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1. Introduction
Let x = x(t) be a real function and x[i](t) denote its i-th iterate, i.e., x[i](t) =
x(x[i−1](t)), x0(t) = t. Iterative functional differential equations as an impor-
tant class of functional differential equations with state-dependent delays, mod-
eled extensively in many fields such as classical electrodynamics, commodity price
fluctuations, populations. Many papers concerned with the first order equations
( [1–6, 8, 12, 15–18]), there are only few results about second order iterative func-
tional differential equations. Petahov [11] gave the existence and uniqueness of
solutions with a boundary value condition for the second order equation

x′′(t) = x(x(t)).

Latter, Si and his collaborators in [13, 14] further discussed the analytic solutions
of equation

x′′(t) = x[m](t)

and

x′′(t) = f
( m∑
i=0

cix
[i](t)

)
+G(t).
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In 2018, using Schauder fixed point theorem, Kaufmann [10] considered the boundary-
value problem of

x′′(t) = f(t, x(t), x(x(t))).

In this paper, using the method in [7] which studied the bounded solutions, we
consider the existence of maximal and minimal nondecreasing bounded solutions of

αx′′(t) + βx′(t) = g(t, x(t), x[2](t), . . . , x[n](t)), ∀t ∈ R. (1.1)

For convenience, we use C(R,R) to denote the set of all real valued continuous func-
tions from R into R, endowed with the usual metric d(f, g) =

∑∞
m=1 2

−m ∥f−g∥m

1+∥f−g∥m

for ∥f − g∥m = maxt∈[−m,m] |f(t)− g(t)|, so the topology on C(R,R) is the uniform
convergence on each compact intervals of R. We also consider the set BC(R,R) of all
bounded and continuous functions from R to R with the norm ∥f∥ = supt∈R |f(t)|,
so the topology on BC(R,R) is the uniform convergence on R. For M,L > 0, define

BC(M,L) =
{
φ ∈ C(R,R)

∣∣∣|φ(t)| ≤M, |φ(t2)− φ(t1)| ≤ L|t2 − t1|,

for all t, t1, t2 ∈ R
}
.

By the Arzelá-Ascoli theorem, the subset BC(M,L) is compact in C(R,R).
In order to study (1.1) by using the method of lower and upper solutions, we

recall a definition as in [9].

Definition 1.1. φ0 ∈ C2(R,R) is called a lower solution of (1.1) if it satisfies the
following condition

αφ′′
0(t) + βφ′

0(t) ≤ g(t, φ
[1]
0 (t), φ

[2]
0 (t), . . . , φ

[n]
0 (t)), ∀t ∈ R,

and ψ0 ∈ C2(R,R) is called an upper solution of (1.1) if it satisfies the following
condition

αψ′′
0 (t) + βψ′

0(t) ≥ g(t, ψ
[1]
0 (t), ψ

[2]
0 (t), . . . , ψ

[n]
0 (t)), ∀t ∈ R.

We wish to find a nondecreasing x ∈ BC(R,R) satisfying φ0(t) ≤ x(t) ≤ ψ0(t)
and (1.1) on R, where φ0 and ψ0 are defined as in Definition 1.1. Our method
is based on a monotone iteration approach. This paper is organized as follows.
In Section 2, we establish the existence of maximal and minimal nondecreasing
bounded solutions for (1.1). In Section 3, we give some examples to illustrate our
result.

2. Existence of maximal and minimal nondecreas-
ing bounded solutions

In this section, the existence of maximal and minimal nondecreasing bounded so-
lutions of equation (1.1) is proved. We will assume that the following conditions
hold

(H1)
G = sup

t∈R, φ̃i≤xi≤ψ̃i, i=1,2,··· ,n
|g(t, x1, x2, · · · , xn)| <∞.
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(H2) There is a constant γ = β2

4α > 0 such that

g(t1, x1, x2, · · · , xn)− g(t2, y1, y2, · · · , yn) ≤ −γ(x1 − y1)

for all t1, t2, xi, yi ∈ R such that

t1 ≤ t2, φ̃i ≤ xi ≤ yi ≤ ψ̃i, i = 1, 2, · · · , n.

We begin with the following lemma.

Lemma 2.1. Suppose that φ ∈ BC(R,R), h ∈ BC(Rn+1,R) and α, β, γ > 0 (or
α, β, γ < 0) are given. Then x ∈ BC(R,R) is a solution of equation

αx′′(t) + βx′(t) + γx(t) = h(t, φ(t), φ[2](t), . . . , φ[n](t)), (2.1)

if and only if

x(t) =
1

α

∫ t

−∞
e

β
α (u−t)

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α (s−u)dsdu. (2.2)

where β̃ + β = β, β̃β = αγ, with α, β̃, β, γ > 0 or α, β̃, β, γ < 0,∀t ∈ R.

Proof. By direct calculation, we can see that (2.2) is a solution of (2.1).
Suppose x ∈ BC(R,R) is a solution of (2.1), then it is easy to find Eq (2.1) can

be written in the form of

x′′(t)e
β̃
α t +

β̃

α
x′(t)e

β̃
α t +

β

α
x′(t)e

β̃
α t +

γ

α
x(t)e

β̃
α t

=
1

α
h(t, φ(t), φ[2](t), . . . , φ[n](t))e

β̃
α t,

or (
x′(t)e

β̃
α t
)′

+
β

α

(
x(t)e

β̃
α t
)′

=
1

α
h(t, φ(t), φ[2](t), . . . , φ[n](t))e

β̃
α t. (2.3)

Integrating (2.3) from −∞ to t and using αβ̃ > 0 we obtain

x′(t)e
β̃
α t +

β

α
x(t)e

β̃
α t =

1

α

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α sds,

i.e.,

x′(t) +
β

α
x(t) =

1

α

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α (s−t)ds, (2.4)

then we have

x′(t)e
β
α t +

β

α
x(t)e

β
α t =

1

α
e

β
α t

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α (s−t)ds,

i.e., (
x(t)e

β
α t
)′

=
1

α
e

β
α t

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α (s−t)ds,
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Integrating it from −∞ to t and using the fact αβ > 0 we get

x(t) =
1

α

∫ t

−∞
e

β
α (u−t)

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β̃
α (s−u)dsdu.

This completes the proof.

Remark 2.1. If β2 = 4αγ, taking β̃ = β = β
2 =
√
αγ in (2.2), then x ∈ BC(R,R)

is a solution of equation (2.1) can be written by

x(t) =
1

α

∫ t

−∞

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)dsdu. (2.5)

Theorem 2.1. Assume that (H1), (H2) hold, α, β > 0 and g(t, x1, x2, · · · , xn) is
a continuous function on Rn+1. Suppose that (1.1) has a lower solution φ0(t) and
an upper solution ψ0(t) with φ0, ψ0 ∈ BC(R,R) and

φ0(t) ≤ ψ0(t), ∀ t ∈ R, (2.6)
φ0(t) and ψ0(t) are nondeacresing on R.

Moreover, setting

φ̃i = inf
t∈R

φ
[i]
0 (t), ψ̃i = sup

t∈R
ψ
[i]
0 (t), i = 1, 2, · · · , n.

Then (1.1) has a minimal nondecreasing bounded solution φ∗(t) and a maximal
nondecreasing bounded solution ψ∗(t). Moreover,

φ0 ≤ φ∗ ≤ ψ∗ ≤ ψ0.

Furthermore, set

φk = Aφk−1, ψk = Aψk−1 (2.7)

for k ∈ N. Then {φk}∞k=1 and {ψk}∞k=1 are monotonically convergent to φ∗ and ψ∗
in C(R,R), respectively, and any nondecreasing bounded solution x(t) of (1.1) in
[φ0, ψ0] belongs to [φ∗, ψ∗].

Proof. For φ ∈ BC(R,R), we consider an auxiliary equation

αx′′(t) + βx′(t) + γx(t) = h(t, φ(t), φ[2](t), . . . , φ[n](t)), (2.8)

where
h(t, x1, x2, . . . , xn) = g(t, x1, x2, . . . , xn) + γx1

and γ = β2

4α . From remark 2.1 and (H1), we know that (2.8) has exactly one solution

xφ(t) =
1

α

∫ t

−∞

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)dsdu (2.9)

in BC(R,R).
Following (2.9), we consider a map A : BC(R,R)→ BC(R,R) defined as follows:

(Aφ)(t) =
1

α

∫ t

−∞

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−u)dsdu. (2.10)
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We take

D(M,L) = {x ∈ BC(M,L) : φ0 ≤ x ≤ ψ0, x(t) is nondeacresing on R}

with

L =
β

2α
M +

2

β
(G+ γmax{∥φ0∥, ∥ψ0∥}), (2.11)

M = max

{
max{∥φ0∥, ∥ψ0∥},

G+ γmax{∥φ0∥, ∥ψ0∥}
γ

}
, γ =

β2

4α
.

Note φ0, ψ0 ∈ D(M,L). First, we show that

A : D(M,L)→ D(M,L). (2.12)

Indeed, if φ ∈ D(M,L), then φ0(t) ≤ φ(t) ≤ ψ0(t) for all t ∈ R, so

∥φ∥ ≤ max{∥φ0∥, ∥ψ0∥}.

Since φ0, ψ0 and φ are nondecreasing, we have

φ̃i ≤ φ[i]
0 (t) ≤ φ[i](t) ≤ ψ[i]

0 (t) ≤ ψ̃i, t ∈ R, i = 1, 2, · · · , n. (2.13)

Then (H1) implies

|h(s, φ(s), φ[2](s), . . . , φ[n](s))| ≤ |g(s, φ(s), φ[2](s), . . . , φ[n](s)|+ γ|φ(s)|
≤ G+ γmax{∥φ0∥, ∥ψ0∥}.

Thus ∣∣∣(Aφ)(t)∣∣∣ ≤ ∣∣∣∣∣ 1α
∫ t

−∞

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)dsdu

∣∣∣∣∣
≤ G+ γmax{∥φ0∥, ∥ψ0∥}

γ
≤M, γ =

β2

4α
.

Hence ∥Aφ∥ ≤M . Next, recalling

(Aφ)′(t) = − β

2α
(Aφ)(t) +

1

α

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)ds, (2.14)

we derive

|(Aφ)′(t)| ≤ β

2α
|(Aφ)(t)|+ 1

α

∣∣∣∣∣
∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)ds

∣∣∣∣∣
≤ β

2α
M +

2

β
(G+ |γ|max{∥φ0∥, ∥ψ0∥})

= L.

Consequently, we arrive at
Aφ ∈ BC(M,L). (2.15)

Next, we show
φ0(t) ≤ (Aφ0)(t), ∀t ∈ R. (2.16)
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Let m(t) = φ1(t)− φ0(t), where φ1 = Aφ0. Then

φ′
1(t) = −

β

2α
φ1(t) +

1

α

∫ t

−∞
h(s, φ0(s), φ

[2]
0 (s), . . . , φ

[n]
0 (s))e

β
2α (s−t)ds

and noting φ0(t) is a lower solution for (1.1), we have

m′(t) = φ′
1(t)− φ′

0(t) ≥ −
β

2α

(
φ1(t)− φ0(t)

)
= − β

2α
m(t). (2.17)

Then m(t) ≥ 0 for any t ∈ R. Suppose to contrary that there exists t0 ∈ R such
that m(t0) < 0, then from (2.17), m′(t0) ≥ − β

2αm(t0) > 0. Thus m(t) < m(t0) < 0
for any t < t0 near t0. Then we have m(t) < 0 for any t ∈ (−∞, t0). In fact, if there
exists −∞ < a < t0 such that m(t) < 0,∀t ∈ (a, t0] and m(a) ≥ 0. Then m(a) = 0
and from (2.17),

m′(t) ≥ − β

2α
m(t) ≥ 0, ∀t ∈ [a, t0],

and thus m(t) ≥ m(a) = 0 for all t ∈ [a, t0], which is a contradiction. So a = −∞
and m′(t) ≥ − β

2αm(t0) > 0 for any t ∈ (−∞, t0). This implies

m(t) = m(t0)−
∫ t0

t

m′(s)ds ≤ m(t0) +
β

2α
m(t0)(t0 − t)→ −∞

as t → −∞. But ∥m∥ ≤ ∥φ0∥ + ∥ψ0∥ < ∞, which is again a contradiction. Thus
m(t) ≥ 0, i.e., Aφ0 ≥ φ0. So (2.16) is shown. Similarly, we can prove Aψ0 ≤ ψ0.

Next, (H2) and (2.13) give

h(t, φ0(t), φ
[2]
0 (t), . . . , φ

[n]
0 (t)) ≤ h(t, φ(t), φ[2](t), . . . , φ[n](t))

≤ h(t, ψ0(t), ψ
[2]
0 (t), . . . , ψ

[n]
0 (t)),

and thus

φ0(t) ≤ (Aφ0)(t) ≤ (Aφ)(t) ≤ (Aψ0)(t) ≤ ψ0(t), t ∈ R. (2.18)

Furthermore, since all φ[i](t), i = 1, 2, · · · , n are nondecreasing and using (H2), we
derive

(Aφ)(t) =
1

α

∫ t

−∞

∫ u

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)dsdu

≤ 1

α

∫ t

−∞

∫ u

−∞
h(u, φ(u), φ[2](u), . . . , φ[n](u))e

β
2α (s−t)dsdu

=
2

β

∫ t

−∞
h(u, φ(u), φ[2](u), . . . , φ[n](u))e

β
2α (u−t)du,

which by (2.14) implies

(Aφ)′(t) = − β

2α
(Aφ)(t) +

1

α

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)ds

≥ − 1

α

∫ t

−∞
h(u, φ(u), φ[2](u), . . . , φ[n](u))e

β
2α (u−t)du



Nondecreasing bounded solutions of a second order differential equation 2607

+
1

α

∫ t

−∞
h(s, φ(s), φ[2](s), . . . , φ[n](s))e

β
2α (s−t)ds

= 0. (2.19)

Summarizing, (2.15), (2.18) and (2.19) implies (2.12).
Moreover, arguments leading to (2.18) show that A is nondecreasing. So se-

quences {φk}∞k=1 ⊂ BC(M,L) and {ψk}∞k=1 ⊂ BC(M,L) monotonically and point-
wisely converge to functions φ∗ and ψ∗ on R, respectively. But we already know
that BC(M,L) ⊂ C(R,R) is compact. So there are subsequences {φki}∞i=1 and
{ψki}∞i=1 converging to φ∗ and ψ∗ in C(R,R). But this implies that {φk}∞k=1 and
{ψk}∞k=1 converge to φ∗ and ψ∗ in C(R,R). Clearly φ∗ ≤ ψ∗ by (2.6).

Next, we show that A ∈ C(BC(M,L), C(R,R)). Let φj → φ∗ as j → ∞ for
φj ∈ BC(M,L), j ∈ N0 = N∪ {0} uniformly on any compact interval [−m,m],m ∈
N of R. Set

hj(s) = h(s, φj(s), φ
[2]
j (s), . . . , φ

[n]
j (s)), j ∈ N0.

Then hj → h∗ = h(s, φ∗(s), φ
[2]
∗ (s), . . . , φ

[n]
∗ (s)) uniformly on [−m,m]. Next we

have∣∣∣h(s, φj(s), φ[2]
j (s), . . . , φ

[n]
j (s))e

β
2α (s−(−m))

∣∣∣ ≤ ∥h∥me β
2α (s+m), s ∈ (−∞,−m).

Since ∫ −m

−∞

∫ u

−∞
e

β
2α (s+m)dsdu =

4α2

β2
,

we can apply the Lebesgue dominated convergence theorem to obtain Aφj(−m)→
Aφ∗(−m). From (2.4),

(x′j(t)− x′∗(t)) +
β

2α
(xj(t)− x∗(t)) =

1

α

∫ t

−∞
(hj(s)− h∗(s))e

β
2α (s−t)ds. (2.20)

Integrating the both sides of (2.20) from −m to t, we have

(xj(t)− x∗(t)) +
β

2α

∫ t

−m
(xj(s)− x∗(s))ds

= (xj(−m)− x∗(−m)) +
1

α

∫ t

−m

∫ u

−∞
(hj(s)− h∗(s))e

β
2α (s−u)ds,

and

|xj(t)−x∗(t)| ≤ |xj(−m)−x∗(−m)|+4m

β
∥hj−h∗∥m+

β

2α

∫ t

−m
|xj(s)−x∗(s)|ds,

for any t ∈ [−m,m]. Then Gronwall’s inequality implies

∥xj − x∗∥m ≤ e
β
α

(
|xj(−m)− x∗(−m)|+ 4m

β
∥hj − h∗∥m

)
,

which means

∥Aφj −Aφ∗∥m ≤ e
β
α

(
|Aφj(−m)−Aφ∗(−m)|+ 4m

β
∥hj − h∗∥m

)
.
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Hence Aφj(t) → Aφ∗(t) uniformly on t ∈ [−m,m]. Since m ∈ N is arbitrarily,
we get Aφj → Aφ∗ in C(R,R), i.e., A : BC(M,L) → C(R,R) is continuous. This
proves the continuity of A.

Using

φ∗ ← φk+1 = Aφk → Aφ∗, ψ∗ ← ψk+1 = Aψk → Aψ∗,

we obtain
Aφ∗ = φ∗, Aψ∗ = ψ∗.

Finally, if x(t) is a nondecreasing bounded solution of (1.1) in [φ0, ψ0], then

φk ≤ x ≤ ψk,

so
φ∗ ≤ x ≤ ψ∗.

This completes the proof.

3. Examples
In this section, two examples are given to illustrate that the assumptions of Theo-
rem 2.1 do not self-contradict.

Example 3.1. Consider the following equation:

x′′(t) + 6x′(t) =
( t

1 + |t|
− 7

)
x(t) + (2 + arctan(t))(x(x(t)))2 + 1 + tanh(t), (3.1)

where α = 1, β = 6, g(t, x1, x2) =
(

t
1+|t| − 7

)
x1 + (2 + arctan(t))x22 + 1 + tanh(t).

Taking γ = β2

4α = 9, we get

h(t, x1, x2) = g(t, x1, x2) + γx1

=
( t

1 + |t|
+ 2

)
x1 + (2 + arctan(t))x22 + 1 + tanh(t).

In order to simplify the calculation, let us choose φ0 = 0, ψ0 = 1. Then

φ′′
0(t) + 6φ′

0(t) = 0 ≤ 1 + tanh(t)

=
( t

1 + |t|
− 7

)
φ0(t) + (2 + arctan(t))(φ0(φ0(t)))

2 + 1 + tanh(t),

and

ψ′′
0 (t) + 6ψ′

0(t) = 0 ≥ t

1 + |t|
− 7 + 2 + arctan(t) + 1 + tanh(t)

=
( t

1 + |t|
− 7

)
ψ0(t) + (2 + arctan(t))(ψ0(ψ0(t)))

2 + 1 + tanh(t),

where
t

1 + |t|
+ arctan(t) + tanh(t) ≤ 2 +

π

2

.
= 3.5707964, t ∈ R.
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A simple calculation yields

|g(t, x1, x2)| ≤ 8x1 + (2 +
π

2
)x22 + 2.

Noting
φ̃0 = φ̃1 = 0, ψ̃0 = ψ̃1 = 1,

so
G = 12 +

π

2
.

We see h(t, x1, x2) is nondecreasing in its arguments t ∈ R and x1, x2 ∈ [0, 1].
Therefore, (H1) and (H2) are satisfied. By Theorem 2.1, Eq. (3.1) has a has
a minimal solution φ∗(t) and a maximal solution ψ∗(t) in BC(R,R) which are
nondecreasing and 0 ≤ φ∗(t) ≤ ψ∗(t) ≤ 1. Moreover, they are given by iteration
schemas (2.7).

Example 3.2. Consider

x′′(t) + λx′(t) =
( t

1 + |t|
− 7

)
x(t) + (2 + arctan(t))(x(x(t)))2 + 1 + tanh(t), (3.2)

where λ > 0 is a parameter. Then as in Example 3.1, α = 1, β = λ, g(t, x1, x2) =(
t

1+|t| − 7
)
x1 + (2 + arctan(t))x22 + 1 + tanh(t). Taking γ = λ2

4 and

h(t, x1, x2) = g(t, x1, x2) + γx1

=
( t

1 + |t|
+ γ − 7

)
x1 + (2 + arctan(t))x22 + 1 + tanh(t).

As in Example 3.1, we have an lower solution φ0(t) = 0 and an upper solution
ψ0(t) = 1, and (H1) holds,

φ̃0 = φ̃1 = 0, ψ̃0 = ψ̃1 = 1.

If γ ≥ 7, i.e., λ ≥ 2
√
7, we have h(t, x1, x2) is nondecreasing for t ∈ R and x1, x2 ∈

[0, 1], (H2) holds. Then Theorem 2.1 implies that Eq. (3.2) has a minimal solution
φ∗(t) and a maximal solution ψ∗(t) in BC(R,R) which are nondecreasing and 0 ≤
φ∗(t) ≤ ψ∗(t) ≤ 1. Moreover, they are given by iteration schemas (2.7). Clearly,
β = 6 in Example 3.1 satisfies the condition 6 > 2

√
7.
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