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ON EQUILIBRIUM SOLUTIONS TO
NONLOCAL MECHANISTIC MODELS IN

ECOLOGY∗

Erin Ellefsen1,† and Nancy Rodríguez1

Abstract Understanding the factors that drive species to move and develop
territorial patterns is at the heart of spatial ecology. In many cases, mechanis-
tic models, where the movement of species is based on local information, have
been proposed to study such territorial patterns. In this work, we introduce a
nonlocal system of reaction-advection-diffusion equations that incorporate the
use of nonlocal information to influence the movement of species. One benefit
of this model is that groups are able to maintain coherence without having
a home-center. As incorporating nonlocal mechanisms comes with analytical
and computational costs, we explore the potential of using long-wave approx-
imations of the nonlocal model to determine if they are suitable alternatives
that are more computationally efficient. We use the gradient flow-structure
of the both local and nonlocal models to compute the equilibrium solutions of
the mechanistic models via energy minimizers. Generally, the minimizers of
the local models match the minimizers of the nonlocal model reasonably well,
but in some cases, the differences in segregation strength between groups is
highlighted. In some cases, as we scale the number of groups, we observe an
increased savings in computational time when using the local model versus the
nonlocal counterpart.

Keywords Partial integrodifferential equations, population dynamics, en-
ergy, minimizer.

MSC(2010) 35Q92, 74G65.

1. Introduction
Understanding how individuals interact with each other and their environment, a
core objective of theoretical ecology, is particularly crucial as climate change is
altering the habitats of many species [9,19]. A recent study in Nature [13] brought
forward significant evidence that 279 species (out of 1700 in their study) had been
affected by climate change, and the use of mathematical models to obtain insight
into this issue can be extremely powerful. In fact, local reaction-advection-diffusion
(RAD) systems have been used with some success to understand territory use of
various species such as coyote [10], wolves from northeastern Minnesota [21], and
meerkats [1]. Such verified models can then be of use to help predict how territories
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will evolve as the environment changes or how different groups will redistribute if a
group becomes extinct.

Local RAD mechanistic models attempt to capture the social and environmen-
tal dynamics that govern how competing subgroups of a species interact with one
another. Generally, local RAD models incorporate inter- and intra-group dynamics
and preferences toward favorable patches in the environment [6,17]. However, there
are cases where local RAD models alone are insufficient to explain certain observed
phenomena without the introduction of artificial dynamics. For example, in the
system introduced to model the dynamics of territory use of meerkats, an advective
term pointing in the direction of an artificial home center was introduced in order
to keep different groups “coherent” (by coherence we mean the non-transient for-
mation of spatially non-constant distributions) [1]. However, recent evidence shows
that some animals avoid locations where they have previously encountered a mem-
ber of another group (see for example [1,5]). This implies that animals inform their
decision of where to move based on nonlocal information. In fact, these nonlocal
interactions can play a key role in maintaining coherence of groups. As far as we
are aware, the only other work that has tried to incorporate this spatial memory
is [14].

This paper has three main objectives. First, we introduce a nonlocal RAD sys-
tem for multiple-species, which we argue is better suited to help maintain coherence
of animal territories when there is no home center. We are concerned with studying
the equilibrium solutions of this model, with particular interest in those where the
territories are segregated, as this is observed in many species. We take advantage
of the fact that this mechanistic model can be seen as a gradient flow of an energy
(with respect to the Wasserstein metric, [20]), thus minimizers of the energy are
equilibrium solutions of the mechanistic model.

This paper will thus focus on the study of the nonlocal energy that contains
convolution terms, which can be computationally expensive. In [23], the authors
study a system of nonlocal PDEs modeling pattern formation in marshes. They use
a local approximation to predict pattern formation in the nonlocal one-dimensional
model which they explore numerically. This motivates our second objective, which
is to derive local approximations of the original nonlocal model and provide a com-
parison of the energy landscapes. Here, we present both second and fourth-order
approximations and determine that, in one-dimension, the second-order approxima-
tion does a good job matching the minimizers of the nonlocal model only in a few
cases. As we will see, the fourth-order matches more widely. In two-dimensions,
the fourth-order approximation is required.

Our last objective is to understand how much faster (if at all) it is to find mini-
mizers of the local energies compared to the nonlocal energy and how these savings
scale with the number of species. The latter point is of particular importance,
because in the model verification stage, when comparing to data, we will have to
find equilibrium solutions of many groups (e.g. 6-10 depending on the application).
When our algorithm was seeded random data, we discover that the local approxi-
mations can lead to significant savings in computational time. However, with two
groups, when starting data close to an energy minimizer was fed to the algorithm,
the computation times were similar and in some occasions, the local approximation
was slower than the original nonlocal energy. With three groups in two-dimensions,
we observe an increased savings in computation time with the fourth-order approx-
imation and random starting data. For some η values, we also see increased savings
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in computation time for segregated starting data. Moreover, for some starting data,
the local and nonlocal algorithms find different energy minimizers. This can be at-
tributed to the fact that the energy landscapes are complex (indeed there are an
infinite number of equilibrium solutions, [15]). Note that we are often able to find
a minimizer in the local approximation that matches the nonlocal minimizer pro-
vided we seed the nonlocal equilibrium to the local approximation. Incorporating
an environmental potential alleviates this issue as the set of minimizers is reduced
significantly. Of course, we still have non-uniqueness since for a given minimizer, if
you swap populations, we obtain another minimizer. Moreover, if the environmental
potential is radially symmetric, then the minimizers are invariant under rotations.
Studying this case will highlight differences in segregation strength between the
local and non-local models.

The model we propose is the following:

∂tui = η∆A(ui)−∇ ·

ui∇

K ∗ ui −K ∗
N∑

j=1,j ̸=i

uj + U(x, t)

 , (1.1)

for x ∈ Ω ⊂ Rd, t > 0, where K ∗ u(x) =
∫
Ω
K(x − y)u(y, t)dy. Here, ui represents

different competing groups, with i = 1, 2, ..., N . For this study we use periodic
boundary conditions. A version of (1.1) was first introduced in [16] to understand
social segregation. However, it can be seen as a generalization of the aggregation-
diffusion equation for a single group, which has been the object of much research –
see [2,4,8] and reference within. The dynamics of each group in (1.1) are governed
by the competition between three forces: local diffusion (or short-range repulsion);
long range intra-group attraction; and long-range inter-group repulsion.

Social interactions and social groups are not exclusive to the human population,
and certain animal populations also move and live in social groups, e.g deer, wolves,
lions, and meerkats [1,21,22]. The different inter- and intra-forces which have been
observed, or postulated to occur, between these social groups are the factors that we
incorporate into (1.1). The function A in (1.1) represents the intragroup dispersal
rate, the convolution term represents intra-group aggregation, and inter-group re-
pulsion is governed by the potential K. Note that the long-range aggregation term
moves the group ui with a nonlocal velocity −∇K ∗ ui, which helps maintain the
group coherent. Moreover, the long-range, inter-group repulsion term moves the
population ui away from other groups via the velocity field

∑N
j=1,j ̸=i ∇K ∗ uj and

serves as a segregation term.
System (1.1) can be seen as a gradient flow of the following energy (with respect

to the Wasserstein metric):

E[ui](t) :=

∫
Ω

η N∑
i=1

A(ui)−
1

2

N∑
i=1

(K ∗ ui)ui +

N∑
i,j=1,i̸=j

(K ∗ ui)uj +

N∑
i=1

U(x, t)ui

 dx.

(1.2)

Indeed, the first variations of the energy with respect to ui are given by:

δE

δui
= η

δA

δui
(ui)−K ∗

ui −
n∑

j=1,j ̸=i

uj

+ U(x, t). (1.3)
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We see that we can rewrite (1.1) as

∂tui = ∇ ·
[
ui∇

(
δE

δui

)]
, (1.4)

and write the time derivative of the energy using (1.4) and integration by parts,

dE

dt
=

∫
Ω

(
n∑

i=1

δE

δui
uit

)
dx

= −
∫
Ω

(
n∑

i=1

ui

∣∣∣∣∇ δE

δui

∣∣∣∣2
)
dx. (1.5)

One of the main motivations for this work lies in the fact that solving the
evolution equation (1.1) is computationally expensive as explained in the work of
Bernoff and Topaz in [3]. We recap their argument for convenience. For the two-
dimensional problem, if we use quadrature, the nonlocal convolution runs in O(n4)
time for an n × n grid, which can be decreased to O(n2 log n) operations with the
use of pseudospectral methods. However, solutions of (1.1) can have contact lines
that develop from the degenerate diffusion (as will be illustrated in what follows –
see for example Figure 2) and dealing with this then requires a finer grid, increasing
the computational time.

In [3], Bernoff and Topaz considered a nonlocal biological aggregation diffusion
equation and derived its local approximation (a Cahn-Hilliard type equation). Their
goal was to determine if the minimizers of the energy functional stemming from the
original nonlocal model did a reasonable job matching the minimizer of the energy
stemming from the local approximation. We use the ideas introduced in that paper
and generalize them to a system of nonlocal equations. That is, we explore the use
of the energy (1.2) as a way of efficiently finding equilibrium solutions. We note
a few differences between this work and that of [3]. First, we focus on studying
systems, which are known to behave differently than scalar equations (indeed we
see a much more complex energy landscape even with two groups). We also provide
a comparison of computational costs between finding the minimizers to the nonlocal
energy and the local counterparts.

To use the energy as a way to find equilibrium solutions to (1.1) we consider
two possible strategies. First we focus on a specific potential, the Laplace potential,
which lends itself to some useful analysis, in the context of this model. This reduces
the complexity of the problem, enabling us to find explicit equilibrium solutions
when two groups are interacting. In the more general case, finding equilibrium
solutions reduces to solving boundary value problems with a convolution that can
be solved efficiently. The second approach considers more general potentials for
which we perform a long-wave approximation. As mentioned earlier, our aim is to
see if the local models do a suitable job approximating the nonlocal model and if it
is more efficient to find equilibrium solutions of the local models.

1.1. From interacting-particles to a population density
We begin considering n distinct groups of a species interacting with each other. For
each of these groups, i = 1, ..., n, there are Ni individuals and xNi

k (t) denotes the
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position of the kth member of group i at time t. We can describe the change in
position of the individual as follows:

dxNi

k (t)

dt
= vk(x, t),

where the velocity is given by the various interactions. Specifically, it has the form:

vk(x, t) =

Ni∑
j=1,j ̸=k

∇V (xNi

k (t)− xNi
j (t)) +

n∑
l=1

Nl∑
j=1

∇K(xNi

k (t)− xNl
j (t)) +∇U(x, t).

The potential V describes the intra-group interactions, long-range attraction and
short range repulsion, K describes the inter-group interactions, a weak long range
force, and U describes the favorability of the environment. If we take the limit as
the members of each group go to infinity, one has to consider how these interactions
will change with different numbers of particles in the system. The typical scalings
considered are:

VN (x) = NγvV1(N
γv/d(x)) and KN (x) = NγkK1(N

γk/d(x)).

Where γi ∈ (0, 1) leads to the range of interaction decreased and the strength
increased, and γi = 0 leads to long-range but weak interactions. Therefore, in order
to match the forces we want in our model, we choose γv ∈ (0, 1) and γk = 0 [11,12].

In the continuum limit we arrive at the following nonlocal model for each group
u and v. The diffusion term, A(u) = u2 in (1.1).

∂tui = η∆u2
i −∇ ·

ui∇

K ∗

ui −
n∑

j=1,j ̸=i

uj

+ U(x, t)

 . (1.6)

Outline: In section 2 we derive the second and fourth-order approximations to
equation (1.1) and its energy (1.2). Section 3 is devoted to the derivation of explicit
equilibrium solutions to (1.1) for the Laplace potential for a two-group system and
the numerical computation of the equilibrium solution for the system with three
or more groups. The numerical approximation of equilibrium solutions for more
general potentials is done in section 4, and we finish with a discussion in section 5.

2. Second and fourth-order approximations
In this section we derive and analyze the second and fourth-order local approxi-
mation to (1.1). Note that for two groups, constants u1 = u2 = c are equilibrium
solutions to (1.1), when U ≡ 0. For three groups or more, the non-local problem
has only the trivial solution as a spatially homogeneous solution. However, for the
local counterparts, all constants are equilibrium solutions when U ≡ 0. Through
linear stability analysis of these constant equilibrium solutions, we find that both
approximations lead to some parameter regimes of stability. The main objective
of this stability analysis is not to determine if there are parameter regimes where
one expects non-constant equilibrium solutions, but rather to make sure that the
approximations are not ill-posed.
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The second and fourth-order approximation of the system for groups i = 1, ..., n
is given by:

∂tui = ∇ ·

ui∇

ωui +

n∑
j=1,j ̸=i

uj + U(x, t)

 (2.1)

and

∂tui = ∇ ·

ui∇

ωui −∇2ui +

n∑
j=1,j ̸=i

(uj +∇2uj) + U(x, t)

 , (2.2)

respectively, with ω = 2η − 1. Both approximations enjoy a gradient-flow structure
with the following the respective energies:

EL2[u1, ..., un] :=

∫ ω

2

n∑
i=1

ui +

n∑
i,j,i̸=j

uiuj +

n∑
i=1

U(x, t)ui

 dx, (2.3)

EL[u1, ..., un] :=

∫ ω

2

n∑
i=1

u2
i +

1

2

n∑
i=1

|∇ui|2−
∑

i,j,i̸=j

(∇ui ·∇uj− uiuj)+

n∑
i=1

U(x, t)ui

dx.
(2.4)

In the remainder of the paper we work with interacting potentials K that satisfy
the following assumptions:

1. K is radial: K(x) = K(|x|);
2. K ∈ L1(Rd) with unit mass:

∫
Rd K(y)dy = 1;

3. K has sufficient decay as |x| → ∞: defining

Mm :=
1

m!

∫
Rd

K(z)zmdz;

we assume that limm→∞ Mm = 0 and Mm+1 = o(Mm);

4. K has a normalized second moment M2 = 2d.

2.1. Long-wave approximations
To obtain a local approximation to the nonlocal model, we perform long-wave ap-
proximation of the nonlocal term under the assumption for the interaction potential
discussed above, exactly as found in [3], but details are included for the reader’s
convenience. The main thing to consider is that we can approximate the convolu-
tion term by first taking the Fourier Transform of the potential and keeping the
long-wave modes. By assumption, K is radial and thus its Fourier Transform is also
radial in k. We have

K̂(k) =

∫
Rn

K(r)e−ikxdx,

where k = |k| and r = |x|. We rewrite the exponential in series form,

e−ikx =

∞∑
m=0

(−i)m
k · x
m!

;
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and obtain that:

K̂(k) =

∫
Rd

(
K(r)−K(r)ik · x − 1

2
K(r)(k · x)2 + · · ·

)
dx.

Using the assumptions on K, we find the second and forth terms to be zero due
to symmetry, and the first term,

∫
Rd K(z)dz = 1. For the third term, we have

−1

2

∫
Rd

(k · x)2K(r)dx = −1

2

d∑
p=1

d∑
q=1

kpkq

[∫
Rd

K(r)xpxqdx
]

(2.5)

= −1

2

d∑
p=1

k2p

[∫
Rd

K(r)x2
pdx

]
(2.6)

= −1

2

d∑
p=1

k2p

[
1

d

∫
Rd

K(r)r2dx
]

(2.7)

= −1

2

1

d
2d

d∑
p=1

k2p (2.8)

= −k2.

We rewrite (k·x)2 as a double sum in the right hand side of (2.5), (2.6) uses symme-
try to conclude that the non-diagonal terms cancel, (2.7) uses the radial symmetry
of K to arrive at the second moment, and (2.8) substitutes in the assumption we
have made for M2. Finally, using the first three terms in the approximation, we get
K̂ = 1 − k2 + O(k4). From this, we obtain second-order approximation by taking
K ∗ w ≈ w and substituting this back into (1.6) to get (2.1). On the other hand,
substituting K ∗ w ≈ w +∇2w gives the fourth-order approximation seen in (2.2).

2.2. Stability analysis for the local approximations
To determine the viability of using these local approximations, we start by per-
forming a stability analysis for both approximations when the number of groups
interacting with each other is two or three. We find parameter regimes leading to
stability for both approximations; however, as expected, the fourth-order approxi-
mation has a larger regime of stability. Of course, this comes at the cost of having
more terms to deal with analytically and numerically. Thus, for the purpose of fast
computations ideally one would prefer to work with a second-order approximation.

Proposition 2.1. We obtain the following conditions to achieve linear stability for
the local approximations, (2.1) and (2.2):

1. The second-order approximation, (2.1), with U = 0, achieves linear stability
for n = 2 and n = 3 when η > 1.

2. The fourth-order approximation, (2.2), with U = 0, achieves linear stability
for n = 2 when η > 1/2.

3. The local approximations, (2.1) and (2.2), with U ̸= 0 achieve linear stability
for n = 2 when ∆U < 0.

The proof of this proposition relies on lemmas which we state and prove below.
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2.3. Second-order approximation with no environment
We begin with the stability analysis of (2.1) for n = 2 and n = 3 with the following
result:

Lemma 2.1. Let U = 0. Then, (2.1) achieves linear stability for n = 2 and n = 3
when η > 1.

Proof. Consider perturbations of the form u = ū + δue
ikx+σt and v = v̄ +

δve
ikx+σt. The resulting linear system is:

σ

 δu
δv

 =

−ωūk2 −ūk2

−v̄k2 −ωv̄k2

 δu
δv

 .

Note that the determinant of the matrix is D = (ω2−1)ūv̄k4 and it is positive when
ω2 − 1 > 0 which corresponds to η > 1. The trace, T = −ωk2(ū + v̄), is negative
when ω > 0, corresponding to η > 1/2. Therefore, for (2.1), we get linear stability
for η > 1.

When n = 3, we substitute the perturbation of the constant solution, w =
w̄ + δwe

ikx+σt and linearize the system in the same manner. The resulting system
is given by:

σ


δu

δv

δw

 =


−ωūk2 −ūk2 −ūk2

−v̄k2 −ωv̄k2 −v̄k2

−w̄k2 −w̄k2 −ωw̄k2



δu

δv

δw

 .

Here we can use the Routh-Hurwitz criterion, [18], to determine when the the
eigenvalues are in the left half of the complex plane. We first find the characteristic
equation,

p(λ)=−λ3−ωk2(ū+v̄+w̄)λ2+k4(v̄w̄+ūw̄+ūv̄)(1−ω2)λ+k6ūv̄w̄(−2+3ω−ω3).

From the characteristic equation, we obtain:

a0 = k6(ūv̄w̄)(2− 3ω + ω3),

a1 = −k4(v̄w̄ + ūw̄ + ūv̄)(1− ω2),

a2 = ωk2(ū+ v̄ + w̄).

We have linear stability when a0 > 0, a2 > 0, and a2a1 > a0. We first consider
when a2a1 − a0 is greater than zero:

a2a1 − a0 = 2k6ūv̄w̄(ω3 − 1) + k6(ū2(w̄ + v̄) + v̄2(w̄ + ū) + w̄2(ū+ v̄))(ω3 − ω).

We see the coefficients of ω3 − 1 and ω3 − ω are positive. We also have ω3 − ω and
ω3−1 are positive when ω > 1. This corresponds to η > 1. It is quick to check that
a0, a2 > 0 when η > 1 as well. Therefore, the system is linearly stable for η > 1.

Note that we can use the Routh-Hurwitz criterion for higher dimensional systems
in order to determine stability for an artibrary number of groups.
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2.4. Fourth-order approximation with no environment
Lemma 2.2. Let U = 0 and n = 2. The fourth order approximation, (2.2), achieves
linear stability when η > 1/2.

Proof. For the fourth-order approximation, the corresponding linear system with
two groups is:

σ

 δu
δv

 =

−k2(ω + k2)ū k2(k2 − 1)ū

k2(k2 − 1)v̄ −k2(ω + k2)v̄

 δu
δv

 .

The determinant D = k4ūv̄[(ω + k2)2 − (k2 − 1)2] is positive if

(ω + k2)2 > (k2 − 1)2, or (2η − 1 + k2)2 > (k2 − 1)2.

This is true if η > 0. For the trace, T = −k2(ū+ v̄)(ω+ k2), to be negative we need
ω + k2 > 0, or 1− 2η < k2. If η > 1/2, 1− 2η is always negative, so it is less than
k2. For η > 1/2, we get linear stability.

Therefore, we see that the fourth-order approximation is stable for a larger
region of η than the second-order approximation.

2.5. Stability with an environment term
For simplicity, we only consider the case with two interacting groups when adding
an environmental potential U to our system.

Lemma 2.3. Let n = 2 and U ̸= 0. The local approximations, (2.1) and (2.2),
achieve linear stability when ∆U < 0.

Proof. The equilibrium solutions are now ū = 0 and v̄ = 0. So, our perturbations
are now simply u = δue

ikx+σt and v = δve
ikx+σt. Substituting those into the

system and keeping only linear terms in δu, δv both in the second and fourth-order
approximations gives us the resulting system:

σ

 δu
δv

 =

ik∇U(x, t) + ∆U(x, t) 0

0 ik∇U(x, t) + ∆U(x, t)

 δu
δv

 .

With an environment potential, the only constant equilibrium solution is the trivial.
Therefore, we obtain a simple diagonal matrix when we perturb them and keep
linear terms. The eigenvalues are the diagonal entries. In order to have real part
negative, we must have ∆U(x, t) < 0. Therefore, we need the environment potential
to be concave down for stability.

Now we are ready to prove Proposition 2.1.
Proof of Proposition 2.1. Combined, Lemma 2.1, Lemma 2.2, and Lemma 2.3
prove our result.

3. Equilibrium solutions for the Laplace potential
Strategically choosing certain potentials can help streamline the analysis of the
system. To illustrate this, in this section we consider the Laplace potential, which
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is the Green’s function of the Helmholtz equation. A nice consequence of this is
that for two groups we obtain analytical equilibrium solutions to (1.1). This is not
the case for n groups, but we do obtain a reduced model, a nonlocal boundary-
value problem where the nonlocal term is the convolution. Recall that the Laplace
potential, K(x) = 1

2me−m|x|, satisfies:

Kxx −m2K = −δ(x). (3.1)

3.1. Two groups: n = 2

We consider two groups, denoted by u and v. Using the gradient-flow structure
observed in (1.5), we can substitute (1.3) for both groups u and v and analyze the
equilibrium solutions to obtain:

0 = −
∫
Rd

(
u

∣∣∣∣∇δE

δu

∣∣∣∣2 + v

∣∣∣∣∇δE

δv

∣∣∣∣2
)
dx

= −
∫
Rd

(
u |∇(2ηu−K ∗ (u− v))|2 + v |∇(2ηv −K ∗ (v − u))|2

)
dx.

Note that u, v ≥ 0 are physical constraints on the solution we care about and thus
the integrand above must be non-negative. This enforces that the integrand be
zero, meaning that both terms in the integrand must vanish. Thus,

0 = u |∇(2ηu−K ∗ (u− v))|2 = v |∇(2ηv −K ∗ (v − u))|2 .

From here, we deduce that ∇(2ηu−K∗(u−v)) = ∇(2ηv−K∗(v−u)) = 0, implying
that:

2ηu−K ∗ (u− v) = c1, (3.2)
2ηv −K ∗ (v − u) = c2, (3.3)

where c1, c2 are constants. Solving for u+ v gives:

u+ v =
c1 + c2
2η

. (3.4)

Now hitting (3.2) with the operator ∂xx − m2 and recalling that K satisfies (3.1)
allows us to compute as follows:

2η(uxx −m2u)−
∫
R
(∂xx −m2)K(x− y)(u(y)− v(y))dy = −m2c1,

2η(uxx −m2u) + u(x)− v(x) = −m2c1,

2η(uxx −m2u) + u(x)− c1 + c2
2η

+ u = −m2c1,

uxx + (1/η −m2)u =
(1− 2ηm2)c1 + c2

4η2
. (3.5)

In the case when ηm2 < 1, we can solve this second-order differential equation
explicitly.

u(x) = A cos(
√
1/η −m2x) +B sin(

√
1/η −m2x) +

(1− 2ηm2)c1 + c2
4η2(1/η −m2)

.
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Using the relation in (3.4), we can explicitly write v,

v(x) =
c1 + c2
2η

−A cos(
√
1/η −m2x)−B sin(

√
1/η −m2x) +

(1− 2ηm2)c1 + c2
4η2(1/η −m2)

.

One of these analytical solutions is illustrated in Figure 1(a). We can consider
how the restriction ηm2 < 1 can be interpreted physically. Decreasing m leads to a
steeper segregation potential, and increasing the parameter η increases the diffusion
of the groups. Therefore, as we increase the steepness of the potential, we can allow
for larger diffusion, or a group with smaller density. This suggests that if groups
have a stronger repulsion from each other, they can take up more space. As we
decrease the steepness of the potential, we must have smaller diffusion, or higher
mass for the group. Thus, if the groups are not as strongly repulsed from each other,
they must take up less space. This interplay between these parameters suggests a
balance that leads to the territory segregation we see in Figure 1(a).

(a) (b)

Figure 1. (a) Analytical solution to (3.5) with two groups interacting (b) The least squares solution to
the linear system (3.7) with three groups.

3.2. General number of groups: n > 2

The nice cancellations that occurred in the above section do not happen in the more
general case; however, we can still follow the procedure discussed above to reduce
the system’s complexity. Indeed, we obtain a system of ODEs that we can solve
recursively for group i = 1, ..., n. We can use the symmetry of the system to get the
remaining ODEs. An appropriate linear combination of (1.3), gives the following:

n∑
i=2

ui = (n− 3)u1 −
n− 2

η
K ∗ u1 −

n− 3

2η
c1 +

1

2η

n∑
i=2

ci. (3.6)

If we hit (1.3) for i = 1 with the operator ∂xx−m2 and substitute in (3.6), we have
the resulting ODE:

u1xx −
(
m2 +

n− 4

2η

)
u1 +

n− 2

2η2
K ∗ u1 =

(−2ηm2 − n+ 3)c1 +
∑n

i=2 ci
4η2

. (3.7)
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The obvious algorithm to use for solving this ODE is the Fast Fourier Transform
(FFT), [7]. Taking the Fourier Transform of (3.7) and solving for û1 gives that:

û1(w) =
(2ηm2 − n+ 3)c1 +

∑n
i=2 ci

4η2(−w2 − (m2 + n−4
2η ) + n−2

2η2(1+w2) )
δ(ω). (3.8)

Therefore, in order to find u1 and therefore ui by symmetry, we need to find the
inverse Fourier Transform of (3.8). Note that this returns the constant solution of
the ODE. Recall that the boundary value problem is not unique. In fact, we get
this same result using this method on the ODE obtained with two groups.

To obtain non-constant solutions, we discretize the domain and approximate
uxx with centered differences and approximate the convolution with the same ma-
trix multiplication that we use in our numerical results in Section 4, reducing the
problem to solving a linear system. Figure 1(b) illustrates a solution, while these
solutions are negative in some values, the overall solution provides the territory
boundaries when three groups are interacting in a one-dimensional space. In this
case, we could interpret territory boundaries by shifting solutions above y = 0.

4. Energy minimizers for general potentials
To consider more general potentials we resort to computing the energy minimizers
numerically, which we do through the use of fmincon from MatLab’s optimization
toolbox, computing the convolution via matrix multiplication using a equispaced
grid, and computing derivatives using centered differences. We use the Laplace
potential for each case, normalized to satisfy the assumptions put on our potential,
K(x) = −a1e

a2|x|, where a1 = π
Γ( d+1

8π )

(
d+1
8π

)d/2, a2 =
√

d+1
2 .

4.1. One-dimensional energy minimizers
For proof of concept we begin with the one-dimensional case. Our analysis begins
with considering the interaction between two groups and we compare the local
and nonlocal minimizers of their respective energies. Additionally, we contrast the
computational time required for the algorithm to find the minimizers when seeded
(1) random starting data and (2) segregated starting data (i.e. presumably close to
what we believe to be a minimizer). The scaling of these computational times as we
add more groups is very important for real world applications; hence, we also study
what happens when we have three groups interacting. The final case we analyze in
one-dimension is the addition of an environment potential.

4.1.1. Two groups interacting with no environmental influence

First, consider the case of two groups interacting with no environmental influence.
From our analysis, for random starting data, we observe that the fourth-order lo-
cal model is a better approximation to the nonlocal model in comparison to the
second-order model. The second-order approximation either does not match the
nonlocal model or is unstable, by which we mean that the algorithm did not re-
turn a reasonable minimizer. The latter was the case for the numerical experiments
illustrated in Figure 2, which is the reason that results from the second-order ap-
proximation are not included. The results illustrated in Figure 2 are as expected:
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(a) η = 1/3 (b) η = 1/2

Figure 2. Energy minimizers for random starting data. NL refers to the non-local model and L4 to the
4th-order approximation.

(a) η = 1/3 (b) η = 1/2

Figure 3. Energy minimizers for segregated starting data. NL refers to the non-local model, L2 and L4
to the 2nd-order and 4th-order approximations, respectively.

the two groups form territories that are segregated, but have larger territories as
η increases. For lower values of η, the minimizers for the fourth-order local energy
tend to be shorter and wider than the minimizers for the nonlocal energy. Also note
that as η increases, the fourth-order approximation does a better job matching the
nonlocal equilibrium. A potential reason for this behavior is the desire to segregate
is stronger in the nonlocal model than in the local counterpart. We observe that
this difference diminishes as the two groups diffuse more and thus have less space
to occupy (due to the boundedness of the domain), see Figure 2.

When seeding the minimizer algorithm segregated data, we often find minimizers
of higher energy as compared to the minimizers obtained when seeding the algorithm
random data. Recall that these energies are not convex and there are many local
minimizers, which our algorithm will find depending on the data seeded. In fact,
in all of our simulations, we found a minimizer of higher or equal energy when we
seeded segregated data versus random data. This implies that we are more likely
to get to a global minimizer if seeding the algorithms random data. Comparing the



Nonlocal territorial models in ecology 2677

nonlocal minimizers illustrated in Figures 2(a) and 3(a), we note that the former has
lower energy than the latter. Also, the nonlocal minimizers illustrated in 2(b) and
3(b) have equal energy. In Figure 3, the minimizer of the nonlocal model is not a
minimizer of the fourth-order approximation, but is a minimizer of the second-order
approximation. Hence, there are rare cases where the second-order approximation
matches the nonlocal and the fourth-order approximation does not.

We must also point out that in some cases, when the algorithm was fed seg-
regated data, the minimizer of the fourth-order approximation did not match the
nonlocal minimizer. However, this was never the case when seeded random data.
The second-order approximation matched in rare cases, but was unstable more of-
ten than not. For these reasons, we find the fourth-order approximation to be more
suitable.

When comparing computational time, the fourth-order approximation performed
at about the same level as the nonlocal counterpart, this is illustrated in Table 1.
Thus, while the fourth-order approximation seems to be a suitable replacement for
the nonlocal model, it does not save computational time in one-dimension. Inter-
estingly, for smaller values of η the local approximation was faster, but for larger
values of η computing the minimizer for the nonlocal energy was faster. The compu-
tational times for segregated starting data are not shown in Table 1, because when
feeding the algorithm a starting point close to an energy minimizer it takes at most
two seconds for any of the models to find the minimizer. If the data seeded to the
algorithm is not close to a minimizer, the results are similar to those with random
starting points. In either case the fourth-order approximation does not really save
computational time in the one-dimensional case with two-species interacting.

Table 1. Computational time in seconds for two groups interacting with no environmental influence
and with a random starting data.

η 1/6 1/3 1/2 2/3 5/6

Nonlocal 78 153 78 33 23
Local-4th order 56 40 67 75 102

4.1.2. Three groups interacting with no environmental influence

Next, we look at energy minimizers when three groups interact with no environmen-
tal influence. When considering random starting data, in contrast to the previous
case studied, both the fourth-order and the second-order approximation returned
unstable results. Therefore, we only illustrate the nonlocal minimizers in Figure 4,
where we observe intuitive results as we did with two groups.

For segregated starting data, the results for the nonlocal model and the second-
order approximation are very similar to the previous case. The fourth-order approx-
imation remains unstable. We see matches between the nonlocal and the second-
order approximation in some cases, for example, for η = 1/3, as illustrated in Figure
5(a). In contrast, for η = 2/3, the starting data remains near a steady state for
the second-order approximation, and is no longer a steady state for the nonlocal
model. Therefore, the second-order approximation does not appear match the non-
local model for the data seeded as η increases. Moreover, as in earlier cases, the
energies of the minimizers found with random starting data are lower than or equal
to the energies found with segregated starting data.
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(a) η = 1/3 (b) η = 2/3

Figure 4. Minimizers for random starting data for the nonlocal model with different η values.

(a) η = 1/3 (b) η = 1/2

Figure 5. Minimizers for segregated starting data

We also analyze the computational expense incurred when adding a group to the
nonlocal model. These times are displayed in Table 2. Adding a group significantly
increases computational time, as we can see from the time differences shown in
Table 2. The computational time for segregated starting data is not included, for
the same reasoning as previously mentioned.

Table 2. Computation times in seconds for three groups with no environmental influence and random
starting data.

η 1/6 1/3 1/2 2/3 5/6
Nonlocal - 2 Groups 78 153 78 33 23
Nonlocal - 3 Groups 563 1460 268 143 138

4.1.3. Two groups interacting with an environmental influence

Finally, we investigate the effect of an environmental potential which influences the
movement of all groups. With random starting data, as expected for the nonlocal
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model, if the influence of the environmental potential is strong enough, it overpow-
ers the desire for groups to segregate. However, there is some balance found between
establishing a territory where groups see environmental benefits while being rea-
sonably segregated. This balance is illustrated in Figure 6, where we have used the
environmental potential U = ae−x2 with a = 1. the change of the environmental
strength is done by changing the value of a.

For weak diffusion coefficients, as seen in Figure 6(a), one group tends to over-
power regions that provide a good environment. The group that dominates depends
on the seeded data (i.e. it is random if the seeded data is random). For larger values
of η, the groups remain segregated but are closer and the second group is closer to
the environment potential, illustrated in 6(b). Like the cases without the environ-
ment potential, the minimizers of the local energy were often shorter and wider for
lower η values.

(a) η = 1/6 (b) η = 1/2

Figure 6. Minimizers of the nonlocal and the fourth-order approximation energy for random starting
data.

Figure 7. Minimizers of the nonlocal and fourth-order approximation energies with random starting
data, η = 2/3, a = 2.

The environment potential also highlights some differences between the nonlocal
model and local approximation that we have not seen previously. In Figure 7, the
strength of the environment potential (a = 2) overpowered the segregation in the
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fourth-order local approximation: both groups have some claim to territory where
the environment is beneficial, and their territories overlap. However, the desire
to segregate remains strong in the nonlocal minimizers. In fact, only one group
has established territory in regions where the environment is good and there is no
territory overlap. Moreover, without the influence of an environment potential,
higher η values diminished the differences in segregation between the local and
nonlocal minimizers. On the other hand, with an environment potential, we observe
the stronger sense of segregation in the nonlocal model for higher η values.

For segregated starting data, we obtain similar results to those seen when we
considered no environmental influence. The second-order approximation matched
local minimizers in limited cases, but was often unstable, and therefore is not dis-
played. The energy minimizers of the fourth-order approximation provide a reason-
able match for most of the minimizers found using segregated data and matched
the minimizers of lowest energy found. It produced stable results for a wide range
of η values.

The computational times for two groups with an environmental influence are
shown in the Table 3 for random initial data. We again omit the table for segregated
starting data for the same reasons as the previous cases. The times suggest that
the addition of the environment potential may, on average, slightly speed up the
computation for a random starting data as compared to the results for two groups
without the environmental potential. These are also listed in Table 3 for comparison.
However, it is still clear that in one-dimension, the fourth-order approximation
did not save computation time, and in many cases, it was more computationally
expensive.

Table 3. Computational times for two groups with an environment potential, random starting data

Environment No Environment
η 1/6 1/3 1/2 2/3 1/6 1/3 1/2 2/3

Nonlocal 38 39 31 21 78 153 78 33
Local-4th order 51 42 53 69 56 40 67 75

4.2. Two-dimensional energy minimizers
In this section, we perform an analysis which is analogous to that done in one-
dimension. However, as two-dimensional domains are physical for many applications
in spatial Ecology, the results from these sections are relevant from the application
perspective. When investigating both the second and fourth-order approximations
in two-dimensions, the results from the second-order approximation are not stable
and we are forced to use the fourth-order approximation. Therefore, in this section
we only analyze and compare the fourth-order local approximation to the nonlocal
counterpart.

4.2.1. Two groups with no environmental influence

For two groups with no environmental influence, we obtain results mirroring those
seen in one-dimension. For random starting data, the local model matches the
nonlocal model reasonably well, as we see in Figure 8. In some cases, like Figure
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(a) Nonlocal group u (b) Nonlocal group v

(c) Local group u (d) Local group v

Figure 8. Energy minimizers for the local and nonlocal models with η = 1/3.

8, the minimizer of the local energy is slightly translated and has a larger territory
than the nonlocal minimizer. This effect diminishes as η increases, just as we saw
in one dimension.

For segregated starting data, we find that in many cases, the fourth-order local
approximation matches the nonlocal model well. However, in some cases the nonlo-
cal model returns a different minimizer than the local model. Just as we saw in one
dimension, the nonlocal minimizers that do not match the local approximation, in
each case, have been minimizers with a higher energy than those found with random
starting data.

When comparing computation time, we find differences between the one- di-
mensional and two-dimensional case. In two-dimensions, if the algorithm was fed
random starting data, the local approximation terminated much faster than the
nonlocal. This is likely because in one-dimension, we implement the convolution
with an N x N matrix, but in two-dimensions, in order to implement the convo-
lution, we use an N2 x N2 matrix, so the time complexity is much larger when
we increase to two-dimensions. The computation time for random starting data
can be found in Table 4. However, when fed starting data closer to a minimizer
(i.e. segregated territories), the computation time was similar. There were cases (η
= 1/3) where the local model terminated faster, but also cases when the nonlocal
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Table 4. Computational times (s) for two groups in two-dimensions.
Random Starting Data Segregated Starting Data

η 1/6 1/3 1/2 1/6 1/3 1/2
Nonlocal > 600000 509988 > 600000 16 3121 767

Local 17202 45452 112098 13 24 5252

model terminated faster (η = 1/2). Some of these computation times are displayed
in Table 4.

4.2.2. Two groups with an environment potential

Here, we observe analogous results to the one-dimensional case when we include an
environmental influence. Figure 9 illustrates results in two dimensions, with envi-
ronmental potential U = e−

1
4 ((x−20)2+(y−30)2), that can be compared to Figure 6,

which illustrates results one-dimension. One group overpowers the territory where
there are environmental benefits, and the other group crowds closely by while main-
taining some segregation. As we have in one-dimension, the group that develops
their territory with environmental benefits depends on the random starting data.

(a) Nonlocal group u (b) Nonlocal group v

(c) Local group u (d) Local group v

Figure 9. Energy minimizers for the local and nonlocal model with an environment potential with
η = 1/3
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When comparing the nonlocal model and the local model, we also see results
similar to those observed in one-dimension. At lower η values, we see that the
nonlocal model often has higher population density, it retains more segregation
than the local model. When η increases or the mass of the population increases, we
see better matches if there is no environment term. However, with an environment
term, the desire to be in environmentally beneficial locations overpowers the desire
to segregate in the local model: the groups develop overlapping territories over
beneficial environment. On the other hand, the desire to segregate remains strong
in the nonlocal model. Figure 10 displays this discrepancy. It is enlightening to
see what a possible cross-section of Figure 10 might look like by referencing the
analogous one dimensional figure, Figure 7.

(a) Nonlocal group u (b) Nonlocal group v

(c) Local group u (d) Local group v

Figure 10. Energy minimizers for the nonlocal model and local approximation with an environment
potential, η = 1/2

Similar to the results in one dimension, the computation time is sped up with an
environment potential, but in two-dimensions, it is considerably faster than without
an environment term. This can be seen in the differences in Table 4 and 5. It is
also still the case that with random starting data, the local model terminates much
faster than the nonlocal model.
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Table 5. Computation times in seconds for two groups with an environment potential, random starting
data

η 1/6 1/3 1/2
Nonlocal 177161 84358 70929

Local 16613 14242 43122

4.2.3. Three groups with no environmental influence

Finally, we found energy minimizers in two-dimensions with three groups. The com-
putational expense it took to add a group in the nonlocal model in two-dimensions
with random starting data was too great for the algorithm and our resources, al-
though we were able to get results with segregated starting data. We found in-
teresting results when comparing to two groups in two-dimensions. In the cases
where the local model was a reasonable match for the nonlocal, lower values of η,
we observed the local model terminated much faster given the same starting data.
So, with the trials we ran, the local model saved computation time irrespective of
whether the starting data was random or segregated. However, we still observe that
the local approximation did not match the nonlocal model well in every case with
segregated data and returned unstable results in some cases. Figure 11 illustrates a
reasonable match between the minimizers of the nonlocal model and its fourth-order
approximation. Note that the local minimizers are more concentrated than their
local approximations.

(a) Group u - NL (b) Group v - NL (c) Group w - NL

(d) Group u - L4 (e) Group v - L4 (f) Group w - L4

Figure 11. Energy minimizer for three groups with a segregated starting point for both the nonlocal
and local model and η = 1/3.
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5. Discussion
Mechanistic models, based on local dynamics, have been used successfully to under-
stand the leading factors in the formation of territories in different species. However,
many species take nonlocal information into account and thus nonlocal mechanistic
models are more suitable in those situations. Using a more realistic model comes
at a computational cost and when using these models to understand population
dynamics by incorporating location data of species of a group, we must solve the
model numerous times as we move through a (potentially very large) parameter
space. If we take into account that we might have a large system to solve (maybe
double a digit number of groups), it becomes imperative that we solve the system
efficiently. In this work, we explore using the energy to find minimizers and derive
local approximations to determine if it is suitable to use such approximations. The
main takeaway of this work is that the situation is more complex than we would
like. In some cases the local approximations do a reasonable job approximating the
equilibrium solutions of the nonlocal model and can be computed more efficiently;
but, this was not always the case. Thus, if this method is to be used, our recom-
mendation, is that the actual data be taken into account to help ensure that the
local approximation and the nonlocal models actually match.

Acknowledgments
The authors would like to thank Mark Lewis for his helpful discussions. Both
authors were partially funded by the NSF DMS-1516778.

References
[1] A. W. Bateman, M. A. Lewis, G. Gall et al., Territoriality and home-range

dynamics in meerkats, Suricata suricatta: A mechanistic modelling approach,
Journal of Animal Ecology, 2015, 84(1), 260–271.

[2] J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for
aggregation equations and Patlak-Keller-Segel models with degenerate diffusion,
Nonlinearity, 2011, 24(6), 1–31.

[3] A. Bernoff and C. Topaz, Biological aggregation driven by social and environ-
mental factors: A nonlocal model and its degenerate cahn–hilliard approxima-
tion, SIAM Journal on Applied Dynamical Systems, 2015, 15(3), 1528–1562.

[4] A. Bertozzi and D. Slepcev, Existence and uniqueness of solutions to an ag-
gregation equation with degenerate diffusion, Communications on Pure and
Applied Analysis, 2010, 9(6), 1617–1637.

[5] N. S. Clayton, P. D. Griffiths, N. J. Emery and A. Dickinson, Elements of
episodic-like memory in animals., Philosophical Transactions of the Royal So-
ciety of London Series B, Biological Sciences, 2001, 356(1972), 1483–1491.

[6] J. Clobert, E. Danchin, A. Dhondt and J. D. Nichols, Dispersal, Oxford Uni-
versity Press, Oxford, 2001.

[7] M. Heideman, D. Johnson and C. Burrus, Gauss and the history of the fast
fourier transform, Archive for History of Exact Sciences, 1985, 34, 265–277.



2686 E. Ellefsen & N. Rodríguez

[8] D. Li and X. Zhang, On a nonlocal aggregation model with nonlinear diffusion,
Discrete and Continuous Dynamical Systems, 2010, 27(1), 301–323.

[9] P. K. Molnár, A. E. Derocher, T. Klanjscek and M. A. Lewis, Predicting climate
change impacts on polar bear litter size., Nature communications, 2011, 2, 186.

[10] P. Moorcoft, M. A. Lewis and R. Crabree, Home range analysis using a mech-
anistic home range model, Ecology, 1999, 80(5), 1656–1665.

[11] K. Oelschläger, A law of large numbers for moderately interacting diffusion
processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1985, 69, 279–322.

[12] K. Oelschläger, Large Systems of Interacting Particles and the Porous Medium
Equation, Journal of Differential Equations, 1990, 88, 294–346.

[13] C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change
impacts across natural systems, Nature, 2003, 421(6918), 37–42.

[14] J. R. Potts and M. A. Lewis, Spatial Memory and Taxis-Driven Pattern For-
mation in Model Ecosystems, Bulletin of Mathematical Biology, 2019, 81(7),
2725–2747.

[15] N. Rodríguez and Y. Hu, On the steady-states of a two-species non-local cross-
diffusion model, Journal of Applied Analysis, 2020, 26(1), 1–19.

[16] N. Rodríguez and L. Ryzhik, Exploring the effects of social preference, economic
disparity, and heterogeneous environments on segregation, Communications in
Mathematical Sciences, 2016, 14(2), 363–387.

[17] O. Ronce, How Does It Feel to Be Like a Rolling Stone? Ten Questions About
Dispersal Evolution, Annual Review of Ecology, Evolution, and Systematics,
2007, 28, 231–253.

[18] E. J. Routh, A Treatise on the Stability of a Given State of Motion, Particularly
Steady Motion, London: Macmillan and Co, 1877.

[19] N. C. Stenseth, A. Mysterud, G. Ottersen et al., Ecological effects of climate
fluctuations, Ecology and climatology, 2002, 297, 1292–1296.

[20] L. Wasserstein, Markov processes over denumerable products of spaces describ-
ing large systems of automata., Problems of Information Transmission, 1969,
5, 47–52.

[21] K. White, M. Lewis and J. Murray, A model for wolf-pack territory formation
and maintenance, Journal of Theoretical Biology, 1996, 178, 29–43.

[22] K. A. J. White, J. D. Murray and M. A. Lewis, Wolf-Deer Interactions: A
Mathematical Model, Proceedings of the Royal Society B: Biological Sciences,
1996, 263(1368), 299–305.

[23] S. Zaytseva, J. Shi and L. B. Shaw, Model of pattern formation in marsh
ecosystems with nonlocal interactions, Journal of Mathematical Biology, 2020,
80, 655–686.


	Introduction
	From interacting-particles to a population density

	Second and fourth-order approximations
	Long-wave approximations
	Stability analysis for the local approximations
	Second-order approximation with no environment
	Fourth-order approximation with no environment
	Stability with an environment term

	Equilibrium solutions for the Laplace potential
	Two groups: n=2
	General number of groups: n>2

	Energy minimizers for general potentials
	One-dimensional energy minimizers
	Two groups interacting with no environmental influence
	Three groups interacting with no environmental influence
	Two groups interacting with an environmental influence

	Two-dimensional energy minimizers
	Two groups with no environmental influence
	Two groups with an environment potential
	Three groups with no environmental influence


	Discussion

