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SMOOTH SOLUTIONS OF THE
LANDAU-LIFSHITZ-BLOCH EQUATION∗

Qiaoxin Li1†, Boling Guo2 and Ming Zeng3

Abstract Landau-Lifshitz-Bloch equation is often used to model micromag-
netic phenomenon under high temperature. This article proves the existence
of smooth solutions of the equation in R2 and R3, and a small initial value con-
dition should be added in the latter case. These results can also be generalized
to periodical boundary value case.

Keywords Landau-Lifshitz-Bloch equation, a priori estimate, Gagliardo-Nir-
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1. Introduction
In this paper, we consider the following initial value problem, known as Landau-
lifshitz-Bloch equation

ut = ∆u+ u×∆u− k(1 + µ|u|2)u (1.1)
u(x, 0) = u0(x), x ∈ R2 or R3 (1.2)

where the constants k, µ > 0.
In [5–7,10,12,13], it is pointed out that the dynamics of the magnetization of fer-

romagnets is a phase-changing process. When the electronic temperature is higher
than θc (i.e. the temperature θ ≥ θc, where θc is the critical Carie temperature),
LLB equation has proved to describe the magnetization dynamics. When the tem-
perature θ < θc, it is the normally well-known Landau-Lifshitz equation. For the
Landau-Lifshitz equation, many workers has been studied (see [1–4, 11, 15, 16] and
the book of Guo-Ding [9]). In [5–7] the following LLB equation has been proposed

∂u

∂t
= γu×Heff + L1

1

|u|2
(u ·Heff ) · u− L2

1

|u|2
u× (u×Heff ). (1.3)

Here, | · | is Enclideam norm in R3, γ > 0 is the gyromagnetic ration, and L1 and
L2 are longitudinal and transverse damping parameters, respectively. In [5], Kin
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Ngonle consider (1.3) in the case L1 = L2 The effective field Heff is given by

Heff = ∆u− 1

χ11
(1 +

3

5

T

T − Tc
|u|2u)u, (1.4)

where χ11 is the longitudinal susceptibity and let L1 = L2 = k1, then the equation
(1.3) can be writed as follows

∂u

∂t
= k1∆u+ γu×∆u− k2(1 + µ|u|2)u,with k2 =

k1
χ11

, µ =
3T

5(T − Tc)
(1.5)

under the coefficients k1, k2, γ, µ > 0. He obtained the existence of global weak
solution of LLB (1.5), u ∈ Cd([0, T ], L3/2), supt∈[0,T ] ∥u(·.t)∥H1 < ∞.

In this paper, we study the smooth solution of problem (1.1)-(1.2) and get the
following theorem.

Theorem 1.1. Let dimension d = 2 with initial data u0 ∈ Hm(m ≥ 2) then for
any T > 0 there ia s unique solution u of problem (1.1),(1.2)satisfying

∂j
t ∂

α
x u ∈ L∞([0, T ], ;L2(R2)), (1.6)

∂k
t ∂

β
xu ∈ L2([0, T ];L2(R2)) (1.7)

where 2j + |α| ≤ m, and 2k + |β| ≤ m+ 1.

Theorem 1.2. Let dimension d = 3 with initial data u0 ∈ Hm(m ≥ 2), and
∥u0∥H2 is sufficiently small. Then for any T > 0 there is a unique solution of
problem (1.1),(1.2)satisfying

∂j
t ∂

α
x u ∈ L∞([0, T ], ;L2(R3)), (1.8)

∂k
t ∂

β
xu ∈ L2([0, T ];L2(R3)) (1.9)

where 2j + |α| ≤ m, and 2k + |β| ≤ m+ 1.

The rest of this paper is divided into three parts. In section 2, we prove the
existence of smooth solution in Theorem 1.1; In section 3, we prove the existence of
smooth solution in Theorem 1.2; In section 4, we prove the uniqueness of smooth
solution in Theorem 1.1 and Theorem 1.2.

2. Proof of existence in Theorem 1.1
From [3, 8, 9, 14, 17] it can be shown that there exist T > 0 and a unique smooth
solution of problem (1.1) (1.2) in [0, T ]. Indeed, it is easy to check that et∆ is a
analytic semigroup generated by ∆ in L2(Rd), d = 2 or 3. Let

X = {u|u ∈ C([0, T ];Hm(Rd)), tαu(t) ∈ Cα([0, T ];Hm(Rd)), u(0) = u0}

and
Y = {u|u ∈ X, ∥u∥C([0,T ];Hm(Rd)) + [tαu]Cα([0,T ];Hm(Rd)) ≤ ρ}

with 0 < α < 1,m ≥ 2. Define a nonlinear operator Γ on Y , by Γ(u) = v, where v
is the solution of

vt = ∆v + u×∆u− k(1 + µ|u|2)u, v(0) = u0 (2.1)
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by Theorem 4.3.5 of ref [9] (see [9], pages 137–139), for every u ∈ Y,Γ(u) ∈
C([0, T ];Hm(Rd)) and tαΓ(u) ∈ Cα([0, T ];Hm(Rd)); then using the same argu-
ments as in the proof of Theorem 8.1.1 of Ref [9] (See [9], pages 290–294), there
exists T > 0, δ > 0 such that Γ : Y → Y is constreation, i.e., there exists a unique
smooth local solution of problem (1.1), (1.2). In order to prove Theorem 1.1 and
Theorem 1.2, it suffices to give a priori estimates for the smooth solution of problem
(1.1), (1.2).

Lemma 2.1. Let dimension d = 2, 3 and initial data u0 ∈ Hm(m ≥ 2) for the
smooth solution of problem (1.1), (1.2), we have that

∥u(·, t)∥2L2 + 2

∫ t

0

∥∇u(·, s)∥2L2ds+ 2k

∫ t

0

(1 + µ|u|2)u(·, s)ds = ∥u0∥2L2 , (2.2)

∥u(·, t)∥L∞ ≤ C∥u0∥H2 ,

∥∇u(·, t)∥2L2 +

∫ t

0

∥∆u(·, s)∥2L2ds ≤ C(∥u0∥L2), (2.3)

∥u(·, t)∥L∞ ≤ C∥u0∥H2 , t ≥ 0. (2.4)

Proof. Taking the scalar product of function u and equation (1.1), and then
integrating the resuef over Rd for the space variable x and over [0, t] for the temporal
variable t, we have (2.3).

Now taking the scalar product of |u|p−2u(p ≥ 2) with equation (1.1), then
integrating the result over Rd for the space variable x, we get∫

Rd

|u|p−2uutdx

=
1

p

d

dt
∥u(·, t)∥pLp =

∫
Rd

|u|p−2u ·∆udx− k

∫
Rd

|u|p−2(1 + µ|u|2)u2dx

≤−
∫
Rd

|u|p−2∇u · ∇udx− (p− 2)

∫
Rd

|u|p−4(u · ∇u)2dx ≤ 0.

This inequality implies that

∥u(·, t)∥Lp ≤ ∥u0∥H2 ∀p ≥ 2, t ≥ 0 (2.5)

where we have used the embedding theorem of Sobolev spaces. Note the constant
C is independent of p and let p → ∞, estimate (2.4) is obtained.

Similarly, taking the scalar product of ∆u and equation (1.1) and then integrat-
ing the result over Rd for the space variable x and over [0, t] for temporal variable
x, we have

∥∇u(·, t)∥2L2+2

∫ t

0

∥∆u(·, s)∥2L2ds+2k

∫ t

0

(1+µ|u|2)u∆u(·, s)ds=∥∇u0∥2L2 ,∀t ≥ 0.

(2.6)∣∣∣∣2k ∫
Rd

(1 + 2µ|u|2)u ·∆uds

∣∣∣∣ ≤ 2k∥u∥L∞

∫
Rd

(1 + µ|u|2)|∆u|ds

≤
∫ t

0

∥∆u(·, s)∥2L2ds+ C(∥u0∥H2) (2.7)

we can get the estimate (2.2).
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Lemma 2.2. Let dimension d = 2 and initial data u0 ∈ Hm(m ≥ 2). Then for the
smooth solution of problem (1.1), (1.2) one has the following estimates

∥∆u(·, t)∥2L2 +

∫ t

0

∥∆∇u(·, s)∥2L2ds ≤ C(T ; ∥u0∥H2),∀T > 0, t ∈ [0, T ], (2.8)

∥ut(·, t)∥L2 +

∫ t

0

∥∇ut(·, s)∥2L2ds ≤ C(T ; ∥u0∥H2),∀T > 0, t ∈ [0, T ]. (2.9)

Moveover, if m ≥ 3, then we have

∥∆∇u(·, t)∥2L2 +

∫ t

0

∥∆2u(·, s)∥2L2ds ≤ C(T ; ∥u0∥H3), ∀T > 0, t ∈ [0, T ], (2.10)

∥∇ut(·, t)∥2L2 +

∫ t

0

∥∆ut(·, s)∥2L2ds ≤ C(T ; ∥u0∥H3), ∀T > 0, t ∈ [0, T ]. (2.11)

Proof. By simple calcalation, we get

∆ut = α

2∑
j=1

∂xju×∆∂xju+ u×∆2u+∆2u− k∆[(1 + µ|u|2)u]. (2.12)

Taking the scalar product of ∆u and the equation (2.12), and then integrating the
result over R2 for the space variable x, we have∫

R2

∆ut ·∆udx =

∫
R2

∆2u∆udx+ 2

2∑
j=1

∫
R2

(∂xj
u×∆∂ju)∆udx

+

∫
R2

(u×∆2u)∆udx−
∫
R2

k∆[(1 + µ|u|2)u]∆udx.

Integrating by parts, we get

1

2

d

dt

∫
R2

|∆u(x, t)|2dx+
∫
R2

|∇∆u(x, t)|2dx+k

∫
R2

|∆u|2dx+k

∫
R2

∆(|u|2u)∆udx

=

2∑
j=1

∫
R2

(∂xju×∆∂xju) ·∆udx. (2.13)

By Holder inequality, it follows that∣∣∣∣∣∣
2∑

j=1

∫
R2

(∂xj
×∆∂xj

)∆udx

∣∣∣∣∣∣ ≤ 2∥∇u∥L4∥∆u∥L4∥∆∇u∥L2 .

By Gagliardu-Nirenberg’s inequality, we have

∥∇u∥L4 ≤ C∥∇u∥
1
4

H2∥∇u∥
3
4

L2 ,

∥∆u∥L4 ≤ C∥∆u∥
1
2

H1∥∆u∥
1
2

L2 .

Hence we get
2∑

j=1

∫
R2

(∂xju×∆∂xju)∆udx ≤ 1

4
∥∆∇u∥2L2 + C(∥∇u0∥L2)(1 + ∥∆u∥2L2),
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R2

∆(|u|2u)∆udx

∣∣∣∣ ≤ C∥u∥2L∞(∥∇u∥2L4 + ∥∆u∥2L2)

≤ 1

4
∥∆∇u∥2L2 + C(∥u0∥H2).

Using (2.13) and Gronwall’s inequality, we obtain (2.8).
Next we are going to prove Theorem 1.1 for 2-dimensional case, and it is sufficient

to prove the following Theorem.

Theorem 2.1. Let dimension d = 2, with the initial data ∇u0 ∈ Hk(k ≥ 2). Then
any smooth solution of problem (1.3), (1.4) satisfies the following a priori estimate

sup
0≤t≤T

∥Dm+1u(·, t)∥2L2 +

∫ t

0

∥Dm+2u(·, s)∥2L2ds ≤ C, 2 ≤ m ≤ k (2.14)

where C depends on T and ∥∇u0∥Hk .

Proof. We will use induction arguments to prove this theorem, but first of all
it should be necessary to obtain the boundedness of ∥∇u∥L∞ . In fact, applying
Laplace operator to the both sides of equation (1.3) and taking the scalar product
with △2u , then integrating over R2, we get

−1

2

d

dt
∥∇△u∥2L2 =∥△2u∥2L2 + 2

2∑
j=1

∫
R2

∂xju×△∂xju · △2udx (2.15)

−
∫
R2

k△[(1 + |u|2)u]△udx. (2.16)

By Hölder’s inequality, it follows that

|
2∑

j=1

∫
R2

∂xju×△∂xju · △2udx| ≤ 2∥∇u∥
L

16
5
∥∇△u∥

L
16
3
∥△2u∥L2 .

By Gagliardo-Nirenberg’s inequality, we have

∥∇u∥
L

16
5

≤ C∥∇u∥
1
8

H3∥∇u∥
7
8

L4 ,

∥∇△u∥
L

16
3

≤ ∥∇△u∥
5
8

H1∥∇△u∥
3
8

L2 .

Here note that the boundedness of ∥∇u∥L4 can be justified by Lemma 2.2, with the
same procedures as that in Lemma 2.2, we deduce that

∥∇△u∥2L2 ≤ C. (2.17)

Then
∥∇u∥L∞ ≤ C, (2.18)

follows from(2.13) and Galiardo-Nirenberg inequality.
Next we utilize induction arguments, the m=1 case has been proved by Lemma

2.2, so it will be supposed that if m = m case holds, then m = m + 1 also holds.
Applying the differential operator Dm+1 to the both sides of equation (1.4) and
taking the scalar product with Dm+1u , then integrating over R2, we get

−1

2

d

dt
∥Dm+1u∥2L2 =∥∇Dm+1u∥2L2 (2.19)
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+ 2

2∑
j=1

∫
R2

Dm+1(u×△u) ·Dm+1udx

−
∫
R2

kDm+1[(1 + |u|2)u]Dm+1udx. (2.20)

Since∫
R2

Dm+1(u×△u) ·Dm+1udx = −
∫
R2

Dm+1(u×∇u) · ∇Dm+1udx, (2.21)

and

Dm+1(u×∇u) = Dm+1u×∇u+u×Dm+1∇u+

m∑
h=1

Ch(D
hu×Dm+1−h∇u). (2.22)

Thus

|
∫
R2

Dm+1(u×△u) ·Dm+1udx| ≤ |
∫
R2

Dm+1u×∇u · ∇Dm+1udx| (2.23)

+ |
∫
R2

m∑
h=1

Ch(D
hu×Dm+1−h∇u) · ∇Dm+1udx| (2.24)

≤∥∇u∥L∞∥Dm+1u∥L2 + C∥Dmu∥L4∥Dm∇u∥L4∥∇Dm+1u∥L2 . (2.25)

Consequently,

d

dt
∥Dm+1u∥2L2 + 2∥Dm+2u∥2L2 ≤ C∥Dm+1u∥2L2

using Gronwall’s inequality, we conclude the theorem.

3. Proof of existence in Theorem 1.2
The proof of Theorem 1.2 is in line with that of Theorem 1.1, and the difference
is that a priori estimates are more difficult to derive as the dimension changes, we
propose an additional condition to overcome this situation. Precisely, we have the
following Lemma

Lemma 3.1. Let dimension d = 3 with initial data u ∈ Hm(m ≥ 2) and ∥u0∥H2

be sufficiently small. Then for the smooth solution of problem (1.1), (1.2) one has
the following estimates

∥∆u(·, t)∥2L2 +

∫ t

0

∥∆∇u(·.s)∥2L2ds ≤ C(T, ∥u0∥H2), ∀T > 0, t ∈ [0, T ], (3.1)

∥ut(·, t)∥2L2 +

∫ t

0

∥∇ut(·, s)∥2L2ds ≤ C(T ; ∥u0∥H2), ∀T > 0, t ∈ [0, T ], (3.2)

∥∆∇u(·, t)∥2L2 +

∫ t

0

∥∆2u(·, s)∥2L2ds ≤ C(T, ∥u0∥H3), ∀T > 0, t ∈ [0, T ], (3.3)

∥∇ut(·, t)∥2L2 +

∫ t

0

∥∆ut(·.s)∥2L2ds ≤ C(T, ∥u0∥H3), ∀T > 0, t ∈ [0, T ]. (3.4)



Smooth solutions of the Landau-Lifshitz-Bloch equation 2719

Proof. By using the same arguments as in the proof of Lemma 2.11, we get

∆ut = 2

3∑
j=1

∂xju×∆∂xju+ u×∆2u+∆2u− k∆(1 + µ|u|2)u, (3.5)

1

2

d

dt

∫
R3

∥∆u(·, t)∥2dx+

∫
R3

|∆∇u(·, t)|2dx+ k

∫
R3

∆(1 + µ|u|2)u ·∆u

=

3∑
j=1

∫
R3

(∂xj
)u×∆∂xj

u∆udx

≤ 2∥∇u∥L6∥∆u∥L3∥∆∇u∥L2 ≤ C∥u∥L∞∥u∥2H3 ≤ 1

3
∥∆∇u∥2L2

(3.6)

where the estimate (2.4) and hypothesis ∥u0∥H2 ≪ 1 has been used.∣∣∣∣∫
R3

kµ∆(|u|2u)∆udx

∣∣∣∣ ≤ 1

3
∥∆∇u∥2L2 . (3.7)

Inserting (3.7) to (3.6), we obtain (3.1).
Now taking the scalar product of ∆2u and the equation (3.5), then integrating

the result over R3 for the space variable x, we have∫
R3

∆ut ·∆2udx =

∫
R3

∆2u ·∆2udx+ 2

3∑
j=1

∫
R3

(∂xj
u× ∂xj

u)∆2u

− k

∫
R3

∆(1 + µ|u|2)u∆2udx.

Integrating by parts, we get
1

2

d

dt

∫
R3

|∆∇u(x, t)|2dx+

∫
R3

|∆2u|2dx+ k

∫
R3

∆(1 + µ|u|2)u∆2udx

=2

3∑
j=1

∫
R3

(∂xj
u×∆∂xj

u)∆2udx, (3.8)

2

∣∣∣∣∣∣
3∑

j=1

∫
R3

(∂xj
u×∆∂xj

u)∆2udx

∣∣∣∣∣∣ ≤ 6∥∇u∥L4∥∆∇u∥L4∥∆2u∥L2

≤C(T ; ∥u0∥H2)∥∆∇u∥
1
4

L2∥∆2u∥
7
8

H2 ≤ 1

3
∥∆2u∥2L2 + C(∥u0∥H2)(1 + ∥∆∇u∥2L2)

(3.9)∣∣∣∣kµ ∫
R3

∆(|u|2u)∆2udx

∣∣∣∣ ≤ 1

3
∥∆2u∥2L2 + C(∥u0∥H2). (3.10)

Inserting (3.9), (3.10) into (3.8) and using Gronwall’s inequality we get (3.3). Us-
ing equation (1.1) ,(3.1), (3.3), Holder’s inequality and the embedding theorem of
Sobolev spaces. we obtain (3.2), (3.4).

Lemma 3.2. Let m ≥ 4. Then under the conditions of Theorem 1.1 and Theorem
1.2 for the smooth solution of problem (1.1), (1.2) one has the following estimates

∥∆2u(·, t)∥2L2 +

∫ t

0

∥∆2∇u(·, s)∥2L2ds ≤ C(T, ∥u0∥H4), ∀T > 0, t ∈ [0, T ], (3.11)
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∥∆ut(·, t)∥2L2 +

∫ t

0

∥∆∇ut(·, s)∥2L2dt ≤ C(T ; ∥u0∥H4), t ∈ [0, T ]. (3.12)

By using the induction’s method, we can prove this lemma.

Lemma 3.3. Under the conditions of Theorem 1.1 and Theorem 1.2, for the smooth
solution of problem (1.1),(1.2) one has the following estimates

∥∂j
t ∂

α
x u(·, t)∥2L2 ≤ C(T ; ∥u0∥Hm), ∀T > 0, T ∈ [0, T ], (3.13)∫ t

0

∥∂h
t ∂

β
xu(·, s)∥2L2ds ≤ C(T ; ∥u0∥Hm), ∀T > 0, t ∈ [0, T ], (3.14)

where 2j + |α| ≤ m, 2k + |β| ≤ m+ 1.

Using Lemma 2.1-Lemma 2.2 and Lemma 3.1-Lemma 3.3, the proofs of Theorem
1.1 and Theorem 1.2 are standard and we omitted here.

4. Proof of uniqueness of the solution
In this section we will deal with the uniqueness of the solution in problem (1.1),
(1.2), in fact, we have the following generalized result:

Theorem 4.1. Let u and v be two smooth solutions of problem (1.1), (1.2), with
the same initial data u0 = v0 ∈ H∞(Rd), then for any positive integer d, u ≡ v.

Proof. The proof is standard, set w = u − v, we’ll prove w ≡ 0. Since u and v
satisfies (1.1) respectively, w satisfies the following equation

wt = △w + u×△u− v ×△v − kw − k((|u|2)u− (|v|2)v), (4.1)

the cross product in the above equation can be rewritten as
u×△u− v ×△u+ v ×△u− v ×△v = w ×△u+ v ×△w.

Thus (4.1) becomes
wt = △w + w ×△u+ v ×△w − kw − k(|u|2 + |v|2 + u · v)w, (4.2)

taking the inner product with w in both sides of (4.2), then
1

2

d

dt

∫
Rd

|w|2dx = −
∫
Rd

|∇w|2dx+

∫
Rd

(v ×△w) · wdx

−k

∫
Rd

|w|2dx− k

∫
Rd

(|u|2 + |v|2 + u · v)|w|2dx,

where

|
∫
Rd

(v×△w) ·wdx| = |
∫
Rd

(∇v×∇w) ·wdx| ≤ 2∥∇v∥2L∞∥w∥2L2 +
1

2
∥∇w∥2L2 , (4.3)

and
k|
∫
Rd

(|u|2 + |v|2 + u · v)|w|2dx| ≤ 2k(∥v∥2L∞ + ∥u∥2L∞)∥w∥2L2 . (4.4)

Since u and v are smooth, the norm ∥∇v∥2L∞ , ∥u∥2L∞ and ∥v∥2L∞ can be replaced
by a constant C, thus it can be concluded that

d

dt

∫
Rd

|w|2dx ≤ C

∫
Rd

|w|2dx.

Gronwall’s inequality and the fact that w(x, 0) ≡ 0 lead to w ≡ 0.
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