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CHARACTERISTICS OF NEW TYPE ROGUE
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Abstract On the basis of the binary Bell polynomial scheme, the bilinear
form of the extended (3+1)-dimensional Jimbo-Miwa (JM) equation, is con-
structed. Then, a class of new type rogue waves solutions to the extended
(3+1)-dimensional JM equation, is found. It mainly includes the lump solu-
tions, lumpoff solutions and instanton solutions. Their nonlinear evolutionary
processes by 3D- and 2D-graphs, are shown. Finally, a direct method which is
called the tanh-function method was used to get solitary waves of this consid-
ered model. These results can help us better understand interesting physical
phenomena and mechanism.
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waves, solitary waves.
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1. Introduction
It is known that the integrability of mathematics physics had been better investi-
gated in recent years. There are different definitions of integrability of nonlinear
differential equations(NDEs). Among them, there are existing some indicators,
such as the Bäcklund transforms, Lax pairs, infinite conservation laws, N -soliton
solutions and infinite symmetry, etc [3, 4, 7–11, 18, 30, 40]. Therefore, as well to
study the integrability of NDEs, we need to find these indicators. To the best of
our knowledge, the multi-dimensional binary Bell polynomial approach [4, 7, 8] is
an effective tool to construct the bilinear equation, Bäcklund transforms and Lax
pairs and infinite conservation laws. This method has been developed by Gilson,
et al [4], Lambert and Springael [7, 8]. Later, many scholars further developed and
promoted this method [3, 9, 10,18,30,40].

Recently, on the basis of the bilinear equation, the lump solutions, lump-type
solutions, N -lump and interaction solutions in Refs. [12, 19–25], were presented.
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This field has received a lot of attention from researchers in recent years. For exam-
ple, Ma, et al [19] discussed the lump solution to the nonlinear partial differential
equations in detail, Liu, et al [12] constructed the lump solutions and mixed lump
stripe solutions of the (3+1)-dimensional soliton equation, the lump-type solutions,
N -lump and interaction solutions for partial differential equations by researcher J.
Manafian [20–25], et al, were obtained. The lump solutions and lump-type solutions
sometimes were called the rogue waves. It can be used to express meaningful non-
linear wave phenomena in natural science, such as oceanography [26] and nonlinear
optics [31]. For example, M, Onorato, et al [29] found the rogue waves generating
mechanisms in different physical contexts, Yan [37] found the rogue waves phe-
nomenon appears in financial problems, and others [5, 32]. More recently, Lou [13]
constructed a class of new type rogue waves for integrable and non-integrability
models.

In this paper, we mainly consider the following nonlinear dynamical model,
which can be used to describe some interesting (3+1)-dimensional waves of physics
[34]. That is

uxxxy + 3uyuxx + 3uxuxy + 2uty − 3(uxz + uyz + uzz) = 0. (1.1)

Its 1-soliton solution, 2-soliton solution and multi-soliton solutions of Eq.(1.1) by
utilizing the simplified Hirota bilinear method [34], were obtained. Also, lump
solutions have been acquired by Sun and Chen [33]. Some other important results
in Refs. [1, 14,27,28].

The aim of this paper to obtain a class of new type rogue waves to the extended
(3+1)-dimensional JM equation with the help of the bilinear equation. In addition,
new solitary waves have been also obtained via the tanh-function method.

2. Multi-dimensional binary Bell polynomials
In this section, we briefly give certain basic knowledge of the Bell polynomials
[3, 4, 7–10,18,30,40] which are required for the remaining part of this article.

Making f = f(x1, x2, ..., xn) be a C∞function with multi-variables, the polyno-
mials of the following form

Yn1x1,...,nlxl
(f) ≡ Yn1,...,nl

(fr1x1,...,rlxl
) = e−f∂n1

x1
...∂nl

xl
ef , (2.1)

with
fr1x1,...,rlxl

= ∂r1x1
...∂rlxl

f, f0xi ≡ f, r1 = 0, ..., n1; ...; rl = 0, ..., nl,

are called the multil-dimensional Bell polynomials.
In particular, when f = f(x), then, we have

Y1(f) = fx, Y2(f) = f2x + f2x , Y3(f) = f3x + 3fxf2x + f3x , ... .

When f = f(x, t), then, we get

Yx,t(f) = fx,t + fxft, Y2x,t(f) = f2x,t + f2xft + 2fx,tfx + f2xft, ... . (2.2)

According to the definition of the above explained, the multi-dimensional binary
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Bell polynomials has the expression of

Ξ
n1x1,...,nlxl

(v, w) = Y
n1,...,nl

(f)|

fr1x1,...,rlxl
=


vr1x1,...,rlxl

, r1 + r2 + ...+ rl is odd,

wr1x1,...,rlxl
, r1 + r2 + ...+ rl is even.

(2.3)
Based on the definition of the above stated, the first few lowest order binary

Bell polynomials is given by

Ξx(v) = vx,

Ξ2x(v, w) = w2x + v2x,

Ξx,t(v, w) = wx,t + vxvt, ... .

(2.4)

Relations between Ξ-polynomials and the Hirota bilinear equationDn1
x1
...Dnl

xl
F ·G

can be given by the following proposition.

Corollary 2.1. Under the variables

v = ln(F/G), w = ln(FG), (2.5)

the relations between binary Bell polynomials and Hirota D-operator shall be ex-
pressed by

Ξ
n1x1,...,nlxl

(v, w)|v=ln(F/G),w=ln(FG) = (FG)−1Dn1
x1
...Dnl

xl
F ·G, (2.6)

where the Hirota D-operators [2,6] were defined by

Dn1
x1
...Dnl

xl
FG = (∂x1−∂x′

1
)n1 ...(∂xl

−∂x′
l
)nlF (x1, ..., xl)G(x

′

1, ..., x
′

n)|x1=x
′
1,...,xl=x

′
l
.

(2.7)

For F = G, the formula (2.6) can be rewritten as

F−2Dn1
x1
...Dnl

xl
F · F = Ξn1x1,...,nlxl

(0, q = 2 ln(F ))

=

0, n1 + n2 + ...+ nl is odd,

Pn1x1,...,nlxl, n1 + n2 + ...+ nl is even,

(2.8)

where these even ordered Ξ-polynomials are called P -polynomials.
On the basis of the definition of the above stated, the first few lowest order

binary Bell polynomials is given by

P2x = q2x,

Px,t(q) = qx,t,

P3x,t(q) = q3x,t + 3qx,tq2x, ... .

(2.9)

Further, we have the following proposition for the bilinear Bäcklund transfor-
mations.

Corollary 2.2. Given an integrable equation for a field q of the form

E(q) =
∑
i

ciPn1x1,...,nlxl
= 0,
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one can find a pair of constraint conditions
∑
j

c1jΞn1x1,...,nlxl
(v, w) = 0,∑

j

c2jΞm1x1,...,mlxl
(v, w) = 0,

(2.10)

which need to satisfy

R(q
′
, q) = E(q

′
)− E(q)

= E(w + v)− E(w − v) = 0,
(2.11)

the system (2.10) is called the binary Bäcklund transformations.

We have been known that the binary Bell polynomials Ξn1x1,...,nlxl
(v, w) can be

separated into the generalized Bell polynomials Yn1x1,...,nlxl
(v) and

(FG)−1Dn1
x1
...Dnl

xl
F ·G

=Ξn1x1,...,nlxl
(v, w)|v=ln(F/G),w=ln(FG)

=Ξn1x1,...,nlxl
(v, v + q)|v=ln(F/G),q=2 ln(G)

=

n1∑
r1=0

...

nl∑
rl=0

l

Π
i=1

ni

ri

Pr1x1,...,rlxl
(q)Y(n1−r1)x1,...,(ni−ri)xi

(v).

(2.12)

Meanwhile, we note that the generalized Bell polynomial can be also linearized by
the Cole-Hopf transformation v = ln(ψ). i.e.

Yr1x1,...,rlxl
(v = ln(ψ)) =

ψn1x1,...,nixi

ψ
, (2.13)

(FG)−1Dn1
x1
...Dnl

xl
F ·G|G=exp(q/2),F/G=ψ

=ψ−1
n1∑
r1=0

...

nl∑
rl=0

l

Π
i=1

ni

ri

Pr1x1,...,rlxl
(q)ψ(n1−r1)x1,...,(ni−ri)xi

.
(2.14)

Due to the definition of the above stating, we have

Ξt(v) =
ψt
ψ
,

Ξ2x(v, w) = q2x +
ψ2x

ψ
,

Ξ2x,y(v, w) =
q2xψy
ψ

+
2qx,yψx
ψ

+
ψ2x,y

ψ
, ... .

(2.15)

It helps us construct associated Lax pairs of this considered equation.

3. Bilinear equation to the extended (3+1)-dimensi-
onal JM equation

In order to get the existence of linearizing representation, we take the potential field
q by considering

u = cqx, (3.1)
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where c = c(t) is a function on time variable t.
Inserting equation (3.1) into equation (1.1), the new equation is

E(q) = 3cqxyq2x + 2qyt − 3qxz − 3qyz − 3q2z + qxxxy = 0, (3.2)

with the constraint condition
c = 1. (3.3)

The new equation E(q) can be re-expressed in the form of P -polynomials

E(q) = P3x,y(q) + 2Py,t(q)− 3Px,z(q)− 3Py,z(q)− 3P2z(q) = 0. (3.4)

Making a change of dependent variable

q = 2 ln(F ) ⇔ u = cqx = 2(ln(F ))x, (3.5)

and owing to the property (2.8), Eq.(3.4) yields the following theorem with the
dependent variable (3.5).

Theorem 3.1. Substituting the following potential field

u = 2(ln(F ))x, (3.6)

into Eq.(1.1), the extended (3+1)-dimensional JM equation can be linearized the
following bilinear equation

(D
3
xDy+2DyDt−3DxDz−3DyDz−3D2

z)F · F= 0. (3.7)

4. New type rogue waves to the extended (3+1)-
dimensional JM equation

With the help of the bilinear equation (3.7), we construct the new type rogue waves
to the extended (3+1)-dimensional JM equation by setting

F = 1 + g2 + aetk3+xk1+yk2+zk4+k5 + be−tk3−xk1−yk2−zk4−k5 ,

g = ta3 + xa1 + ya2 + za4 + a5,
(4.1)

where ai(i = 1, 2, 3, 4, 5), kj(j = 1, 2, 3, 4, 5), a and b are arbitrary parameters.
To yield the new type rogue waves of this considered model, we substitute equa-

tion (4.1) into Eq.(3.7). As a result, a class of polynomial of the variables x, y, z, t,
were obtained. Then, it yields a set of algebraic system in ai(i = 1, 2, 3, 4, 5), kj(j =
1, 2, 3, 4, 5), a and b. Solving this system of equations with the help of symbolic
computation Maple, we can obtain the following solutions of parameters:

Case 1
a = 0, b = 0, a1 = −a4, a2 = 0, a3 = a3, a4 = a4, a5 = a5, k1 = k1,

k2 = k2, k3 = k3, k4 = k4,
(4.2)

where ai(i = 1, 3, 5) and kj(j = 1, 2, 3, 4) are arbitrary parameters.
Case 2

a = 0, b = 0, a1 = a1, a2 = 0, a3 = −3a1 (k2 + k4)

2k2
, a4 = −a1,

a5 = 0, k1 = 0, k2 = k2, k3 =
3k4 (k2 + k4)

2k2
, k4 = k4,

(4.3)
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where a1, k2 and k4 are arbitrary constants.
Case 3

a = 0, b = 0, a1 = −a4, a2 = 0, a3 =
1

2
(3 k1

2 + 3)a4, a4 = a4,

a5 = a5, k1 = −k4, k2 = k4, k3 = −1

2
k1

3 − 3

2
k1, k4 = k4,

(4.4)

where a1, a5 and k1 are free constants.
Case 4

a = 0, b = b, a1 = −a4, a2 = 0, a3 = a3, a4 = a4, a5 = a5,

k1 = 0, k2 =
3k3a4

2

a3 (2 a3 − 3 a4)
, k3 = k3, k4 =

k3a4
a3

,
(4.5)

where b, a1, a3, a5 and k3 are arbitrary parameters.
Case 5

a = 0, b = b, a1 = −a4, a2 = 0, a3 =
3a4 (k2 + k4)

2k2
, a4 = a4,

a5 = a5, k1 = 0, k2 = k2, k3 =
3k4 (k2 + k4)

2k2
, k4 = k4,

(4.6)

where b, a1, a5, k2 and k4 are arbitrary constants.
Case 6

a = a, b = b, a1 = −a4, a2 = 0, a3 = a3, a4 = a4, a5 = 0,

k1 = 0, k2 = k2, k3 =
k2a3 (2 a3 − 3 a4)

3a42
, k4 =

k2 (2 a3 − 3 a4)

3a4
,

(4.7)

where a, b, a1, a3 and k2 are arbitrary parameters.
Case 7

a = a, b = b, a1 = −a4, a2 = 0, a3 =
3a4 (k2 + k4)

2k2
, a4 = a4,

a5 = a5, k1 = 0, k2 = k2, k3 =
3k4 (k2 + k4)

2k2
, k4 = k4,

(4.8)

where a, b, a1, a5, k2 and k4 are free constants.
Case 8

a3 =
3(a2k1

3k2 − 2 a2k1k4 − a2k4
2 + a4k1k2 + a4k2

2 + 2 a4k2k4)

2k2
2 ,

b = b, a1 = −a2k1
k2

, a2 = a2, a4 = a4, a5 = 0, k1 = k1, k2 = k2,

a =
a2

4

k2
4b
, k3 = −k1

3k2 − 3 k1k4 − 3 k2k4 − 3 k4
2

2k2
, k4 = k4,

(4.9)

where b, a2, a4, k1, k2 and k4 are arbitrary parameters.
Case 9

a=
a1

4

bk1
4 , b=b, a1=a1, a2=

a1

k1
2 , a3=

3a1 (k4+k1) (k1k4−1)

2k1
, a4=−a1 (k4+k1)

k1
,

a5 = 0, k1 = k1, k2 = − 1

k1
, k3 = −1

2
k1

3 − 3

2
k4k1

2 − 3

2
k1k4

2 +
3

2
k4, k4 = k4,

(4.10)
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where b, a1, k1 and k4 are arbitrary constants.
Case 10

a = a, b = b, a1 = − a2

k1
2 − 2

, a2 = a2, a3 = 0, a4 = −
a2

(
k1

2 − 3
)

k1
2 − 2

,

a5 = a5, k1 = k1, k4 = k1, k2 =
a2

4(
k1

2 − 2
)3
bak1

3
,

k3 =
(6 abk1

10 − 36 abk1
8 + 72 abk1

6 − 48 abk1
4 − a2

4k1
2 + 3 a2

4)k1
2a24

,

(4.11)

where a, b, a2, a5 and k4 are free constants.
Case 11

a = a, b = b, a1 = − a2

k1
2 + 2

, a2 = a2, a3 = 0, a4 = −
a2

(
k1

2 + 1
)

k1
2 + 2

,

a5 = a5, k1 = k1, k2 =
a2

4(
k1

2 + 2
)3
bak1

3
, k3 = −1

2
k1

3 − 3

2
k1, k4 = −k1,

(4.12)

where a, b, a2, a5 and k4 are arbitrary parameters.
Case 12

a = a, b = b, a1 = −a4, a2 = 0, a3 = a3, a4 = a4, a5 = a5,

k1 = 0, k2 =
3k3a4

2

a3 (2 a3 − 3 a4)
, k3 = k3, k4 =

k3a4
a3

,
(4.13)

where a, b, a1, a3, a5 and k3 are arbitrary constants.
Case 13

a = a, b = b, a1 = −a4, a2 = 0, a3 = a3, a4 = a4,

a5 = a5, k1 = k1, k2 = 0, k3 = k3, k4 = −k1,
(4.14)

where a, b, a1, a3, a5, k1 and k3 are free parameters.
Case 14

a = a, b = b, a1 = a1, a2 = 0, a3 =
3a1k4
2k2

, a4 = 0, a5 = a5,

k1 = 0, k2 = k2, k3 =
3k4 (k2 + k4)

2k2
, k4 = k4,

(4.15)

where a, b, a1, a5, k2 and k4 are arbitrary constants.
Case 15

a = a, b = b, a1 = −a4, a2 = 0, a3 =
3a4 (k2 + k4)

2k2
, a4 = a4,

a5 = a5, k1 = 0, k2 = k2, k3 =
3k4 (k2 + k4)

2k2
, k4 = k4,

(4.16)

where a, b, a1, a5, k2 and k4 are arbitrary parameters.
From Cases 1–15, the new type rogue waves to the extended (3+1)-dimensional

JM equation in detail, were yielded.
(I) Algebraic solitary wave(lump) If we taking a = b = 0, then the solutions

of Eq.(1.1) have a pure algebraic solitary wave. That is

ucases1−3
= 2(ln(Fcases1−3

))x, (4.17)
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Fcase1 = 1 + (ta3 − xa4 + za4 + a5)
2
, (4.18)

Fcase2 = 1 + (−3a1t (k2 + k4)

2k2
+ xa1 − za1)

2, (4.19)

Fcase3 = 1 + (−1

2
t
(
−3 k1

2 − 3
)
a4 − xa4 + za4 + a5)

2. (4.20)

Lump structure of solution ucase2 by Figure 1, were plotted.

(a) (b)

Figure 1. Plots of the lump solution ucase2
with parameters a1 = 1, k2 = −2, k4 = 1. (a) 3D-plot,

with z = 20. (b) 2D-contour plot.

From Figure 1, we can see that the lump solution exhibits periodic characteris-
tics.

(II) Interaction between lump and exponentially decayed solitary
waves (lumpoff). If we letting a = 0, b ̸= 0(or a ̸= 0, b = 0), then the solutions
of Eq.(1.1) is an algebraically decayed soliton and exponentially decayed soliton,
which are

ucases4−5
= 2(ln(Fcases4−5

))x, (4.21)

Fcase4 = 1 + (ta3 − xa4 + za4 + a5)
2
+ be

−tk3− y3k3a4
2

a3(2 a3−3 a4)
− zk3a4

a3
−k5 , (4.22)

Fcase5 = 1 + (
3a4t (k2 + k4)

2k2
− xa4 + za4 + a5)

2 + be−
3k4t(k2+k4)

2k2
−yk2−zk4−k5 .

(4.23)

Lumpoff structures of solution ucase5 by Figure 2, were revealed. From Figure
2, we can see that the lumpoff solution is the evolution of the interaction between
lump and exponentially decayed solitary waves in XY -plane.

(III) Interaction between lump and exponentially localized twin soli-
tary waves (instanton or rouge wave). If we considering a ̸= 0, b ̸= 0, then
the solutions of Eq.(1.1) is an interaction solutions between the lump and the ex-
ponentially decayed twin soliton, that are

ucases6−15
= 2(ln(Fcases6−15

))x, (4.24)

Fcase6 = 1 + g2 + ae
3k4t(k2+k4)

2k2
+yk2+zk4+k5 + be−

3k4t(k2+k4)
2k2

−yk2−zk4−k5 ,

g =
3a4t (k2 + k4)

2k2
− xa4 + za4 + a5,

(4.25)
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(a) (b) (c)

Figure 2. Plots of evolution of the lumpoff structures of solution ucase5
with parameters a4 = 1, k2 =

−2, k4 = 1, k5 = a5 = 0, b = −10, z = 2. (a)t = −20. (b) t = 0. (c) t = 20.

Fcase7 = 1 + g2 + ae
k2a3t(2 a3−3 a4)

3a4
2 +yk2+

zk2(2 a3−3 a4)
3a4

+k5

+ be
− tk2a3(2 a3−3 a4)

3a4
2 −yk2− zk2(2 a3−3 a4)

3a4
−k5

,

g = ta3 − xa4 + za4,

(4.26)

Fcase8 = 1 + g2 +
a2

4

k2
4b
e−

t(k1
3k2−3 k1k4−3 k2k4−3 k4

2)
2k2

+xk1+yk2+zk4+k5

+ be
t(k1

3k2−3 k1k4−3 k2k4−3 k4
2)

2k2
−xk1−yk2−zk4−k5 ,

g =
3t

(
a2k1

3k2 − 2 a2k1k4 − a2k4
2 + a4k1k2 + a4k2

2 + 2 a4k2k4
)

2k2
2

− xa2k1
k2

+ ya2 + za4,

(4.27)

Fcase9 = 1 + g2 +
a1

4

bk1
4 e
t(− 1

2 k1
3− 3

2 k4k1
2− 3

2k1k4
2+ 3

2 k4)+xk1−
y
k1

+zk4+k5

+ be−t(−
1
2k1

3− 3
2 k4k1

2− 3
2 k1k4

2+ 3
2 k4)−xk1+

y
k1

−zk4−k5 ,

g =
3a1t (k4 + k1) (k1k4 − 1)

2k1
+ xa1 +

ya1

k1
2 − za1 (k4 + k1)

k1
,

(4.28)

Fcase10 = 1 + g2 + aeξ + be−ξ,

g = − xa2

k1
2 − 2

+ ya2 −
za2

(
k1

2 − 3
)

k1
2 − 2

+ a5,

ξ =
t
(
6 abk1

10 − 36 abk1
8 + 72 abk1

6 − 48 abk1
4 − a2

4k1
2 + 3 a2

4
)
k1

2a24

+ xk1 +
ya2

4(
k1

2 − 2
)3
bak1

3
+ zk1 + k5,

(4.29)
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Fcase11 = 1 + g2 + ae
t(− 1

2 k1
3− 3

2 k1)+xk1+
ya2

4

(k1
2+2)3bak1

3
−zk1+k5

+ be
−t(− 1

2 k1
3− 3

2 k1)−xk1−
ya2

4

(k1
2+2)3bak1

3
+zk1−k5

,

g = − xa2

k1
2 + 2

+ ya2 −
za2

(
k1

2 + 1
)

k1
2 + 2

+ a5,

(4.30)

Fcase12 = 1 + g2 + ae
tk3+

y3k3a4
2

a3(2 a3−3 a4)
+

zk3a4
a3

+k5 + be
−tk3− y3k3a4

2

a3(2 a3−3 a4)
− zk3a4

a3
−k5 ,

g = ta3 − xa4 + za4 + a5,

(4.31)

Fcase13 = 1 + (ta3 − xa4 + za4 + a5)
2
+ aetk3+xk1−zk1+k5 + be−tk3−xk1+zk1−k5 ,

(4.32)

Fcase14 = 1 + g2 + ae
t3k4(k2+k4)

2k2
+yk2+zk4+k5 + be−

t3k4(k2+k4)
2k2

−yk2−zk4−k5 ,

g =
t3a1k4
2k2

+ xa1 + a5,
(4.33)

Fcase15 = 1 + g2 + ae
t3k4(k2+k4)

2k2
+yk2+zk4+k5 + be−

t3k4(k2+k4)
2k2

−yk2−zk4−k5 ,

g =
t3a4 (k2 + k4)

2k2
− xa4 + za4 + a5.

(4.34)

In particular, when a = b, then, we have

Fcase15−1
= 1 + g2 + 2asinh(ζ),

ζ =
3k4 (k2 + k4)

2k2
t+ yk2 + zk4 + k5,

g =
t3a4 (k2 + k4)

2k2
− xa4 + za4 + a5.

(4.35)

When a = −b, then, we have

Fcase15−2
= 1 + g2 + 2acosh(ζ),

ζ =
3k4 (k2 + k4)

2k2
t+ yk2 + zk4 + k5,

g =
t3a4 (k2 + k4)

2k2
− xa4 + za4 + a5.

(4.36)

Remark 4.1. Other cases (cases6−15) are similarly considered.

Instanton structures of solution ucase15 by Figure 3, were shown.
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(a) (b) (c)

Figure 3. Plots of the instanton structures of solution ucase15
with parameters a4 = 1, k2 = −2, k4 =

1, k5 = a5 = 0, b = −10, z = t = 0. (a) 3D-plot, a = 2, b = −2. (b) 3D-plot, a = −2, b = 2.(c) 3D-plot,
a = 2, b = −1.

From Figure 3, we can see that the instanton solution of the evolution of the
interaction between lump and exponentially decayed twins solitary waves.

5. Solitary waves to the extended (3+1)-dimensional
JM equation

We know that solitary wave solutions are one form of traveling wave solutions
[15–17,38, 39], which play an important role in understanding physical phenomena
and mechanisms. Therefore, in this section, we search for the solitary wave solution
to the extended (3+1)-dimensional JM equation by using the tanh-function method
[35,36].

Firstly, plugging the traveling wave transformation

U = U(ξ), ξ = k1x+ k2y + k3z + k4t (5.1)

into Eq.(1.1), then, we have

k31k2
∂4U(ξ)

∂ξ4
+ 6k21k2(

∂U(ξ)

∂ξ

∂2U(ξ)

∂ξ2
) + 2k2k4

∂2U(ξ)

∂ξ2

− 3(k1k3 + k2k3 + k23)
∂2U(ξ)

∂ξ2
= 0.

(5.2)

Now, we find the solutions of the following form

u =

N∑
i=0

ai (tanh (tk4 + xk1 + yk2 + zk3))
i
, (5.3)

where ai(i = 0, 1, 2, ..., N) and ki(i = 1, 2, 3, 4)are constants.
According to the homogeneous balance principle, we balancing the highest deriva-

tive term ∂4U(ξ)
∂ξ4 and highest order nonlinear term ∂U(ξ)

∂ξ
∂2U(ξ)
∂ξ2 , yields

N + 4 = 2N + 3 ⇒ N = 1. (5.4)

Hence equation (5.3) becomes the form

u = a0 + a1 tanh (tk4 + xk1 + yk2 + zk3) . (5.5)
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Substituting (5.5) into (5.2) and equating coefficients of tanh(ξ) to zero, we can
obtain system algebraic equation including ki(i = 1, 2, 3, 4) and aj(j = 0, 1)

− 2 a1
(
6 a1k1

2k2 − 8 k1
3k2 − 3 k1k3 − 3 k2k3 + 2 k2k4 − 3 k3

2
)
= 0,

− 2 a1
(
12 a1k1

2k2 − 20 k1
3k2 − 3 k1k3 − 3 k2k3 + 2 k2k4 − 3 k3

2
)
= 0,

− 12 a1k1
2k2 (a1 − 2 k1) = 0.

(5.6)

It can easily solve with the help of Maple. As a result, we have

a0 = a0, a1 = 2k1, k1 = k1, k2 = k2, k3 = k3,

k4 = −4 k1
3k2 − 3 k1k3 − 3 k2k3 − 3 k3

2

2k2
,

(5.7)

where a0 and ki(i = 1, 2, 3) are free constants.
Hence we have the following solitary wave solution to Eq.(1.1)

u = a0 − 2k1tanh(
(4k31k2 − 3k1k3 − 3k2k3 − 3k23)t− 2k1k2x− 2k12y − 2k2k3z

2k2
).

(5.8)
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