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A DYNAMIC MODEL FOR COVID-19
THERAPY WITH DEFECTIVE INTERFERING
PARTICLES AND ARTIFICIAL ANTIBODIES∗

Yanfei Zhao1 and Yepeng Xing1,†

Abstract In this paper, we use ordinary differential equations to propose
a mathematical model for COVID-19 therapy with both defective interfering
particles and artificial antibodies. For this model, the basic reproduction num-
ber R0 is given and its threshold properties are discussed. We investigate the
global asymptotic stability of disease-free equilibrium E0 and infection equilib-
rium without defective interfering particles E1 by utilizing Lyapunov function
and LaSalle’s invariance principle. For infection equilibrium with defective
interfering particles E2, stability and Hopf bifurcation results are presented.
Numerical simulation is also given to demonstrate the applicability of the the-
oretical predictions.
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1. Introduction
The global epidemic of coronavirus disease 2019 (COVID-19) is now a major global
health threat. COVID-19 is the result of infection with severe acute respiratory
syndrome coronavirus 2(SARS-CoV-2) that is an enveloped positive-sense single-
stranded RNA virus belongs to coronavirus (CoV) family [22]. This is the third
zoonotic human coronavirus emerging in the current century, after the severe acute
respiratory syndrome coronavirus (SARS-CoV) in 2002 that spread to 37 countries
and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 that
spread to 27 countries [6].

Typical symptoms of COVID-19 infection include dry cough, fever, fatigue,
breathing difficulty, and bilateral lung infiltration in severe cases [11]. Older peo-
ple, and those with underlying medical problems like cardiovascular disease, dia-
betes, chronic respiratory disease, and cancer are more likely to develop serious
illness [6]. Respiratory droplet and contact transmission are the main transmis-
sion routes for person-to-person spread of SARS-CoV-2. Other potential routes
include aerosol and fecal-oral transmissions, which have not yet been confirmed [17].
Thus, current works are focused on containment and quarantine of infected  in-
dividuals, while researchers are trying them best to find methods to analyze the
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structure of the virus protein and the viral phylodynamics to produce vaccine [1,16].
Now some vaccines are approved but not available for every country for disease pre-
vention and treatment [14]. An effective therapy is still important for the patients
infected with COVID-19 today. Some experts are making great efforts in seeking
specific medicine which treats this disease. The main method is to inhibit the repli-
cation and infection of the virus. Defective interfering particles(DIPs) and artificial
antibodies offer alternative approaches.

The therapy for COVID-19 uses defective interfering particles to prevent the
replication of virus was proposed by Spanish reaschers. Defective interfering par-
ticles (DIPs) lack an essential portion of the virus genome, but retain signals for
replication and packaging, and therefore, interfere with standard virus (STV) repli-
cation [4, 7, 21]. Influenza A virus (IAV) defective interfering particles (DIPs) were
previously proposed for antiviral treatment against Influenza A infections [18,20,25].
In the nearest study, it conducted in vitro co-infection experiments with produced,
cell culture-derived DIPs and the IFN-sensitive SARS-CoV-2. It showed that treat-
ment with IAV DIPs leads to complete abrogation of SARS-CoV-2 replication [15].
This study provides evidence that defective interefering particles(DIPs) could sim-
ilarly inhibit SARS-CoV-2 in patients. The therapy for COVID-19 uses artificial
antibodies to neutralize virus was introduced in [9]. The coronavirus binds to
angiotensin-converting enzyme 2 (ACE2) through its S protein on the virion, and
then the viral membrane fuses with the cell membrane. Subsequently, the RNA
virus will replicate its genome inside the cell, and ultimately make new virions that
will be secreted to infect other cells [12, 19]. Artificial antibodies were proposed
to bind to the S protein of 2019-nCoV thereby neutralizing the virus(Figure 1) [9].
LY-CoV555 (also known as LY3819253), a potent antispike neutralizing monoclonal
antibody was developed by Eli Lilly after its discovery by researchers at AbCellera
and at the Vaccine Research Center of the National Institute of Allergy and Infec-
tious Diseases. A research showed that artificial antibody LY-CoV555 appeared to
accelerate the natural decline in viral load over time [3].

Figure 1. Artificial antibodies block SARS-CoV-2 from infecting cells.

In this paper, we consider to combine the above two potential treatments and
we propose a mathematical model to understand this approach of fighting a virus
with DIPs and artificial antibodies. Mathematical models can provide insights into
the dynamics of viral load in vivo. We use the model to determine the role of the
DIPs and artificial antibodies. The paper is structured as follows. In section 2, we
formulate a mathematical model of COVID-19 describing the effects of defective
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interfering particles(DIPs) and artificial antibodies. In section 3, we will discuss
the well-posedness of the solutions, equilibria and their stability. Also, in order to
properly define biologically meaningful equilibria, the basic reproduction number
R0 will be defined. we analyze the stability of the three equilibria: disease-free
equilibrium E0, infection equilibrium without defective interfering particles E1, and
infection equilibrium with defective interfering particles E2. It will be shown that
E0 is globally asymptotically stable for 0 < R0 < 1, E1 is globally asymptotically
stable for R0 > 1, R1 < 1, where R1 is a constant defined in terms of the system
parameters, and E2 is asymptotically stable for R1 < R0 < R2, where R2 denotes
a Hopf critical point from which a family of limit cycles bifurcate. A numerical
example is present in Section 4 to demonstrate the theoretical predictions. Finally,
conclusion and discussion are drawn in Section 5.

2. Model formulation
A standard and classic virus dynamical model is the following system of ordinary
differential equations (ODEs) [2, 13]:

dx

dt
= λ− dx− βxv,

dy

dt
= βxv − ay, (2.1)

dv

dt
= ky − pv,

where x(t), y(t) and v(t) are the densities of uninfected target cells, infected target
cells and the free virus, respectively, at time t. The infection rate is β. The healthy
cell is assumed to be produced at a constant rate λ. It is also assumed that once
cells are infected, they may die at rate a, either due to the action of the virus or
the immune system, and in the mean time, they each produces virus particles at a
rate k during their life which on average has length 1/a.

In this paper, let T (t) is the density of susceptible host cells, I(t) is the density
of infected cells, V (t) is the density of free virus, W (t) is the density of defective
interfering particles, and F (t) is the density of artificial antibodies. Normal cells are
produced at a constant rate λ, and die at a rate d1T . The infection rate is equal to
αTV , and infected cells die at a rate d2I. The virus are removed from the plasma at
a rate d3V and the antibody as enhancement of viral clearance at a rate η2FV . The
defective interfering particle attacks infected cells at a rate η1WI and the inhibition
function of the virus at a rate 1+βW . The infected cells relasing defective interfering
particles at a rate kη1WI. And so with the pressure of interfering particles the virus
production rate is given by γI/(1 + βW ). The death rate of defective interfering
particle is d4W . d5F is the death rate of artificial antibody(Figure 2). The system
describing these interactions is given by

dT

dt
= λ− αTV − d1T,

dI

dt
= αTV − d2I − η1WI,

dV

dt
=

γI

1 + βW
− d3V − η2FV, (2.2)
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dW

dt
= kη1WI − d4W,

dF

dt
= −η2FV − d5F.

Figure 2. Pathogen viral particles V infect normal cells T , producing infected cells I; W can infect
infected cells, artificial antibodies F bind to virus, infected cells are able to produce virus V and defective
interfering particles W .

3. Analytical results
3.1. Positivity and boundedness of solutions
First, we assume that the initial conditions for the system (2.2) have the form

T (0) = T0 > 0, I(0) = I0 > 0, V (0) = V0 > 0,

W (0) = W0 > 0, F (0) = F0 > 0. (3.1)

Since the right hand side functions of (2.2) satisfy the Lipschitz condition, there is
a unique solution with the initial conditions (3.1). Because of biological reasons, all
variables in system (2.2) must be non-negative. Therefore, for non-negative initial
values (3.1), the corresponding solution must remain non-negative. This can be
confirmed as below.

Theorem 3.1. The solution of system (2.2) subjects to initial conditions (3.1) is
positive for all t ≥ 0.

Proof. From the first equation of (2.2), we have

T (t) = e−
∫ t
0
(d1+αV (s))dsT (0) + λ

∫ t

0

e−
∫ t
s
(d1+αV (p))dpds,

implying T (t) > 0 for all t ≥ 0.
Similarly, we can easily prove W (t) > 0 for all t ≥ 0.
Next, we prove that I(t) and V (t) are positive for all t ≥ 0. We assume that

ti, i = 1, 2 are the first times when I(t) and V (t) reach zero, respectively, and
t0 = min {t1, t2}. We discuss the following three cases.



A dynamic model for COVID-19 therapy 2615

If t0 = t1, then

I(t) > 0, V (t) > 0, t ∈ [0, t1),

I(t1) = 0, V (t1) > 0, t = t1.

From the second equation in (2.2), we observe that

dI(t)

dt
|t=t1 = αT (t1)V (t1) > 0.

That means I(t) < 0 for t ∈ (t1 − ϵ, t1), where ϵ is an arbitrarily small positive
constant. This is a contradiction.

If t0 = t2, then

V (t) > 0, I(t) > 0, t ∈ [0, t2),

I(t2) > 0, V (t2) = 0, t = t2.

From the third equation in (2.2), we have

dV (t)

dt
|t=t2 =

γI(t2)

1 + βW (t2)
> 0.

That means V (t) < 0 for t ∈ (t2 − ϵ, t2), where ϵ is an arbitrarily small positive
constant. This is a contradiction.

If t0 = t1 = t2, from the second equation in (2.2), we have

I(t) = e−
∫ t
0
(d2+η1W (s))dsI(0) +

∫ t

0

αT (s)V (s)e−
∫ t0
s

(d2+η1W (p))dp)ds. (3.2)

Letting t = t0 in (3.2), we have

I(t0) = e−
∫ t0
0 (d2+η1W (s))dsI(0) +

∫ t0

0

αT (s)V (s)e−
∫ t0
s

(d2+η1W (p))dp)ds

> e−
∫ t0
0 (d2+η1W (s))dsI(0) > 0,

which is in contradiction to I(t0) = 0.
Finally, we can prove F (t) > 0 for all t ≥ 0. From the fifth equation of (2.2), we

can get
F (t) = e−

∫ t
0
(d5+η2V (s))dsF (0),

implying F (t) > 0 for all t ≥ 0.

Theorem 3.2. The solution of system (2.2) subjects to initial conditions (3.1) is
bounded for all t ≥ 0.

Proof. Let Λ(t) = T (t)+I(t)+
d2
2γ

V (t)+
1

k
W (t)+F (t) and µ = min

{
d1,

d2
2
,
d2d3
2γ

,

d4
k
, d5

}
. By straightforward computation, we have

dΛ(t)

dt
≤ λ− µΛ(t),
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which implies that
Λ(t) ≤ max

{
Λ(0),

λ

µ

}
.

Since the solution of system (2.2) subjects to initial conditions is positive for all
t ≥ 0. This implies that Λ(t) is bounded, so are T (t), I(t), V (t),W (t) and F (t).

3.2. Equilibria and basic reproduction number
System (2.2) has three possible biologically meaningful equilibria: disease-free equi-
librium E0, infection equilibrium without defective interfering particles E1, infection
equilibrium with defective interfering particles E2, given as follows:

E0 = (
λ

d1
, 0, 0, 0, 0),

E1 = (
d2d3
αγ

,
λ

d2
(1− 1

R0
),
d1
α
(R0 − 1), 0, 0), (3.3)

E2 = (
λR1

d1R0
,
d4
kη1

,
d1
α
(
R0

R1
− 1),

d2
η1

(R1 − 1), 0),

where R0 is called the basic reproduction number, defined by

R0 =
λαγ

d1d2d3(1 + βw0)
,

where w0 is the number of the defective interfering particles. When there are no
defective interfering particles in the humoral environment, w0 equals to zero.

R1 =
λαγkη1

d2d4αγ + kη1d1d2d3(1 + βw0)
=

1

d2d4
λkη1

+
1

R0

.

It can be seen from the expressions of the equilibrium solutions that the disease-free
equilibrium E0, always exists for any values of parameters. The infection equilib-
rium without defective interfering particles E1, exists if and only if R0 > 0, while
the infection equilibrium with defective interfering particles E2, exists if and only if
R0 > R1 > 1. In order to analyze the local stability of system (2.2) at an equilibrium
E, we need to calculate the Jacobian matrix of system (2.2) at E = (T, I, V,W,F )
as below:

J(E) =



−αV − d1 0 −αT 0 0

αV −d2 − η1W αT −η1I 0

0
γ

1 + βW
−d3 − η2F

−βγI

(1 + βW )2
−η2V

0 kη1W 0 kη1I − d4 0

0 0 −η2F 0 −η2V − d5


. (3.4)

The characteristic equation of system (2.2) at E is det(ξI − J) = 0, whose roots
determine the local stability of E.
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3.3. Stability of the disease-free equilibrium E0

First, for the local stability of E0, we have the following theorem.

Theorem 3.3. When R0 < 1, the disease-free equilibrium E0 is locally asymptoti-
cally stable; when R0 > 1, E0 becomes unstable.

Proof. For the disease-free equilibrium E0, some fundamental calculations give
the corresponding characteristic equation

(ξ + d1)(ξ + d4)(ξ + d5)(ξ
2 + c1ξ + c0) = 0, (3.5)

where

c1 = d2 + d3,

c0 = d2d3 −
λαγ

d1
.

The stability of E0 by the sign of real parts of the roots of Equation (3.5): If all
roots of Equation (3.5) have negative real parts, then E0 is locally asymptotically
stable; if there is at least one root of Equation (3.5) has positive real part, then E0

is unstable. Obviously, we only should consider the following equation:

D(ξ) = ξ2 + (d2 + d3)ξ + d2d3 −
λαγ

d1
= 0. (3.6)

If R0 > 1, it is easy to show for real ξ that

D(0) = d2d3(1−R0) < 0, lim
ξ→+∞

D(ξ) = +∞.

Hence, D(ξ)=0 has at least one positive real root. Therefore, if R0 > 1, the disease-
free equilibrium E0 is unstable.

Next, consider R0 < 1. Using the Decarte’s rule of sign, we know that the
negativity of the real parts of the two roots of Equation (3.6) is equivalent to
d2d3 −

λαγ1
d1

> 0, that is R0 < 1. Therefore, all roots of (3.6) have negative real
part when R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable.

Further, for the global stability of E0, we have the following result.

Theorem 3.4. When R0 < 1, the disease-free equilibrium E0 is globally asymptot-
ically stable.

Proof. We consturt the following Lyapunov function:

L1 =
1

2
(T − λ

d1
)2 +

λ

d1
I +

λd2
γd1

V +
λ

kd1
W + F. (3.7)

Thus, we have

L′
1 = (T − λ

d1
)T ′ +

λ

d1
I ′ +

λd2
γd1

V ′ +
λ

d1k
W ′ + F ′

= (T − λ

d1
)(λ− αTV − d1T ) +

λ

d1
(αTV − d2I − η1WI) +

λd2
γd1

(
γI

1 + βW
− d3V



2618 Y. Zhao & Y. Xing

− η2FV ) +
λ

d1k
(kη1WI − d4W )− (η2FV + d5F )

= (T − λ

d1
)[−d1(T − λ

d1
)− αTV ] +

λ

d1
αTV +

λ

d1
(

d2
1 + βW

− d2)I

− λd2(d3 + η2F )

d1γ
V − λd4

kd1
W − (η2FV + d5F )

= −d1(T − λ

d1
)2 − (T − λ

d1
)[αV (T − λ

d1
) +

λ

d1
αV ] +

λ

d1
αV (T − λ

d1
) +

λ2α

d21
V

+
λ

d1
(

d2
1 + βW

− d2)I −
λd2(d3 + η2F )

d1γ
V − λd4

kd1
W − (η2FV + d5F )

= −d1(T − λ

d1
)2 − αV (T − λ

d1
)2 +

λd2d3
γd1

(R0 − 1)V +
λ

d1
(

d2
1 + βW

− d2)I

− λd2η2
d1γ

FV − λd4
kd1

W − (η2FV + d5F )

≤ 0. (3.8)

Note that T , I, V , W , F are positive. All terms of the right in (3.8) are non-
positive when R0 < 1. L′

1 = 0 if and only if T = λ/d1 and other variables are
zero. By LaSalle’s invariance principle [10], we conclude that E0 is indeed globally
asymptotically stable.

3.4. Stability of the infection equilibrium E1

When R0 > 1, the disease-free equilibrium E0 becomes unstable and bifurcates
into the infection equilibrium without defective interfering particles E1. Thus, in
order to study the stability of E1, we assume R0 > 1 in this section. We have the
following results.

Theorem 3.5. When R1 < 1 < R0, the infection equilibrium without defective
interfering particles E1 is locally asymptotically stable; when R1 > 1, E1 becomes
unstable.

Proof. The characteristic equation at E1 is given by

[ξ +
η2d1
α

(R0 − 1) + d5][ξ −
kη1λ

d1
(1− 1

R1
)](ξ3 + a2ξ

2 + a1ξ + a0) = 0, (3.9)

where

a2 = d1
R0

R1
+ d2 + d3,

a1 = d1(d2 + d3)
R0

R1
,

a0 = d1d2d3(R0 − 1).

See that
ξ1 =

η2d1
α

(1−R0)− d5 < 0, ξ2 =
kη1λ

d1
(1− 1

R1
) < 0.

Next, we consider the following equation:

ξ3 + (d1
R0

R1
+ d2 + d3)ξ

2 + d1(d2 + d3)
R0

R1
ξ + d1d2d3(R0 − 1) = 0. (3.10)
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Applying the Routh-Hurwitz Criterion [5], we can get that all roots of (3.10) have
negative real parts if and only if a2 > 0, a0 > 0 and a1a2 − a0 > 0. Note that

a2 = d1
R0

R1
+ d2 + d3 > 0,

a0 = d1d2d3(R0 − 1) > 0,

a1a2 − a0 = [d1(d2 + d3)
R0

R1
](d1

R0

R1
+ d2 + d3)− d1d2d3(R0 − 1) > 0. (3.11)

Hence, all roots of the characteristic equation (3.9) have negative real parts. It
means that when R1 < 1 < R0, the infection equilibrium without defective inter-
fering particles E1 is locally asymptotically stable.

Also, we can prove the global stability of E1, as given in the following theorem.

Theorem 3.6. When R1 < 1 < R0, the infection equilibrium without defective
interfering particles E1 is globally asymptotically stable.

Proof. For convenience, we denote E1 as (T1, I1, V1, 0, 0), where T1 =
d2d3
αγ

, I1 =

λ

d1
(1− 1

R0
) and V1 =

d1
α
(R0 − 1). We construst the following Lyapunov function:

L2 =T − T1 − T1 ln
T

T1
+ I − I1 − I1 ln

I

I1
+

d2
γ
(V − V1 − V1 ln

V

V1
)

+
1

k
W +

d2η2
d5γ

(
λγ

d2d3
− d1

α
)F.

(3.12)

Thus, we have

L2
′ = T ′ − T1

T
T ′ + I ′ − I1

I
I ′ +

d2
γ
(V ′ − V1

V
V ′) +

1

k
W ′ +

d2η2
d5γ

(
λγ

d2d3
− d1

α
)F ′

= d1T1(2−
T

T1
− T1

T
) + αT1V + αT1V1 −

αT 2
1 V1

T
+ (

d2
1 + βW

− d2)I

− I1
I
αTV + d2I1 + (η1I1 −

d4
k
)W − (

d2d3
γ

+
d2η2
γ

F )V − V1

V

d2I

1 + βW

+
d2d3
γ

V1 −
d2η

2
2

d5γ
FV

= d1T1(2−
T

T1
− T1

T
) + αT1V + αT1V1 −

αT 2
1 V1

T
+ (

d2
1 + βW

− d2)I

− I1
I
αTV + αT1V1 + (η1I1 −

d4
k
)W − (

d2d3
γ

+
d2η2
γ

F )V − V1

V

d2I

1 + βW

+ αT1V1 −
d2η

2
2

d5γ
FV

= d1T1(2−
T

T1
− T1

T
) + 3αT1V1 + αT1V − αT 2

1 V1

T
− I1

I
αTV − V1

V

d2I

1 + βW

+ (
d2

1 + βW
− d2)I + (η1I1 −

d4
k
)W − d2

γ
(d3 + η2F )V − d2η

2
2

d5γ
FV

≤ d1T1(2−
T

T1
− T1

T
) + αT1V1(3−

T1

T
− TV I1

T1V1I
− d2I

V T1
) + (

d2
1 + βW

− d2)I
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+ (η1I1 −
d4
k
)W − d2

γ
(d3 + η2F )V − d2η

2
2

d5γ
FV

≤ d1T1(2−
T

T1
− T1

T
) + 3αT1V1(1− 3

√
T1

T

TV I1
T1V1I

d2I

V T1
) + (

d2
1 + βW

− d2)I

+ (η1I1 −
d4
k
)W − d2

γ
(d3 + η2F )V − d2η

2
2

d5γ
FV

= d1T1(2−
T

T1
− T1

T
) + 3αT1V1(1− 3

√
d2I1
αT1V1

) + (
d2

1 + βW
− d2)I

+
λη1k

d1
(1− 1

R1
)W − d2

γ
(d3 + η2F )V − d2η

2
2

d5γ
FV. (3.13)

Clearly, L2
′ ≤ 0 since R1 < 1. L2

′ = 0 if and only if (T, I, V,W,F ) = E1. By
LaSalle’s invariance principle [10], we conclude that E1 is globally asymptotically
stable.

3.5. Stability of the infection equilibrium E2

When R1 > 1, the infection equilibrium without defective interfering particles E1

becomes unstable and there appears another infection equilibrium with defective
interfering particles E2. To discuss the stability of E2, we assume R0 > R1 in this
section. In order to simplify the analysis for the equilibrium E2, we first take the
following scalings to reduce the number of parameters:

T → µ1T, I → µ2I, V → µ3V, W → µ4W, F → µ5F, τ = ϕt,

d1
ϕ

→ d1,
d2
ϕ

→ d2,
d3
ϕ

→ d3,
d4
ϕ

→ d4,
d5
ϕ

→ d5,
η1
βϕ

→ η1, (3.14)
αγ

kη1ϕ
→ γ,

η2
α

→ η2,

where

ϕ =
√
λkη1, µ1 = µ2 =

ϕ

kη1
, µ3 =

ϕ

α
, µ4 =

1

β
, µ5 =

ϕ

η2
. (3.15)

Then, system (2.2) is transformed into

dT

dτ
= 1− TV − d1T,

dI

dτ
= TV − d2I − η1WI,

dV

dτ
=

γI

1 +W
− d3V − FV, (3.16)

dW

dτ
= WI − d4W,

dF

dτ
= −η2FV − d5F.

Now for system (3.16), equilibrium solution E2, R0 and R1 are given as follows:

E2 = (T2, I2, V2,W2, F2) = (
R1

d1R0
, d4, d1(

R0

R1
− 1),

d2
η1

(R1 − 1), 0),
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R0 =
γ

d1d2d3(1 + w0)
, R1 =

γ

d1d2d3(1 + w0) + d2d4γ
, (3.17)

where

w0 =

−(1 +
γd4
d1d3

+
d2
η1

) +

√
(1 +

γd4
d1d3

+
d2
η1

)2 + 4(
γ

d1d3η1
− d2d4γ

d1d3η1
− d2

η1
)

2
.

(3.18)

The Jacobian matrix of system (3.16) evaluated at E2 is

J(E) =



−V2 − d1 0 −T2 0 0

V2 −d2 − η1W2 T2 −η1I2 0

0
γ

1 +W2
−d3 − F2

−γI2
(1 +W2)2

−V2

0 W2 0 I2 − d4 0

0 0 −η2F2 0 −η2V2 − d5


. (3.19)

For the local stability of E2, we have the following theorem.

Theorem 3.7. There exists an R2 such that when R1 < R0 < R2, the infection
equilibrium with defective interefering particles E2 is locally asymptotically stable.

Proof. From (3.19), we obtain the corresponding characteristic equation

(ξ + d1
R0

R1
)(ξ4 + b3ξ

3 + b2ξ
2 + b1ξ + b0) = 0, (3.20)

where

b3 = d1
R0

R1
+ d2R1 + d3,

b2 = d1d2R0 + d1d3
R0

R1
+ d2d4(R1 − 1),

b1 = d1d2d3(R0 −R1) + d2d4(R1 − 1)(d3 + d1
R0

R1
) +

d1d
2
2d

2
3

η1γ
(R0 −R1)(R1 − 1),

b0 = d1d2d3d4(R0 −
R0

R1
) +

d21d
2
2d

2
3

η1γ
(R1 − 1)(R0 −R1).

Clearly, it follows from R0 > R1 that bi > 0 for i = 0, 1, 2, 3. Note that (3.21) has
a characteristic root ξ1 = −d1

R0

R1
< 0. We next discuss the sign of the other four

roots of equation (3.21). Consider the following equation:

ξ4 + b3ξ
3 + b2ξ

2 + b1ξ + b0 = 0. (3.21)

Using Routh-Hurwitz Criterion [5], the necessary and sufficient conditions for the
equilibrium E2 to be asymptotically stable are: ∆i > 0, i = 1, 2, 3, 4, where

∆1 = b3,
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∆2 = b2b3 − b1b4, (3.22)
∆3 = b1∆2 − b0b

2
3,

∆4 = b0∆3.

It is obviously that ∆1 = b3 > 0 and ∆4 = b0∆3 > 0 when ∆3 > 0. Note that

∆2 = d22d4R1(R1 − 1) + d1d2d3R1 + d1d2R0(d1
R0

R1
+ d2R1 + d3)

+ d1d3
R0

R1
(d1

R0

R1
+ d3)−

d1d
2
2d

2
3

η1γ
(R0 −R1)(R1 − 1), (3.23)

∆3 = [d1d2d3(R0 −R1) + d2d4(R1 − 1)(d3 + d1
R0

R1
) +

d1d
2
2d

2
3

η1γ
(R1 − 1)(R0 −R1)]

[d22d4R1(R1 − 1) + d1d2d3R1 + d1d2R0(d1
R0

R1
+ d2R1 + d3)

+ d1d3
R0

R1
(d1

R0

R1
+ d3)−

d1d
2
2d

2
3

η1γ
(R0 −R1)(R1 − 1)]− [d1d2d3d4(R0 −

R0

R1
)

+
d21d

2
2d

2
3

η1γ
(R1 − 1)(R0 −R1)][d1

R0

R1
+ d2R1 + d3]

2. (3.24)

We cann’t determine the signs of ∆2 and ∆3 for general R0. Hence, we take a
continuity argument below. We assume 0 < R0 − R1 < ϵ, ϵ is an arbitrarily small
constant. By straight computation, we get

∆2 > d21d3 + d1d
2
3 + 2d1d2d3R1 + d22d4R1(R1 − 1) + d21d2R1 + d1d

2
2R

2
1

− ϵ(R1 − 1)
d1d

2
2d

2
3

η1γ
, (3.25)

∆3 > d2d4(R1 − 1)[d21d2d3R1 + d1d
2
2d4R1(R1 − 1) + d21d2R1(d1 + d2R1)]

− ϵ2[
d21d

3
2d

3
3

η1γ
(R1 − 1) +

d21d
4
2d

4
3

η12γ2
(R1 − 1)2]− ϵ[d1d

2
2d

2
3d4(R1 − 1)R0

+
d1d

3
2d

2
3d4

η1γ
(R1 − 1)(d3 + d1

R0

R1
)(R1 − 1)

+
d21d

2
2d

3
3

η1γ
(R1 − 1)(d1

R0

R1
+ d2R1 + d3)

2]. (3.26)

Note that ∆2 > 0 and ∆3 > 0 when ϵ is small enough. Then there must exist a
R2 > 0 such that both ∆2 > 0 and ∆3 > 0 if R1 < R0 < R2. This implies the
infection equilibrium E2 is asymptotically stable by Routh-Hurwitz Criterion.

When R0 is increased, ∆3 and ∆2 may become negative. The following lemma
identifies the order of possible sign switches for ∆2 and ∆3.

Lemma 3.1. If ∆2 and ∆3 can change signs from positive to negative as R0 is
increased after the value R2 in Theorem 3.7, then ∆3 becomes negative before ∆2

does.

Proof. First, we prove that when ∆2=0, ∆3 has already been negative.
From (3.22), when ∆2 = 0,

∆3 = −b0b
2
3 < 0. (3.27)
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On the other hand, we prove that when ∆3 = 0, ∆2 still positive.
From (3.22), when ∆3 = 0,

∆2 =
b0b

2
3

b1
> 0. (3.28)

This completes the proof.
The above discussion and theorem 2 in Yu [23] imply that Hopf bifurcation can

occur when ∆3 = 0. We have the following result.

Theorem 3.8. For some large values of d4 and small values of d2, there exists a γ0
satisfying R0 > R1 > 1 and ∆3 = 0, at which the equilibrium E2 loses its stability
through Hopf bifurcation, which gives rise to a family of limit cycles.

Proof. We have known that ∆3 > 0 when 0 < R0 − R1 < ϵ. In order to show
that Hopf bifurcation can occur, we need to show that ∆3 can change sign from
positive to negative as R0 increases after R2. Note that

R0

R1
=

d4γ

d1d3(1 + w0)
+ 1. (3.29)

We consider small values of d2 and large values of d4. Note that

R1 =
γ

d1d2d3(1 + w0) + d2d4γ
.

We assume d2d4 = m < 1. Without loss of generality, we suppose d2 is sufficiently
small, d4 is sufficiently large in the following discussion. From (3.22), we can obtain

∆3=
1

[d4γ+d1d3(1+w0)]3
(C6d

6
4+C5d

5
4+C4d

4
4+C3d

3
4+C2d

2
4+C1d4+C0)+O(d2), (3.30)

where
C6 = [

γ2

d33(1 + w0)2
− (R1 − 1)

m

d3(1 + w0)2
]γ5. (3.31)

Thus, the sign of ∆3 is determined by the leading coefficient C6. In order to have
C6 < 0, we can choose appropriate values of γ satisfy d1d2d3

1−m
< γ <

√
md3(R1 − 1).

Combining the above and theorem 2 in Yu [23], we complete the proof.
In [8] and [24], it is also proved that infection equilibrium could lose its stability

through Hopf bifurcation. Similarly, the conditions given in the above proof (taking
small value of d2 and large value of d4) are sufficient, but not necessary. There may
be many other choices of the parameters that can satisfy this requirement.

4. Numerical illustrations
In this section, we use numerical examples and some simulations to demonstrate
the theoretical results obtained in the previous sections. For convenience, we will
work on the scaled model (3.16) instead of the original model (2.2). We choose γ
as a bifurcation parameter and fix all other parameter values. First, we choose

d1 = 0.001, d2 = d5 = 1, d3 = d4 = 3, η1 = 3, η2 = 4. (4.1)
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Then the disease-free equilibrium becomes

E0 = (1000, 0, 0, 0, 0). (4.2)

With the parameter values given in (4.1), it’s easy to see that R0 = γ/0.003. Note
that when 0 < γ < 0.003, 0 < R0 < 1, E0 is globally asymptotically stable for these
given parameter values. Let γ = 1/2000, the simulation result is shown in Figure 3,
indicating that all state variables, except for T , converge to zero, and T converges
to 1000. It can be seen that the infected cells first increases and then monotonically
decreases rapidly, while T monotonically decreases rapidly and then increases, the
other three variables monotonically decrease right from the beginning. They finally
reach the disease-free equilibrium E0.

(a) (b)

Figure 3. Simulation of system (3.16) for the parameter values given in (4.1) and γ =
1

2000
, showing

that solution trajectories converge to the disease-free equilibrium E0.

When γ is increased such that R1 < 1 and R0 > 1. we choose γ = 1/20. With
the parameter values given in (4.1), the infection equilibrium without defective in-
terfering particles E1 becomes (60, 0.94, 0.016, 0, 0), which is globally asymptotically
stable, as shown in Figure 4. An interesting phenomenon is observed from T , which
is no longer monotonically decreasing and then increasing, like the previous case
shown in Figure 3, but now it quickly decreases to reach its final steady-state value
(see Figure 4). It is also noted that I, V and W converge to their final steady-state
values. The equilibrium E1 in the same time frame (after about 100 days), while I
and V reach the E1 in about 50 days.

When 1 < R1 < R0, we fix

d1 = 0.001, d2 = 0.01, d3 = 3, d4 = 10,

d5 = 1, η1 =
100

3
, η2 = 4. (4.3)

We choose γ = 1/1000, the infection equilibrium with defective interfering par-
ticles E2 is asymptotically stable. The simulation results are shown in Figure 5.
It is seen from this figures that all the state variables now are not monotonically
increasing or decreasing, but show oscillating behavior for a quite long period before
reaching the equilibrium E2.
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(a) (b)

Figure 4. Simulation of system (3.16) for the parameter values given in (4.1) and γ = 1/20, showing
that solution trajectories converge to the infection equilibrium without defective interefering particles
E1.

(a) (b)

(c) (d)

Figure 5. Simulation of system (3.16) for the parameter values given in (4.3) and γ = 1/1000, showing
that solution trajectories converge to the infection equilibrium with defective interefering particles E2.
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Finally, we investigate the Hopf bifurcation which occurs from the infectious
equilibrium with defective interfering particles E2. To find the Hopf critical point,
we apply the Hurwitz condition in terms of the parameter γ. For the given param-
eter values, we calculated ∆3 as follows:

∆3=(810243000000000000000000000000γ6+54017172291600000000000000000000γ5

+ 900334819877531220000000000000000γ4

+ 1080353168835506244000000000000γ3 + 486151633756162968300000000γ2

+ 97229597531220000000000γ + 7292187000000000000)−1

(108000000000000000000000000000γ9

+ 1285722072900000000000000000000000γ8

− 16983660579758220000000000000000000γ7

− 1942277359022347760794000000000000000γ6

+ 4312197380023350469542924200000000000γ5

− 90826428862874086415187704970000000γ4

−47842573888247267869790898600000γ3−3914658974872133354225034747γ2

+ 568455741000394964350200γ − 22792256162260830000). (4.4)

A numerical scheme for solving the roots of polynomial can be applied here to find
four real solutions of ∆4 = 0, given by

γ = 0.0002, −0.0034, 0.0045, −1.1918. (4.5)

We choose γ = 0.0002, the equilibrium solution E2 becomes unstable and Hopf
bifurcation occurs, leading to a family of periodic solutions. The simulation results
shown in Figure 6.

5. Conclusion and discussion
In this paper, we proposed a dynamical model for COVID-19 therapy with defec-
tive interfering particles and artificial antibodies. We analysed the stability of the
disease-free equilibrium E0, the infection equilibrium without defective interfering
particles E1 and the infection equilibrium with defective interfering particles E2.
When R0 ∈ (0, 1), the E0 is globally asymptotically stable; when R0 > 1, R1 < 1,
the E1 is globally asymptotically stable; when R0 ∈ (R1, R2), the E2 is asymptot-
ically stable. When R0 > R2, the E2 loses stability and Hopf bifurcation occurs.
The E0 and E1 exchange their stability at the transcritical point R0 = 1; and the
E1 and E2 exchange their stability at the transcritical point R1 = 1; The above
descriptions reveal the role that each parameter plays in determining the global dy-
namics of the model and give some quantitative criteria in terms of the parameters
for controlling the infection.

We all know that the basic reproduction number can be used to distinguish
whether the disease disappears or not. For equation (3.18), noting that when η1
decreases, w0 will increase, and so R0 = γ/d1d2d3(1 + w0) will decrease corre-
spondingly. This implies the defective interfering particles do help eliminate the
SARS-CoV-2 virus. Since all the parameters in F equation have no impact on the
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(a) (b)

(c)

Figure 6. Simulation of system (3.16) for the parameter values given in (4.3) and γ = 0.0002, showing
that periodic solutions.

value of R0. We conclude that a single time injection of artificial antibodies is not
helpful to eliminate the virus completely since artificial antibodies decay to zero
throughout the body. We should consider multiple times of injections to ensure
that the artificial antibodies persist at a certain level in the body. For example, we
assume the injection of artificial antibodies at a constant rate δ, then system (2.2)
takes the following form:

dT

dt
= λ− αTV − d1T,

dI

dt
= αTV − d2I − η1WI,

dV

dt
=

γI

1 + βW
− d3V − η2FV, (5.1)

dW

dt
= kη1WI − d4W,

dF

dt
= δ − d5F.

Now in terms of the new basic reproduction number R0=λαγ/d1d2(d3+η2F0)(1+w0),
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where F0 = δ/d5. Obviously, positive δ reduces R0, implying that both defective
interfering particles and artificial antibodies can help eliminate the SARS-CoV-2
virus. This result is of great significance to the elimination of the SARS-CoV-2. At
present, antiviral drugs based on this technology have begun preliminary tests and
have achieved very gratifying results in animal models [3]. Results of the present
study are important not only in relation to therapies against SARS-CoV-2 but also
for other diseases for which these biological devices may be developed.

The interaction of virus and cells is a complicated process, which involves cell
production, virus attachment to the cells and penetration into the cells, virus repli-
cation inside cells and release from cells. Also, the entry of defective interfering
particles into the human body will cause more complex reactions, which is not
considered in our model.
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