1− dh

e

)(
n− 1− 2n

dh

e

)
− nd

e− dh

e2
1

u0
(a+ ā)− r

K

(
eiωnτ̃ + e−iωnτ̃

)
,

F
(2)
11 = rn

(
1

u0
− 1

K

)
(e− dh)

(
n− 1− 2n

dh

e

)
+ nd

(
1− dh

e

)
1

u0
(a+ ā).

Suppose that b2k =
∞∑
k=1

ckbk, where ck is the coordinate, we have

E1 =

∞∑
k=1

(
2iωn + µkD −K1 −K2e

−2iωnτ̃
)−1

F20ckbk,

E2 =

∞∑
k=1

(µkD −K1 −K2)
−1
F11ckbk,

where(
2iωn + µkD −K1 −K2e

−2iωnτ̃
)−1

=
1

αk
1

2iωn + d2µk a2

a3 2iωn + d1µk − a1 − c1e
−2iωnτ̃

,

(µkD −K1 −K2)
−1

=
1

αk
2

d2µk a2

a3 d1µk − a1 − c1

 ,

αk
1 = −4ωn

2 − a2a3 −
[
d2
(
a1 + c1e

−2iωnτ̃
)]
µk + d1d2µ

2
k + 2iωn (d1 + d2)µk

− 2iωn

(
a1 + c1e

−2iωnτ̃
)
,

αk
2 = −a2a3 − [d2 (a1 + c1)]µk + d1d2µ

2
k.

So far, all the unknown terms in (3.21) are obtained, so that its norm form coeffi-
cients can be calculated and the following quantities can be calculated:

C1(0) =
i

2ωnτ̃

(
g11g20 − 2|g11|2 − 1

3 |g02|
2
)
+ 1

2g21,

µ2 = −Re(C1(0))
Re(λ′(τ̃)) ,

β2 = 2Re (C1(0)) ,

T2 = − Im(C1(0))+µ2 Im(λ′(τ̃))
ωnτ̃

.

Then we have the following theorem.
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Theorem 3.2. For the critical value τ jn, µ2 > 0(resp.µ2 < 0), the Hopf bifur-
cation is forward(resp. backward); β2 < 0(resp.β2 > 0), the bifurcating periodic
solutions are stable(resp. unstable); T2 > 0(resp.T2 < 0), the period increases(resp.
decreases).

4. Biological significance
Owing to limited resources and uneven spatial distribution of the population, or-
ganisms will search for food everywhere in order to survive, and then migration
and diffusion will occur. Population diffusion is a manifestation of biological adapt-
ability, when the population density is too high, it can expand its distribution
area. Different populations can find new environment and food in different seasons,
adapt to environmental change, and prevent the adverse consequences of inbreed-
ing through individual exchange within and between populations. Controlling the
habitat complexity and the intensity of harvesting effect can predict the change of
prey and predator, and protect the cubs from predation during lactation. When
the population quantity is small, the complexity of habitat reduces the encounter
rate between predator and prey, thus reducing the predation rate. Therefore, the
habitat complexity effect on the interaction between predator and prey can not be
ignored.

P0 = (0, 0) means that both predator and prey are extinct, which indicates that
when the intensity of habitat complexity effect is low, the prey is quickly eaten by
the predator, resulting in a sharp reduction of the prey to extinction, and ultimately
leading to the extinction of predator without food. P1 =

(
K
(
1− qE

r

)
, 0
)

means
the extinction of predator, which shows that when the intensity of habitat com-
plexity effect is high, the predator cannot get food, the mortality rate of predator
is higher than the growth rate, and the predator eventually die. The prey is abso-
lutely safe and the number eventually stabilizes at the maximum carrying capacity
of environment. The coexistence equilibrium P ∗ = (u0, v0) means that when the
intensity of habitat complexity effect is low, if the predator’s predation ability is
low and production delay is low, then predator and prey can coexist in time and
space, and the population quantity will remain near the stable value.

Hopf bifurcation is an important dynamic bifurcation to describe periodic phe-
nomena. When the system parameter passes a certain critical value τ jn, the local
stability of the equilibrium changes, and the small amplitude periodic solution is
generated on one side of the critical point. Diffusion term and production delay
cause Hopf bifurcation at P ∗ = (u0, v0), the system has spatially homogeneous
or inhomogeneous periodic solutions, that is, if the production delay is close to
Hopf bifurcation value, the system may have stable periodic solutions, at this time,
predator and prey can coexist, but the population quantity will have stable periodic
solutions.

5. Numerical simulations
We study the dynamic behaviors of systems with and without time delay, and
analyze the effects of habitat complexity effect β and production delay τ on the
stability of equilibrium. In the following, we shall verify the reliability of theoretical
results by numerical simulations, here we only consider the case n = 1.
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1.Stability of semilinear parabolic equation without delay
In system (2.1), select parameters as

r = 0.9,K = 300, c = 0.46, e = 0.058, h = 0.053, d = 0.6, q = 0.2, E = 0.5.

By Theorem 2.1, when 0 < β < 0.4726, system (2.1) is unstable at P ∗ = (u0, v0),
when 0.4726 < β < 0.8134, system (2.1) is locally asymptotically stable at P ∗ =
(u0, v0). When β = 0.5, d1 = 1, d2 = 0.5, by calculation, P ∗ = (99.568, 4.825),
system (2.1) is locally asymptotically stable at P ∗ = (99.568, 4.825)(see Fig.1).
When β = 0.4, d1 = 1, d2 = 0.5, by calculation, P ∗ = (82.974, 4.419), system (2.1)
is unstable at P ∗ = (82.974, 4.419), and the periodic solutions appear near the
equilibrium(see Fig.2). By Theorem 2.4, when d1

d2
> 0.37378, select d1 = 1, d2 =

2, β = 0.203, we have δ = δH0 = 61.71, the system produces spatially homogeneous
periodic solutions(see Fig.3).

Figure 1. P∗ = (99.568, 4.825) is locally asymptotically stable, and the initial value is (99.5, 4.8).

Figure 2. The system produces periodic solutions, and the initial value is (82.9, 4.4).

Figure 3. The system produces spatially homogeneous periodic solutions, and the initial value is
(62.2, 4.2).

2. Stability of semilinear parabolic equation with time delay
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In system (2.1), select parameters:

d1 = 1, d2 = 0.5, r = 0.9,K = 300, c = 0.46,

e = 0.058, h = 0.053, d = 0.6, q = 0.2, E = 0.5.

When n = 1, setting β = 0.5, then P ∗ = (99.568, 4.825), τ00 ≈ 1.141, ω0 = 0.346,
the initial values are u0 (x) = 99.568 + 0.1 ∗ sinx, v0 (x) = 4.825 + 0.1 ∗ cosx. By
theorem, when τ ∈ (0, τ00 ], P ∗ = (u0, v0) is locally asymptotically stable(see Fig.4).
When τ crosses τ00 , P ∗ = (u0, v0) loses stability, Hopf bifurcation occurs(see Fig.5).
By Theorem 3.2, c1

(
τ00
)
= −9.018−69.366i, λ′

(
τ00
)
= 1.235+2.1523i, thus we have

Re
(
c1
(
τ00
))

≈ −9.018, Im
(
c1
(
τ00
))

≈ 69.366,

Re
(
λ′
(
τ00
))

≈ 1.235, Im
(
λ′
(
τ00
))

≈ 2.1523,

µ2 ≈ 7.302 > 0, β2 ≈ −215.515 < 0, T2 ≈ −18.036 < 0.

Figure 4. τ = 1 < τ0, the system is locally asymptotically stable at P∗ = (u0, v0).

Figure 5. τ = 1.2 > τ0, the system produces periodic solutions at P∗ = (u0, v0).
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