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POSITIVE SOLUTIONS FOR A FRACTIONAL
MAGNETIC SCHRÖDINGER EQUATIONS
WITH SINGULAR NONLINEARITY AND

STEEP POTENTIAL∗

Longsheng Bao1, Binxiang Dai1,† and Siyi Zhang2

Abstract The paper deals with the following magnetic Schrödinger equation
with singular nonlinearity and steep potential (−∆)sAu+ Vλ(x)u = µf(x)u−γ + g(x)up−1, in RN ,

u > 0, in RN ,

where (−∆)sA is the fractional magnetic Laplacian operator with 0 < s <

1, and 0 < γ < 1, 2 < p < 2∗s

(
2∗s = 2N

N−2s
for N > 2s

)
, the potential

Vλ(x) = λV +(x) − V −(x) with V ± = max{±V, 0}, λ, µ > 0 are parameters,
f ∈ L

p
p+γ−1 (RN ) is a positive weight, while g ∈ L∞(RN ) is a sign-changing

function. By applying the Nehari manifold and fibering map, we obtain the
existence of at least two positive solutions, where some new estimates will be
established. Recent some results from the literature are extended.

Keywords Fractional magnetic operators, singular nonlinearity, steep po-
tential, Nehari manifold.
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1. Introduction and main results
In this work, we study the multiplicity of solutions to the following fractional mag-
netic Schrödinger equation (−∆)sAu+ Vλ(x)u = µf(x)u−γ + g(x)up−1, in RN ,

u > 0, in RN ,
(1.1)

where (−∆)sA is the fractional magnetic Laplacian operator with s ∈ (0, 1) and
A : RN → RN is a C0,α magnetic potential of exponent α ∈ (0, 1], the parameters
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λ, µ > 0, 0 < γ < 1, 2 < p < 2∗s

(
2∗s = 2N

N−2s for N > 2s
)

, the potential Vλ(x) =
λV +(x) − V −(x) with V ± = max{±V, 0}. We first assume that V (x) satisfy the
following conditions:
(V 1) V + is a continuous function on RN and V − ∈ LN/2(RN ).
(V 2) there exists κ > 0 such that the set {V + < κ} = {x ∈ RN : V +(x) < κ} is
nonempty and has finite measure.
(V 3) Ω = int{x ∈ RN : V +(x) = 0} is nonempty and has a smooth boundary with
Ω̄ = int{x ∈ RN : V +(x) = 0}.
(V 4) there exists a constant µ0 > 1 such that

µ1(λ) := inf
u∈Hs

A(RN )\{0}

∫
RN

|u(x)−ei(x−y)·A(
x+y
2

)u(y)|2
|x−y|N+2s dxdy +

∫
RN λV

+u2dx∫
RN V −u2dx

≥ µ0,

for all λ > 0, where Hs
A(RN ,C) is the Hilbert space related to magnetic field A (see

Section 2).
This type of assumptions was first introduced by Bartsch and Wang [9] in the

study of the nonlinear Schrödinger equations, imply that λV + represents a potential
well whose depth is controlled by λ. The potential Vλ with V satisfies (V 1)− (V 3)
is called as the steep well potential. For more details about steep well potential, we
refer to [17,24,27].

The operator (−∆)sA is the fractional magnetic Laplacian and it is defined for
u ∈ C∞

0 (RN ,C) by

(−∆)sAu(x) = 2 lim
r→0+

∫
RN\Br(x)

u(x)− ei(x−y)·A( x+y
2 )u(y)

|x− y|N+2s
dy, (1.2)

where Br(x) = {y ∈ RN : |x− y| < r} with r > 0. This nonlocal operator has been
defined in [14] as a fractional extension (for an arbitrary s ∈ (0, 1)) of the magnetic
pseudo-relativistic operator, or Weyl pseudo-differential operator defined with mid-
point prescription, introduced in [19] by Ichinose and Tamura. As stated in [28],
when s → 1, the operator (−∆)sA reduces to the well-known magnetic Laplacian
−(∇ − iA)2, which has been widely investigated by many authors; see [4, 5, 8, 20]
for more details.

More in general, nonlocal and fractional operators have received a considerable
attention from many mathematicians and physical phenomena, such as finance,
phase transition phenomena, minimal surfaces, as they are the infinitesimal gener-
ators of Lévy stable diffusion processes, see [6, 12, 13] and the references therein.
For more work on nonlocal fractional operators and their applications, interested
readers are referred to [10,23] and references therein.

In absence of the magnetic field, i.e. A = 0, the operator (−∆)sA reduces to
the celebrated fractional Laplacian (−∆)s. There are also some interesting results
are obtained by using some different approaches under various hypotheses on the
potential and the nonlinearity. For instance, Zhang et al. [35] investigated the peri-
odic and asymptotically periodic fractional Schrödinger equation, and they obtained
the existence of solutions by variational methods, similar problems have also been
considered in [16, 18]. Cui and Sun [11] studied the existence and multiplicity re-
sults under the assumptions that the potential V is indefinite. In [21], the authors
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established the multiplicity of sign-changing solutions for fractional Schrödinger
equations involving critical or supercritical exponent. Moreover, there is a wide lit-
erature concerning the study of the existence of solutions for fractional Schrödinger
equation with critical growth, see for example [7, 26, 30, 34] for the recent advances
in this direction.

On the other hand, in last decade, great attention have been paid on the study
of the classical magnetic nonlinear Schrödinger equations, see for instance [1, 2,
15, 22, 31]. More precisely, Xiang et al. [29] considered the following fractional
Schrödinger-Kirchhoff problem

M([u]2s,A)(−∆)sAu+ V (x)u = f(x, |u|)u, in RN , (1.3)

where s ∈ (0, 1), N > 2s, M : R+
0 → R+

0 is a Kirchhoff function, V : RN → R+ is a
scalar potential, the nonlinearity f satisfies the subcritical growth. Using variational
methods, the authors obtained several existence results for problem (1.3). Not long
after, Zhang et al. [33] studied singularly perturbed fractional Schrödinger equations
involving critical frequency and critical growth in the presence of a magnetic field.

Subsequently, Yang et al. [32] studied the following degenerate magnetic frac-
tional problem involving critical Sobolev-Hardy nonlinearities

M([u]2s,A)(−∆)sAu+ V (x)u = λf(x, |u|)u+
|u|2∗s(α)−2u

|x|α
, in RN , (1.4)

where s ∈ (0, 1), N > 2s, 2∗s(α) =
2(N−α)
N−2s is the fractional Hardy-Sobolev critical

exponent with α ∈ [0, 2s), λ is a positive parameter and M : R+
0 → R+

0 is a
Kirchhoff function. Under some conditions on V and by using the new version of
symmetric mountain pass theorem of Kajikiya, the authors proved that the problem
(1.4) admits infinitely many solutions for the suitable value of λ.

Most recently, Mao and Xia [25] investigated the following fractional nonlinear
Schrödinger equation

(−∆)sAu+ Vλ(x)u = f(x)|u|q−2 + g(x)|u|p−1, in RN , (1.5)

where 0 < s < 1, N > 2s, 1 < q < 2 < p < 2∗s with 2∗s = 2N/(N − 2s), the potential
Vλ(x) = λV +(x) − V −(x) with V ± = max{±V, 0}, λ > 0 is a parameter. When λ
is sufficiently large, combining variational approach with the Nehari manifold, they
obtained the existence and multiplicity of non-trivial solutions for problem (1.5).

Motivated by the mentioned works, our goal in this paper is to establish the
existence and multiplicity of solutions for problem (1.1) with steep well potential
and singular nonlinearity. To the best of our knowledge, no similar results are
obtained on such questions in current literature.

In this context, the presence of the nonlocal operator (1.2) makes our analysis
more complicated and intriguing, and new techniques are needed to overcome the
difficulties that appear.

Consider the functions f(x) and g(x), we make the following hypotheses:

(F ) f ∈ L
p

p+γ−1 (RN ) is a positive continuous function.
(G) g ∈ L∞(RN ) is a sign-changing function such that ∥g+∥L∞(RN ) > 0, where
g+ = max{g(x), 0}.

Our main result is described as follows.
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Theorem 1.1. Let 0 < γ < 1 and 2 < p < 2∗s. Assume f , g and V satisfy
the assumptions (F ), (G) and (V 1) − (V 4), then there exists λ∗ > 0 and µ∗ > 0
such that for all (λ, µ) ∈ [λ∗,+∞)× (0, µ∗), problem (1.1) has at least two positive
solutions.

Turing to layout of the article, in Section 2, we recall some basic notations and
preliminary results which are crucial in proving our main results. The last Section
is devoted to prove Theorem 1.1. Also throughout this paper, we shall denote by
C and Ci (i = 0, 1, 2, · · · ) for various positive constants.

2. Preliminaries and functional setting
To prove our main results, we need to do some preparatory work. Let L2(RN ,C)
be the Lebesgue space of complex-valued functions with summable square endowed
with the real scalar product

⟨u, v⟩L2 := ℜ(
∫
RN

uv̄dx),

for all u, v ∈ L2(RN ,C), and A : RN → RN be a continuous function. We consider
the magnetic Gagliardo semi-norm defined by

[u]2s,A :=

∫∫
RN

|u(x)− ei(x−y)·A( x+y
2 )u(y)|2

|x− y|N+2s
dxdy,

endowed with the norm ∥u∥s,A := ([u]2s,A + ∥u∥2L2)1/2. We take the space H of
measurable functions u : RN → C such that ∥u∥s,A <∞, then (H, ⟨·, ·⟩s,A) is a real
Hilbert space. We define Hs

A(RN ,C) as the closure of C∞
c (RN ,C) in H, Hs

A(RN ,C)
is a real Hilbert space. Moreover, the space Hs

A(RN ,C) is continuously embedded
in Lr(RN ,C) for every r ∈ [2, 2∗s] and compactly embedded in Lr(K,C) for every
r ∈ [1, 2∗s) and any compact K ⊂ RN ; see [14].

Next, we establish the variational framework to deal with the problem (1.1).
Define the work space Xλ = {u ∈ Hs

A(RN ,C) :
∫
RN λV

+u2dx <∞} with the inner
product

⟨u, v⟩λ : = ℜ
∫∫

RN

(u(x)− ei(x−y)·A( x+y
2 )u(y))(v(x)− ei(x−y)·A( x+y

2 )v(y))

|x− y|N+2s
dxdy

+λℜ
∫
RN

V +uv̄dx

and the corresponding norm denoted by

∥u∥λ := ⟨u, u⟩1/2λ .

For simplicity, we let ∥u∥2λ,V := [u]2s,A +
∫
RN Vλu

2dx, by condition (V4),

∥u∥2λ ≥ ∥u∥2λ,V ≥ µ0 − 1

µ0
∥u∥2λ, for all λ ≥ 0. (2.1)

Hence, ∥u∥λ,V and ∥u∥λ are equivalent in Xλ. As shown in [14, 25], there exists a
constant Ms,A > 0 such that

∥u∥L2∗s (RN ) ≤ M−1
s,A[u]s,A. (2.2)
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Let λ∗ the constant given by

λ∗ :=
M2

s,A

κ
|{V + < κ}|−

2∗s−2

2∗s .

Then, by the conditions (V1) and (V2), and the Hölder and Sobolev inequalities
again, we have ∫

RN

|u|pdx ≤ |{V + < κ}|
2∗s−p

2∗s M−p
s,A∥u∥

p
λ, (2.3)

for p ∈ [2, 2∗s) and λ ≥ λ∗. And also, combining this with (F), one has∫
RN

f |u|1−γdx ≤ ∥f∥
L

p
p+γ−1

(

∫
RN

|u|pdx)
1−γ
p

≤ ∥f∥
L

p
p+γ−1

|{V + < κ}|
(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A ∥u∥1−γ

λ . (2.4)

The energy functional corresponding to problem (1.1) given by

Φλ,µ(u) =
1

2
∥u∥2λ − 1

2

∫
RN

V −u2dx− µ

1− γ

∫
RN

f |u|1−γdx− 1

p

∫
RN

g|u|pdx. (2.5)

It is clearly that Φλ,µ is a C1 functional. Since the energy functional Φλ,µ is not
bounded below on Xλ, it is useful to consider the functional on the Nehari manifold

Nλ,µ = {u ∈ Xλ \ {0} : ⟨Φ′
λ,µ(u), u⟩ = 0}.

We analyze Nλ,µ in terms of the stationary points of fibering maps ϕu : (0,∞) → R
given by

ϕu(t) = Φλ,µ(tu), for t > 0.

Then for each u ∈ Nλ,µ, we have

ϕ′u(t) = t∥u∥2λ,V − µt−γ

∫
RN

f |u|1−γdx− tp−1

∫
RN

g|u|pdx,

ϕ′′u(t) = ∥u∥2λ,V + µγt−γ−1

∫
RN

f |u|1−γdx− (p− 1)tp−2

∫
RN

g|u|pdx.

It is easy to see that

tϕ′u(t) = t2∥u∥2λ,V − µt1−γ

∫
RN

f |u|1−γdx− tp
∫
RN

g|u|pdx,

and so, for u ∈ Xλ \ {0} and t > 0, ϕ′u(t) = 0 if and only if tu ∈ Nλ,µ, that
is, positive critical points of ϕu correspond to points on the Nehari manifold. In
particular, ϕ′u(1) = 0 if and only if u ∈ Nλ,µ. Thus, it is nature to divide Nλ,µ into
three parts as

N+
λ,µ = {u ∈ Nλ,µ : ϕ′′u(1) > 0},

N 0
λ,µ = {u ∈ Nλ,µ : ϕ′′u(1) = 0},

N−
λ,µ = {u ∈ Nλ,µ : ϕ′′u(1) < 0}.
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The existence of solutions to the problem (1.1) can be studied by considering the
existence of minimizers to functional Φλ,µ on manifold Nλ,µ. Furthermore, for each
u ∈ Nλ,µ, we know that

ϕ′′u(1) = ∥u∥2λ,V + µγ

∫
RN

f |u|1−γdx− (p− 1)

∫
RN

g|u|pdx

= (1 + γ)∥u∥2λ,V − (p+ γ − 1)

∫
RN

g|u|pdx

= (2− p)∥u∥2λ,V + µ(p+ γ − 1)

∫
RN

f |u|1−γdx.

(2.6)

Lemma 2.1. The energy functional Φλ,µ is coercive and bounded below on Nλ,µ.

Proof. Let u ∈ Nλ,µ, then we have

∥u∥2λ,V − µ

∫
RN

f |u|1−γdx−
∫
RN

g|u|pdx = 0.

Therefore, by (2.1), (2.4) and (2.5), we obtain

Φλ,µ(u) =
p− 2

2p
∥u∥2λ,V − µ(p+ γ − 1)

p(1− γ)

∫
RN

f |u|1−γdx

≥ (p− 2)(µ0 − 1)

2pµ0
∥u∥2λ

−µ(p+ γ − 1)

p(1− γ)
∥f∥

L
p

p+γ−1
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A ∥u∥1−γ

λ .

Since 0 < γ < 1, we conclude that Φλ,µ is coercive and bounded below on Nλ,µ.
Before the proof of the following lemma, we define

µ∗ =
(µ0 − 1)(p− 2)M1−γ

s,A

µ0(p+ γ − 1)∥f∥
L

p
p−1+γ

|{V + < κ}|
(1−γ)(2∗s−p)

2∗sp

×

 (µ0 − 1)(1 + γ)Mp
s,A

µ0(p+ γ − 1)∥g+∥∞|{V + < κ}|
2∗s−p

2∗s


1+γ
p−2

.

Then we have the following result.
Lemma 2.2. Suppose that the functions f , g and V satisfy the conditions (F ),
(G) and (V 1)− (V 4). Then the set N 0

λ,µ is empty for (λ, µ) ∈ [λ∗,+∞)× (0, µ∗).

Proof. If N 0
λ,µ ̸= ∅, then for every u ∈ N 0

λ,µ, by (2.6), we have

(1 + γ)∥u∥2λ,V − (p+ γ − 1)

∫
RN

g|u|pdx = 0

and

(2− p)∥u∥2λ,V + µ(p+ γ − 1)

∫
RN

f |u|1−γdx = 0.
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It follows that, by (2.1), (2.3), (2.4) and the Hölder inequality, we get

µ0 − 1

µ0
∥u∥2λ ≤ p+ γ − 1

1 + γ

∫
RN

g|u|p ≤ p+ γ − 1

1 + γ
∥g+∥∞|{V + < κ}|

2∗s−p

2∗s M−p
s,A∥u∥

p
λ

and
µ0 − 1

µ0
∥u∥2λ ≤ µ(p+ γ − 1)

p− 2

∫
RN

f |u|1−γdx

≤ µ(p+ γ − 1)

p− 2
∥f∥

L
p

p+γ−1
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A ∥u∥1−γ

λ .

That is

∥u∥λ ≥

 (µ0 − 1)(1 + γ)Mp
s,A

µ0(p+ γ − 1)∥g+∥∞|{V + < κ}|
2∗s−p

2∗s

 1
p−2

and

∥u∥λ ≤
(
µ0µ(p+ γ − 1)

(µ0 − 1)(p− 2)
∥f∥

L
p

p+γ−1
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A

) 1
1+γ

.

Hence, we obtain µ ≥ µ∗ which is impossible. Thus N 0
λ,µ = ∅.

In the following result, we show that the decompositions of the Nehari manifold
are non-empty.
Lemma 2.3. Suppose (F ), (G) and (V 1)−(V 4) hold. Then for (λ, µ) ∈ [λ∗,+∞)×
(0, µ∗) and u ∈ Xλ \ {0}, we have the following results.
(i) if

∫
RN g|u|pdx ≤ 0, then exists a unique 0 < t+ < tmax such that t+u ∈ N+

λ,µ

and
Φλ,µ(t

+u) = inf
t>0

Φλ,µ(tu).

(ii) if
∫
RN g|u|pdx > 0, then there just have two positive numbers t+ > 0 and

t− > 0, with 0 < t+ < tmax < t−, such that t+u ∈ N+
λ,µ, t−u ∈ N−

λ,µ and

Φλ,µ(t
+u) = inf

0<t≤tmax

Φλ,µ(tu), Φλ,µ(t
−u) = sup

t≥tmax

Φλ,µ(tu).

Proof. Fix u ∈ Xλ \ {0} with
∫
RN f |u|1−γdx > 0. Note that

ϕ′u(t) = t∥u∥2λ,V − µt−γ

∫
RN

f |u|1−γdx− tp−1

∫
RN

g|u|pdx.

Define

G(t) := t2−p∥u∥2λ,V − µt1−γ−p

∫
RN

f |u|1−γdx,

for all t > 0. Note that for t > 0, tu ∈ Nλ,µ if and only if t is a solution of the
equation

G(t) =

∫
RN

g|u|pdx.
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A simple calculation yields that G(t) → −∞ as t→ 0+, G(t) → 0 as t→ ∞. While,
since

G′(t) = (2− p)t1−p∥u∥2λ,V + µ(p+ γ − 1)t−γ−p

∫
RN

f |u|1−γdx.

Then G(t) possesses a unique maximum point tmax > 0, which is given by

tmax =

(
µ(p+ γ − 1)

∫
RN f |u|1−γdx

(p− 2)∥u∥2λ,V

) 1
γ+1

.

Moreover, we have G(t) is increasing on (0, tmax) and decreasing on (tmax,∞). Thus

G(tmax) =

[(
µ(p+ γ − 1)

p− 2

) 2−p
γ+1

− µ

(
µ(p+ γ − 1)

p− 2

) 1−γ−p
γ+1

]
(
∫
RN f |u|1−γdx)

2−p
γ+1

∥u∥
2(1−γ−p)

γ+1

λ,V

= µ
2−p
γ+1 ∥u∥pλ,V

γ + 1

p− 2

(
p+ γ − 1

p− 2

) 1−γ−p
γ+1

(∫
RN f |u|1−γdx

∥u∥1−γ
λ,V

) 2−p
γ+1

≥ µ
2−p
γ+1 ∥u∥pλ,V

γ + 1

p− 2

(
p+ γ − 1

p− 2

) 1−γ−p
γ+1

×
(
(

µ0

µ0 − 1
)

1−γ
2 ∥f∥

L
p

p+γ−1
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A

) 2−p
γ+1

. (2.7)

(i) If
∫
RN g|u|pdx ≤ 0, then there is a unique 0 < t+ < tmax such that

G(t+) =

∫
RN

g|u|pdx, and G′(t+) > 0.

Thus, t+u ∈ Nλ,µ, and we have

ϕ′′t+u(1) = (2− p)(t+)2∥u∥2λ,V + µ(p+ γ − 1)(t+)
1−γ

∫
RN

f |u|1−γdx

= t1+pG′(t+)

> 0.

Therefore, t+u ∈ N+
λ,µ. Since for 0 < t < tmax, one has

d

dt
Φλ,µ(tu) = t∥u∥2λ,V − µt−γ

∫
RN

f |u|1−γdx− tp−1

∫
RN

g|u|pdx = 0

and

d2

dt2
Φλ,µ(tu) = (2− p)t2∥u∥2λ,V + µ(p+ γ − 1)t1−γ

∫
RN

f |u|1−γdx > 0,

for t = t+. Thus, Φλ,µ(t
+u) = inf

t>0
Φλ,µ(tu) holds.

(ii) If
∫
RN g|u|pdx > 0, by (2.4), (2.7) and µ ∈ (0, µ∗), we deduce that

0 <

∫
RN

g|u|pdx ≤ (
µ0

µ0 − 1
)

p
2 ∥g+∥∞|{V + < κ}|

2∗s−p

2∗s M−p
s,A∥u∥

p
λ,V
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= (µ∗)
2−p
γ+1 ∥u∥pλ,V

1 + γ

p+ γ − 1

(
p− 2

p+ γ − 1

) p−2
1+γ

×
(
(

µ0

µ0 − 1
)

1−γ
2 ∥f∥

L
p

p+γ−1
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A

) 2−p
γ+1

< G(tmax).

There are t+ and t− such that 0 < t+ < tmax < t−,

G(t+) =

∫
RN

g|u|pdx = G(t−)

and

G′(t−) < 0 < G′(t+).

Again, as in the case (i), we have t+u ∈ N+
λ,µ, t−u ∈ N−

λ,µ, and Φλ,µ(t
−u) ≥

Φλ,µ(tu) ≥ Φλ,µ(t
+u) for each t ∈ [t+, t−] and Φλ,µ(t

+u) = inf
0<t≤tmax

Φλ,µ(tu),

Φλ,µ(t
−u) = sup

t≥tmax

Φλ,µ(tu). Therefore, conclusion (ii) holds.

We remark that from Lemma 2.2 and Lemma 2.3, one has Nλ,µ = N+
λ,µ

⋃
N−

λ,µ

for all (λ, µ) ∈ [λ∗,+∞) × (0, µ∗). Since N+
λ,µ and N−

λ,µ are non-empty, thus, by
Lemma 2.3, we may define

c+λ,µ = inf
u∈N+

λ,µ

Φλ,µ(u) and c−λ,µ = inf
u∈N−

λ,µ

Φλ,µ(u).

Then we have the following result.
Lemma 2.4. Suppose that the functions f , g and V satisfy the conditions (F ),
(G) and (V 1)− (V 4). Then, for (λ, µ) ∈ [λ∗,+∞)× (0, µ∗), there exists a positive
constant C such that c+λ,µ < 0 < C < c−λ,µ.

Proof. (i) Let u ∈ N+
λ,µ ⊂ Nλ,µ, then we have

(1 + γ)∥u∥2λ,V − (p+ γ − 1)

∫
RN

g|u|pdx > 0.

It follows that

Φλ,µ(u) =
1

2
∥u∥2λ,V − µ

1− γ

∫
RN

f |u|1−γdx− 1

p

∫
RN

g|u|pdx

= − 1 + γ

2(1− γ)
∥u∥2λ,V +

p+ γ − 1

p(1− γ)

∫
RN

g|u|pdx

< −p− 2

2p

1 + γ

1− γ
∥u∥2λ,V < 0.

Therefore, c+λ,µ < 0.
(ii) Let u ∈ N−

λ,µ, then we have

(1 + γ)∥u∥2λ,V − (p+ γ − 1)

∫
RN

g|u|pdx < 0.
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According to (2.1) and (2.3), we get

µ0 − 1

µ0
∥u∥2λ ≤ ∥u∥2λ,V <

p+ γ − 1

1 + γ

∫
RN

g|u|pdx

≤ p+ γ − 1

1 + γ
∥g+∥∞|{V + < κ}|

2∗s−p

2∗s M−p
s,A∥u∥

p
λ.

Therefore, we can show that

∥u∥λ >

 (µ0 − 1)(1 + γ)

µ0(p+ γ − 1)

Mp
s,A

∥g+∥∞|{V + < κ}|
2∗s−p

2∗s

 1
p−2

:= C0.

Then, we know

Φλ,µ(u) ≥ (p− 2)(µ0 − 1)

2pµ0
∥u∥2λ

−µ(p− 1 + γ)

p(1− γ)
∥f+∥

L
p

p−1+γ
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A ∥u∥1−γ

λ

> C1−γ
0

[
(p− 2)(µ0 − 1)

2pµ0
C1+γ

0

−µ(p− 1 + γ)

p(1− γ)
∥f+∥

L
p

p−1+γ
|{V + < κ}|

(1−γ)(2∗s−p)

2∗sp Mγ−1
s,A

]
:= C.

Since (λ, µ) ∈ [λ∗,+∞)× (0, µ∗), we can verify that C > 0. Hence Φλ,µ(u) > C > 0
for all u ∈ N−

λ,µ and the proof is completed.

Lemma 2.5. Suppose that the functions f , g and V satisfy the conditions (F ), (G)
and (V 1)−(V 4). Then N−

λ,µ is a closed subset in Xλ for (λ, µ) ∈ [λ∗,+∞)×(0, µ∗).

Proof. In order to prove N−
λ,µ is a closed subset in Xλ, let us consider a sequence

{un} ⊂ N−
λ,µ such that un → u in Xλ. It is obvious that ⟨Φ′

λ,µ(u), u⟩ = 0. By the
proof of Lemma 2.4, we have

∥u∥λ = lim
n→∞

∥un∥λ ≥ C0 > 0.

Thus, u ∈ Nλ,µ. By the definition of N−
λ,µ, it holds

(1 + γ)∥un∥2λ,V − (p+ γ − 1)

∫
RN

g|un|pdx < 0.

This, together with (2.3), lead to

(1 + γ)∥u∥2λ,V − (p+ γ − 1)

∫
RN

g|u|pdx ≤ 0.

which implies that u ∈ N−
λ,µ

⋃
N 0

λ,µ. By Lemma 2.2, we know N 0
λ,µ = ∅. Therefore,

u ∈ N−
λ,µ. Then N−

λ,µ is a closed subset in Xλ.
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Lemma 2.6. Suppose u ∈ N+
λ,µ and v ∈ N−

λ,µ are minimizers of Φλ,µ on N+
λ,µ and

N−
λ,µ, respectively. Then for every nonegative ω ∈ Xλ, we have

(i) there exists ε0 > 0 such that Φλ,µ(u+ εω) ≥ Φλ,µ(u) for all 0 ≤ ε ≤ ε0.

(ii) tε → 1 as ε → 0+, where for each ε ≥ 0, tε is the unique positive real number
satisfying tε(v + εω) ∈ N−

λ,µ.

Proof. (i) Let ω ≥ 0 and for each ε ≥ 0, set

σ(ε) = ∥u+ εω∥2λ,V + µγ

∫
RN

f |u+ εω|1−γdx− (p− 1)

∫
RN

|u+ εω|pdx.

Then by using continuity of σ and σ(0) = ϕ′′u(1) > 0, there exists ε0 > 0 such that
σ(ε) > 0 for all 0 ≤ ε ≤ ε0. Since for each ε > 0, there exists sε > 0 such that
sε(u+ εω) ∈ N+

λ,µ, for each ε ∈ [0, ε0], we have

Φλ,µ(u+ εω) ≥ Φλ,µ(sω(u+ εω)) ≥ Φλ,µ(u).

(ii) For each v ∈ N−
λ,µ, we define H : (0,∞)× R3 → R by

H(t, l1, l2, l3) = l1t− µl2t
−γ − l3t

p−1,

for (t, l1, l2, l3) ∈ (0,∞)× R3. Since v ∈ N−
λ,µ, we obtain

∂H

∂t
(1, ∥v∥2λ,V ,

∫
RN

f |u|1−γdx,

∫
RN

g|v|pdx) = ϕ′′v(1) < 0

and for each ε > 0,

H(tε, ∥v + εω∥2λ,V ,
∫
RN

f |v + εω|1−γdx,

∫
RN

g|v + εω|pdx) = 0.

Moreover,

H(1, ∥v∥2λ,V ,
∫
RN

f |v|1−γdx,

∫
RN

g|v|pdx) = ϕ′u(1) = 0.

Applying the implicit function theorem, there exists an open neighbourhood A ⊂
(0,∞) and B ⊂ R3 containing 1 and

(∥v∥2λ,V ,
∫
RN

f |v|1−γdx,

∫
RN

g|v|pdx)

respectively such that for all H(t, y) = 0 has a unique solution t = h(y) with
h : B → A being a smooth function. Consequently, we get

(∥v + εω∥2λ,V ,
∫
RN

f |v + εω|1−γdx,

∫
RN

g|v + εω|pdx) ∈ B

and

h(∥v + εω∥2λ,V ,
∫
RN

f |v + εω|1−γdx,

∫
RN

g|v + εω|pdx) = tε.
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Since

H(tε, ∥v + εω∥2λ,V ,
∫
RN

f |v + εω|1−γdx,

∫
RN

g|v + εω|pdx) = 0.

Thus, by continuity of g, we get tε → 1 as ε→ 0+.
Lemma 2.7. Suppose u ∈ N+

λ,µ and v ∈ N−
λ,µ are minimizers of Φλ,µ on N+

λ,µ and
N−

λ,µ, respectively. Then for each nonnegative ω ∈ Xλ, we have

⟨u, ω⟩λ,V − µ

∫
RN

fu−γωdx−
∫
RN

gup−1ωdx ≥ 0,

⟨v, ω⟩λ,V − µ

∫
RN

fv−γωdx−
∫
RN

gvp−1ωdx ≥ 0.

Proof. Let ω ∈ Xλ be nonnegative function, then by Lemma 2.6, for each ε ∈
(0, ε0), we have

0 ≤ Φλ,µ(u+ εω)− Φλ,µ(u)

ε

=
1

2ε
(∥u+ εω∥2λ,V − ∥ω∥2λ,V )−

µ

(1− γ)

∫
RN

f
(u+ εω)1−γ − u1−γ

ε
dx

−1

p

∫
RN

g
(u+ εω)p − up

ε
dx. (2.8)

It can be easily verified that, as ε→ 0+

1

2ε
(∥u+ εω∥2λ,V − ∥w∥2λ,V ) → ⟨u, ω⟩λ,V .

By (G) and the Lebesgue dominate convergence theorem, one has

lim
ε→0+

1

p

∫
RN

g
(u+ εω)p − up

ε
dx =

∫
RN

gup−1ωdx.

Due to 0 < γ < 1 and f is a positive continuous function, we have

f((u+ εω)1−γ − u1−γ) ≥ 0.

It follows from (2.8) that

lim inf
ε→0+

∫
RN

f
(u+ εω)1−γ − u1−γ

ε
dx <∞.

Then, by (2.8) and Fatou’s lemma, we can deduce that

µ

∫
RN

fu−γωdx ≤ µ

1− γ
lim inf
ε→0+

∫
RN

f
(u+ εω)1−γ − u1−γ

ε
dx

≤ ⟨u, ω⟩λ,V −
∫
RN

gup−1ωdx.

Consequently, for each nonnegative ω ∈ Xλ, we have

⟨u, ω⟩λ,V − µ

∫
RN

fu−γωdx−
∫
RN

gup−1ωdx ≥ 0.
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Next, we will show that these properties are also held for v ∈ N−
λ,µ. For each ε > 0,

there exists tε > 0 such that tε(v + εω) ∈ N−
λ,µ. By Lemma 2.6, for sufficiently

small ε > 0, one has

Φλ,µ(tε(v + εω)) ≥ Φλ,µ(v) ≥ Φλ,µ(tεv),

which implies Φλ,µ(tε(v + εω))− Φλ,µ(v) ≥ 0. Thus, we have

µt1−γ
ε

1− γ

∫
RN

f
(v + εω)1−γ − v1−γ

ε
dx

≤ t2ε
2ε

(∥v + εω∥2λ,V − ∥v∥2λ,V )−
tpε
p

∫
RN

g
(v + εω)p − vp

ε
dx.

Since as ε→ 0+, tε → 1, using similar argument as in the previous case, we obtain

⟨v, ω⟩λ,V − µ

∫
RN

fv−γωdx−
∫
RN

gvp−1ωdx ≥ 0.

3. Proof of Theorem 1.1
Since Φλ,µ(u) = Φλ,µ(|u|), we can assume that u ≥ 0 for all u ∈ Xλ. Now, we prove
the following propositions.
Proposition 3.1. Suppose that 0 < γ < 1, 2 < p < 2∗s, and the conditions (F ), (G)
and (V 1)− (V 4) are satisfied. Then, for (λ, µ) ∈ [λ∗,+∞)× (0, µ∗), the functional
Φλ,µ has a minimizer u0 in N+

λ,µ such that Φλ,µ(u0) = c+λ,µ.

Proof. We apply the Ekeland’s variational principle (see [3] for the details) to
consider a minimizing sequence {un} ⊂ N+

λ,µ satisfying

(i) c+λ,µ < Φλ,µ(un) < c+λ,µ + 1
n ,

(ii) Φλ,µ(u) ≥ Φλ,µ(un)− 1
n∥un − u∥.

Moreover, by Lemma 2.1, we can deduce that {un} is a bounded sequence in Xλ.
Therefore, there exists a subsequence of {un} (we still denotes {un}) such that

un ⇀ u0, in Xλ,

un → u0, in Lq(RN ), q ∈ [2, 2∗s),

with u0 ≥ 0. Since 0 < γ < 1, f ∈ L
p

p+γ−1 (RN ) is a positive continuous function,
by Vitali’s convergence theorem, one can prove that

lim
n→∞

∫
RN

f |un|1−γdx =

∫
RN

f |u0|1−γdx.

We divide the proof into two steps.
Step 1. un → u0 in Xλ and u0 ∈ N+

λ,µ.
First, we show that u0 ̸= 0. Using the weak lower semi-continnity norm, we

have

Φλ,µ(u0) ≤ lim inf
n→∞

Φλ,µ(un) = c+λ,µ < 0.
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If u0 = 0, then Φλ,µ(u0) = 0, which is a contradiction.
Next, we prove that un → u0 strongly in Xλ as n → ∞. Suppose the contrary,

by (2.1), we get

∥u0∥2λ,V < lim inf
n→∞

∥un∥2λ,V .

Combining this with {un} ⊂ N+
λ,µ, one has

∥u0∥2λ,V − µ

∫
RN

f |u0|1−γdx−
∫
RN

g|u0|pdx

< lim inf
n→∞

[
∥un∥2λ,V − µ

∫
RN

f |un|1−γdx−
∫
RN

g|un|pdx
]
= 0. (3.1)

Now, we show that for u0, there exists 0 < t+ ̸= 1 such that t+u0 ∈ N+
λ,µ.

If
∫
RN g|u|pdx ≤ 0, then by Lemma 2.3 (i), there exists t+ > 0 such that t+u0 ∈

N+
λ,µ and Φ′

λ,µ(t
+u0) = 0. By (3.1), we known that Φ′

λ,µ(u0) ̸= 0. Hence, t+ ̸= 1.
If
∫
RN g|u|pdx > 0, by Lemma 2.3 (ii), then there exists 0 < t+ ̸= 1 such that

t+u0 ∈ N+
λ,µ.

Since t+u0 is a minimizer of Φλ,µ in Xλ. Then,

Φλ,µ(t
+u0) < Φλ,µ(u0) = lim

n→∞
Φλ,µ(un) = c+λ,µ,

which contradicts c+λ,µ = inf
u∈N+

λ,µ

Φλ,µ(u). Therefore, we obtain un → u0 in Xλ.

Finally, we claim that u0 ∈ N+
λ,µ. On the contrary, assume that u0 ∈ N−

λ,µ

(N 0
λ,µ = ∅ for (λ, µ) ∈ [λ∗,+∞)× (0, µ∗)). It follows from (2.6) and u0 ∈ N−

λ,µ that∫
RN

g|u0|pdx > 0.

Then, by Lemma 2.3 (ii), there exist unique t+ > 0, t− > 0, with t− > t+ > 0, such
that t+u0 ∈ N+

λ,µ, t−u0 ∈ N−
λ,µ and

Φλ,µ(t
+u0) = inf

0<t≤tmax

Φλ,µ(tu0), Φλ,µ(t
−u0) = sup

t≥tmax

Φλ,µ(tu0).

Since u0 ∈ N−
λ,µ, it suffices to prove that

d

dt
Φλ,µ(u0) = 0,

d2

dt2
Φλ,µ(u0) < 0.

This indicates that t− = 1. Also, since

d

dt
Φλ,µ(t

+u0) = 0,
d2

dt2
Φλ,µ(t

+u0) > 0.

Then, there exists t ∈ (t+, 1] such that

c+λ,µ ≤ Φλ,µ(t
+u0) < Φλ,µ(tu0) ≤ Φλ,µ(u0) = c+λ,µ,

this is a contradiction. So u0 ∈ N+
λ,µ.
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Step 2. u0 is a solution of system (1.1).
In what follows, we show that the solution u0 is a weak solution of problem

(1.1). Let v ∈ Xλ and ε > 0. Put

ψ = (u0 + εv)+, and φ = u0 + εv < 0.

Set Ω+ = {x ∈ RN : u0 + εv ≥ 0} and Ω− = {x ∈ RN : u0 + εv < 0}, then by
lemma 2.7, we can obtain that

0 ≤ ⟨u0, ψ⟩λ,V − µ

∫
Ω+

fu0
−γ(u0 + εv)dx−

∫
Ω+

gu0
p−1(u0 + εv)dx

= ∥u0∥2λ,V − µ

∫
RN

fu0
1−γdx−

∫
RN

gu0
pdx

+ε

(
⟨u0, v⟩λ,V − µ

∫
RN

fu0
−γvdx−

∫
RN

gu0
p−1vdx

)
−

(
⟨u0, φ⟩λ,V − µ

∫
Ω−

fu0
−γ(u0 + εv)dx−

∫
Ω−

gu0
p−1(u0 + εv)dx

)
.

Then using the fact u0 ∈ N+
λ,µ and f(x) is a positive continuous function, we have

0 ≤ε
(
⟨u0, v⟩λ,V − µ

∫
RN

fu0
−γvdx−

∫
RN

gu0
p−1vdx

)
− εℜ

∫
Ω−

[
(u0(x)−ei(x−y)·A( x+y

2 )u0(y))(v(x)−ei(x−y)·A( x+y
2 )v(y))

|x−y|N+2s
+Vλu0v̄

]
dxdy

+

∫
Ω−

gu0
p−1(u0 + εv)dx. (3.2)

Since the measure of the domain of integration Ω− = {x ∈ RN : u0 + εv < 0} tends
to 0 as ε→ 0+, it follows that∫
Ω−

[
(u0(x)− ei(x−y)·A( x+y

2 )u0(y))(v(x)− ei(x−y)·A( x+y
2 )v(y))

|x− y|N+2s
+ Vλu0v̄

]
dxdy → 0.

Moreover, by (G) and (2.3), when ε→ 0+, we have∣∣∣∣ ∫
Ω−

gu0
p−1(u0 + εv)dx

∣∣∣∣ ≤ ∥g∥∞
∫
Ω−

|u0|pdx+ ε∥g∥∞
∣∣∣∣ ∫

Ω−

|u0|p−1vdx

∣∣∣∣→ 0.

Dividing by ε and letting ε→ 0 in (3.2), we obtain

⟨u0, v⟩λ,V − µ

∫
RN

fu0
−γvdx−

∫
RN

gu0
p−1vdx ≥ 0.

Since v was arbitrary, this holds for −v also. Hence, for all v ∈ Xλ, one has

⟨u0, v⟩λ,V − µ

∫
RN

fu0
−γvdx−

∫
RN

gu0
p−1vdx = 0.

Then u0 is a positive solution of problem (1.1).
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Proposition 3.2. Suppose that 0 < γ < 1, 2 < p < 2∗s, and the conditions (F ), (G)
and (V 1)− (V 4) are satisfied. Then, for (λ, µ) ∈ [λ∗,+∞)× (0, µ∗), the functional
Φλ,µ has a minimizer v0 in N−

λ,µ such that Φλ,µ(v0) = c−λ,µ .

Proof. On account of Φλ,µ is also coercive on N−
λ,µ, we apply the Ekeland’s vari-

ational principle to the minimization problem c−λ,µ = inf
u∈N−

λ,µ

Φλ,µ(u), there exists a

minimizing sequence {vn} ⊂ N−
λ,µ of Φλ,µ with the following properties

(i) c−λ,µ < Φλ,µ(vn) < c−λ,µ + 1
n ,

(ii) Φλ,µ(v) ≥ Φλ,µ(vn)− 1
n∥vn − v∥.

Moreover, {vn} is bounded in Xλ, up to a subsequence if necessary, there exists
v0 ∈ Xλ such that

vn ⇀ v0, in Xλ,

vn → v0, in Lq(RN ), q ∈ [2, 2∗s),

with v0 ≥ 0. Then, we have

lim
n→∞

∫
RN

f |vn|1−γdx =

∫
RN

f |v0|1−γdx and lim
n→∞

∫
RN

g|vn|pdx =

∫
RN

g|v0|pdx.

We will show that v0 ̸= 0. If v0 = 0, then vn converges to 0 strongly in Xλ, which
contradicts Lemma 2.4. Next, we prove that vn → v0 in Xλ. If vn ↛ v0 in Xλ then

∥v0∥2λ,V − µ

∫
RN

f |v0|1−γdx−
∫
RN

g|v0|pdx

< lim inf
n→∞

[
∥vn∥2λ,V − µ

∫
RN

f |vn|1−γdx−
∫
RN

g|vn|pdx
]
= 0. (3.3)

Since {vn} ⊂ N−
λ,µ, we deduce from (2.6) that

µ(γ + 1)

∫
RN

f |v0|1−γdx+ (2− p)

∫
RN

g|v0|pdx ≤ 0.

Consequently, we have
∫
RN g|v0|pdx > 0. Then by Lemma 2.4 (ii), there exists a

t− > 0 such that Φ′
λ,µ(t

−v0) = 0 and t−v0 ∈ N−
λ,µ. Note that Φ′

λ,µ(v0) ̸= 0 by (3.3).
Thus, t− ̸= 1. Since t−vn ⇀ t−v0 and t−vn ↛ t−v0 in Xλ. Hence,

Φλ,µ(t
−v0) < lim inf

n→∞
Φλ,µ(t

−vn).

Observe that the function Φλ,µ(tvn) attains its maximum at t = 1. Thus, we have

Φλ,µ(t
−v0) < lim inf

n→∞
Φλ,µ(t

−vn) ≤ lim
n→∞

Φλ,µ(vn) = c+λ,µ.

which is absurd. Therefore, we obtain that vn → v0 in Xλ.
Since N−

λ,µ is closed by Lemma 2.5, it follows that v0 ∈ N−
λ,µ.

By Lemma 2.6 and 2.7, similar to Proposition 3.1, we get that v0 is also a
positive solution of problem (1.1).
Proof of Theorem 1.1. Combining Proposition 3.1 and Proposition 3.2, for
(λ, µ) ∈ [λ∗,+∞)× (0, µ∗) we know that problem (1.1) admits at least two positive
solutions u0 ∈ N+

λ,µ and v0 ∈ N−
λ,µ in Xλ. Since N+

λ,µ

⋂
N−

λ,µ = ∅, the two solutions
are distinct. This finishes the proof.
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