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THE FOURTH-ORDER TIME MULTI-TERM

FRACTIONAL SUB-DIFFUSION EQUATIONS
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Abstract In this paper, a fast compact difference scheme is proposed for
the initial-boundary value problem of fourth-order time multi-term fractional
sub-diffusion equations with the first Dirichlet boundary conditions. Using the
method of order reduction, the original problem can be converted to an equiv-
alent lower-order system. Then at some super-convergence points, the multi-
term Caputo derivatives are fast evaluated based on the sum-of-exponentials
(SOE) approximation for the kernel functions appeared in Caputo fractional
derivatives. The difficulty caused by the first Dirichlet boundary conditions is
carefully handled. The energy method is used to illustrate the unconditional
stability and convergence of the proposed fast compact scheme. The conver-
gence accuracy is second-order in time and fourth-order in space if the solution
has enough regularity. Compared with the direct scheme without the accel-
eration in time direction, the CPU time of the current fast scheme is largely
reduced, which is shown by numerical examples.
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1. Introduction
In the modern era, many researchers have placed more and more attentions on
fractional differential equations (FDEs). Numerous processes in physics [19], as-
tronomy [32], medicine [10], finance [35], etc. can be modelled by FDEs. There
are many different definitions of fractional derivatives, such as Riemann-Liouville
derivative, Riesz derivative, Caputo derivative, etc. Generally speaking, the time-
fractional derivatives are described in the Caputo sense, while the space-fractional
derivatives are often defined in the Riemann-Liouville or Riesz sense. In most cases,
the analytical solution to fractional partial differential equations (FPDEs) is diffi-
cult to obtain, thus it is quite necessary to find some effective numerical methods
for solving FPDEs.

†The corresponding author. Email address: gaogh@njupt.edu.cn(G. H. Gao)
1College of Science, Nanjing University of Posts and Telecommunications, Nan-
jing 210023, Jiangsu Province, China

∗The authors were supported by Natural Science Foundation of Jiangsu
Province of China (No. BK20191375) and the project NUPTSF (No.
NY220037).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200405


Fast compact difference scheme for the fourth-order TMFDEs 2737

For the fourth-order time fractional diffusion-wave equations, there have been
extensive results. In [14], Jafari et al. used the Adomian decomposition method
to obtain solutions of fourth-order fractional diffusion-wave equations defined in a
bounded space domain. Hu and Zhang [12] explored a compact difference scheme
for the fourth-order fractional diffusion-wave equation by the method of order re-
duction. The stability and convergence of the scheme were proved. Combining the
average operator for the spatial derivatives, Ji, Sun and Hao [15] presented a novel
technique to deal with the first Dirichlet boundary conditions, where an average of
functions at four points near the boundary was introduced. In [33], Vong and Wang
studied a high-order compact difference scheme for the fourth-order fractional sub-
diffusion system with the first Dirichlet boundary, where an average operator and a
discrete fourth-order difference quotient operator were defined to build the scheme.
In [38], Yao and Wang also considered the fourth-order fractional sub-diffusion
equations, but the boundary conditions under consideration were Neumann ones.
For one- and two-dimensional time fractional fourth-order sub-diffusion equations
with the first Dirichlet boundary conditions, Cui [4] constructed the compact fi-
nite difference schemes. The boundary conditions were firstly transformed into
the homogeneous ones by the Hermite interpolating polynomial, and the spatial
derivatives were discretized by the Stephenson scheme. Whereas, the theoretical
analysis on the resultant scheme was a little complicated. The Ref. [3] was de-
voted to the spline approach to numerical solution of a class of fourth-order time
FPDEs. The backward Euler method was used for temporal discretization whereas
the spatial discretization was achieved by non-polynomial quintic spline method.
In [5], Fei and Huang considered the Galerkin-Legendre spectral method for solving
the two-dimensional distributed-order time fractional fourth-order partial differen-
tial equation with the first Dirichlet boundary, where the composite Simpson for-
mula was used to discretize the distributed-order integral and the L2− 1σ formula
was applied to approximate the involved multi-term Caputo fractional derivatives.
The proposed spectral scheme was shown to be unconditionally stable and con-
vergent with fourth-order accuracy in distributed order, second-order accuracy in
time and spectral accuracy in space. By utilizing the L2 − 1σ formula for tempo-
ral dimension, some difference schemes were constructed for a class of fourth-order
fractional equations with time delay or variable coefficients in [23,24], where the sec-
ond Dirichlet boundary value problem was considered. In [36], Xu et al. proposed
and analyzed a compact finite difference scheme for the fourth-order time-fractional
integro-differential equation with a weakly singular kernel. The stability and con-
vergence were proved by the discrete energy method, the Cholesky decomposition
and the reduced-order method.

In practice, it is often not enough to describe some phenomena by the single-
term FDEs. Many processes should be described by the multi-term time FDEs, such
as the underlying processes with loss [21], viscoelastic damping [27], oxygen deliv-
ery through a capillary to tissues [29], the anomalous diffusion in highly heteroge-
neous aquifers and complex viscoelastic materials [17]. In particular, the multi-term
time-fractional diffusion-wave equations can successfully describe the power-law fre-
quency dependence in a continuous time random walk model [20].

For the multi-term time-fractional diffusion-wave equations, considerable re-
search achievements can be found. In [17], the authors developed a simple nu-
merical scheme based on the Galerkin finite element method for a multi-term time
fractional diffusion equation which involves multiple Caputo fractional derivatives.
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Gao et al. [6] constructed a numerical formula for the multi-term Caputo frac-
tional derivatives at the super-convergence point, where the proposed formula can
achieve at least second-order accuracy. Gao and Liu [7] developed a spatial com-
pact difference scheme for a class of fourth-order temporal multi-term fractional
wave equations with the second Dirichlet boundary. Combined with the method of
order reduction, the original problem was reduced to a lower order system and the
L1 formula was used to approximate the corresponding time fractional derivatives.
In [1], Abdel-Rehim et al. gave the simulations of the approximation solutions of
time-fractional wave, forced wave (shear wave) and damped wave equations, respec-
tively. The Caputo time-fractional derivatives were discretized by the G-L formula
and the Von-Neumann stability conditions were discussed for these proposed mod-
els. Wei [34] constructed a fully discrete local discontinuous Galerkin method for
solving a class of multi-term time fractional diffusion equations and this method
was proved to be unconditionally stable and convergent. Two temporal second-
order accurate difference schemes at the super-convergence point were presented by
the order reduction technique for time multi-term fractional diffusion-wave equation
in [31]. The two difference schemes were proved to be uniquely solvable. In [39],
Zhang et al. developed a multi-term time-fractional Burgers’ fluid model and ob-
tained the analytical solution by the method of separation of variables. Then they
proposed a unified numerical method for this model by weighted and shifted Grün-
wald difference operators in time and Legendre spectral method in space. Also they
considered a modified scheme to improve the convergence accuracy. Huang and
Stynes [13] considered a multi-term time-fractional initial-boundary value problem,
where the spatial derivative was discretized by the standard finite element method,
while each fractional derivative was approximated by the L1 formula on a graded
temporal mesh in view of the weak singularity which appeared in typical solutions
to this class of problems.

As we know, in order to get the value of fractional derivative at the current time,
the values at all previous levels need be in storage, which results in huge computa-
tional cost. Hence, some efficient and fast evaluations of fractional derivatives will
be quite essential. Jiang et al. [16] proposed a fast evaluation for Caputo fractional
derivative which employed the SOE approximation to the kernel function t−α. The
fast algorithm achieves the accuracy O(τ2−α + ϵ) based on the L1 formula, with α
the order of the fractional derivative. Yan et al. [37] made the further study on the
fast evaluation of the Caputo fractional derivative based on the work [16]. They
considered the fast evaluation of the time-fractional derivative on the basis of the
L2−1σ scheme proposed in [2]. The obtained FL2−1σ approximation can achieve
high-order accuracy and can reduce the storage and computational cost greatly.
In [9], a linear combination of Caputo fractional derivatives was fast evaluated
based on the SOE approximation for the kernels in Caputo fractional derivatives.
Numerical examples showed that the CPU time was largely reduced while the ac-
curacy was kept with the large value of temporal levels. In addition, Sun and
Sun [30] established a fast temporal second-order compact ADI difference scheme
for the 2D multi-term fractional wave equation. The fast scheme can be solved by
the recursion which reduces the storage and computational cost significantly. Liao
et al. [18] proposed a fast two-level linearized scheme with nonuniform time-steps
for an initial-boundary-value problem of semilinear subdiffusion equations. The
two-level fast L1 formula of the Caputo derivative was derived based on the SOE
technique. Gu et al. [11] developed two fast implicit difference schemes for solving
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a class of variable coefficient time-space fractional diffusion equations with integral
fractional Laplacian (IFL). The L1 formula for the Caputo fractional derivative and
a special finite difference discretization for IFL were applied to derive the schemes.
Moreover, the fast SOE approximation and Toeplitz matrix algorithms were used to
reduce the computational cost of time and space fractional derivatives, respectively.
In [22], Lyu et al. considered a fast and linearized finite difference method to solve
a nonlinear multi-term time-fractional wave problem. In order to construct the fast
numerical scheme, based on the L2 − 1σ formula and the SOE approximation to
the kernel function in the Caputo derivative, they developed the FL2−1σ formula,
which was proposed in [37] for the single time fractional derivative.

It’s noted that both Refs. [15] and [33] handle the problem with the single-term
time fractional derivative, which was approximated by the L1 formula, and the con-
vergence order of the resultant schemes in time was less than two. Different from
the previous works, for the the fourth-order time multi-term fractional sub-diffusion
equations with the first Dirichlet boundary, in the present work, we are devoted to
find the higher-order numerical solutions to the problem by the novel handling of
the boundary and higher-order approximation for the multi-term time fractional
derivatives. In addition, inspired by [9], the time multi-term Caputo fractional
derivatives will be fast evaluated based on the SOE approximation for the kernel
functions appeared in Caputo fractional derivatives. Finally, the unconditional sta-
bility and convergence of the derived fast scheme will be proved. Several numerical
examples are calculated to illustrate the efficiency of the fast scheme. The main
advantages of the current work cover:

• In view of the first Dirichlet boundary value problem, a novel and simple
average operator is defined so that the global fourth-order accuracy of the
proposed difference scheme in space can be easily achieved;

• By introducing an intermediate function, the original spatial fourth-order
problem is converted to a lower-order second-order system, for which the
numerical algorithm is developed. Whereas, in the practical calculation, the
intermediate function can be cancelled and a numerical scheme involving only
the original unknowns need be calculated on each time level.

• To speed up the evaluation of time multi-term fractional derivatives, based on
the L2 − 1σ approximation, the SOE approximation for the kernel function
appeared in fractional derivatives is applied.

• The strict prior estimate on the proposed fast compact scheme is carried out
by the energy method and some novel techniques.

This paper is arranged as follows. In section 2, we introduce some useful no-
tations and lemmas to prepare for the construction of the difference scheme. A
fast compact difference scheme is proposed for the fourth-order time multi-term
fractional sub-diffusion equations with the first Dirichlet boundary in section 3.
In section 4, the unconditional stability and convergence of the difference scheme
are discussed by the energy method. In section 5, some numerical examples are
provided to further validate our theoretical results and verify the efficiency of the
proposed scheme. It ends with a brief conclusion.
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2. Preliminaries
Consider the following initial-boundary value problem of fourth-order time multi-
term fractional sub-diffusion equations with the first Dirichlet boundary conditions:

m∑
r=0

λr
C
0 D

αr
t u(x, t) +

∂4u(x, t)

∂x4
+ qu(x, t) = f(x, t), x ∈ (0, L), t ∈ (0, T ], (2.1)

u(0, t) = g1(t), u(L, t) = g2(t), t ∈ (0, T ], (2.2)
ux(0, t) = γ1(t), ux(L, t) = γ2(t), t ∈ (0, T ], (2.3)
u(x, 0) = ϕ(x), x ∈ [0, L], (2.4)

where g1(0) = ϕ(0), g2(0) = ϕ(L), ϕ′(0) = γ1(0), ϕ
′(L) = γ2(0), q, λ0, λ1, . . . , λm are

some positive constants, 0 ⩽ αm < αm−1 < · · · < α0 ⩽ 1 and at least one of αi’s
belongs to (0, 1), C

0 D
α
t u(x, t) is the Caputo fractional derivative defined by

C
0 D

α
t u(x, t) =


u(x, t)− u(x, 0), α = 0,

1

Γ(1− α)

∫ t

0

us(x, s)

(t− s)α
ds, 0 < α < 1,

ut(x, t), α = 1.

As described in [28], the considered equations occur in many applications in real-
life problems such as modelling of plates and thin beams, strain gradient elasticity
and phase separation in binary mixtures, which are basic elements in engineering
structures and are of great practical significance to civil, mechanical and aerospace
engineering.

Gao et al. [6] found some particular points where the linear combination of
Caputo fractional derivatives is approximated. We will recall this result here simply.
Let τ be the step size, tn = nτ, n = 0, 1, 2, . . . , N with Nτ = T, tn− 1

2
= (n− 1

2 )τ, n =
1, 2, . . . , N. The constant σ is the root of nonlinear equation

F (x) =

m∑
r=0

λr

Γ(3− αr)
x1−αr

[
x− (1− αr

2
)
]
τ2−αr = 0, x ⩾ 0,

and tn−1+σ = (n− 1 + σ)τ. It can be known from [6] that σ ∈ ( 12 , 1).
For any α ∈ [0, 1], when n = 1, denote

c
(n,α)
0 = σ1−α;

When n ⩾ 2, denote

c
(n,α)
0 =

(1 + σ)2−α − σ2−α

2− α
− (1 + σ)1−α − σ1−α

2
,

c
(n,α)
k =

1

2− α

[
(k + 1 + σ)2−α − 2(k + σ)2−α + (k − 1 + σ)2−α

]
−1

2

[
(k + 1 + σ)1−α − 2(k + σ)1−α + (k − 1 + σ)1−α

]
, 1 ≤ k ≤ n− 2,

c
(n,α)
n−1 =

1

2

[
3(n− 1 + σ)1−α − (n− 2 + σ)1−α

]
− 1

2− α

[
(n− 1 + σ)2−α − (n− 2 + σ)2−α

]
.
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Lemma 2.1 ( [6]). Suppose u(·, t) ∈ C3[0, T ]. Then it holds

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ)

=

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

c
(n,αr)
k [u(xi, tn−k)− u(xi, tn−k−1)] +O(τ3−α0),

where 0 ≤ αm < αm−1 < · · · < α0 ≤ 1 and the constant σ satisfies F (σ) = 0.

Next the SOE approximation of the kernel function in the Caputo fractional
derivative will be introduced.

Lemma 2.2 ( [9, 16, 37]). For any given α ∈ (0, 1), tolerance error ε, cut-off
time step size τ0 and final time T , there is one positive integer N

(α)
exp, some pos-

itive numbers s
(α)
i (i = 1, 2, . . . , N

(α)
exp) and corresponding positive weights w

(α)
i (i =

1, 2, . . . , N
(α)
exp) satisfing

∣∣∣t−α −
N(α)

exp∑
i=1

ω
(α)
i e−s

(α)
i t
∣∣∣ ≤ ϵ, ∀ t ∈ [τ0, T ],

and the number of exponentials needed, N (α)
exp, is of the order

O

(
log

1

ϵ

(
log log

1

ϵ
+ log

T

τ0

)
+ log

1

τ0

(
log log

1

ϵ
+ log

1

τ0

))
.

In [9], the authors presented a fast numerical differentiation formula to approxi-

mate the multi-term Caputo derivative
m∑
r=0

λr
C
0 D

αr
t f(t) at the point t = tn−1+σ. By

approximating the kernel function (tn−1+σ − s)−αr (s ∈ (0, tn−1)) by SOE approx-
imation and f ′(s)(s ∈ (tn−1, tn−1+σ)) by linear interpolation, it can be obtained
that

m∑
r=0

λr
C
0 D

αr
t f(tn−1+σ) ≈

m∑
r=0

λr

Γ(1− αr)

N(αr)
exp∑
l=1

ω
(αr)
l F

(n−1,αr)
l + c0[f(tn)− f(tn−1)]

with

c0 =
1

τ

m∑
r=0

λr

Γ(1− αr)

∫ tn−1+σ

tn−1

(tn−1+σ − s)−αr ds =

m∑
r=0

λr

Γ(2− αr)
σ1−αrτ−αr ,

F
(n−1,αr)
l =

∫ tn−1

0

f ′(s)e−s
(αr)
l (tn−1+σ−s) ds, l = 1, 2, . . . , N (αr)

exp .

The term F
(n−1,αr)
l can be evaluated by a recursive relation, that is,

F
(n−1,αr)
l = e−s

(αr)
l τF

(n−2,αr)
l +

∫ tn−1

tn−2

f ′(s)e−s
(αr)
l (tn−1+σ−s) ds, n ⩾ 2.
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The function f(s) in the second term of the above equality can be approximated
by a quadratic interpolation as follows:∫ tn−1

tn−2

f ′(s)e−s
(αr)
l (tn−1+σ−s)ds

≈ A
(αr)
l [f(tn−1)− f(tn−2)] +B

(αr)
l [f(tn)− f(tn−1)],

with

A
(αr)
l =

∫ 1

0

(
3

2
− s)e−s

(αr)
l τ(σ+1−s)ds > 0,

B
(αr)
l =

∫ 1

0

(s− 1

2
)e−s

(αr)
l τ(σ+1−s)ds > 0.

Thus the fast numerical differentiation formula FDf(tn−1+σ) for multi-term

Caputo derivative
m∑
r=0

λr
C
0 D

αr
t f(t) |t=tn−1+σ

can be obtained as

FDf(tn−1+σ) =

m∑
r=0

λr

Γ(1− αr)

N(αr)
exp∑
l=1

ω
(αr)
l F̂

(n−1,αr)
l + c0[f(tn)− f(tn−1)], (2.5)

where F̂
(n−1,αr)
l can be evaluated by the following recursive relation

F̂
(n−1,αr)
l =e−s

(αr)
l τ F̂

(n−2,αr)
l +A

(αr)
l [f(tn−1)− f(tn−2)]

+B
(αr)
l [f(tn)− f(tn−1)],

with F̂
(0,αr)
l = 0, l = 1, 2, . . . , N

(αr)
exp .

Equality (2.5) can be equivalently rewritten as

FDf(tn−1+σ) =

n−1∑
k=0

Fc
(n)
k [f(tn−k)− f(tn−k−1)], (2.6)

where Fc
(1)
0 = c0 and for n = 2, 3, . . . , N,

Fc
(n)
k =



m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

ω
(αr)
l B

(αr)
l +

τ−αr

1− αr
σ1−αr

]
, k = 0,

m∑
r=0

λr

Γ(1− αr)

N(αr)
exp∑
l=1

ω
(αr)
l

[
e−(k−1)s

(αr)
l τA

(αr)
l + e−ks

(αr)
l τB

(αr)
l

]
,

1 ⩽ k ⩽ n− 2,

m∑
r=0

λr

Γ(1− αr)

N(αr)
exp∑
l=1

ω
(αr)
l e−(n−2)s

(αr)
l τA

(αr)
l , k = n− 1.

(2.7)

Lemma 2.3 ( [9]). For any function f ∈ C3[0, tN ], a sufficiently small ϵ and the
constant σ satisfying F (σ) = 0, it holds∣∣∣ m∑

r=0

λr
C
0 D

αr
t f(t)|t=tn−1+σ

− FDf(tn−1+σ)
∣∣∣ = O(τ3−α0 + ϵ), n = 1, 2, . . . , N.
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For the finite difference approximation, the spatial mesh partition is essential.
Let h = L/M be the spatial step size with M a positive integer. Denote xi =
ih(0 ≤ i ≤ M). Define Ωh = {xi | 0 ≤ i ≤ M},Ωτ = {tn | 0 ≤ n ≤ N}. For any
mesh function u = {un

i |0 ≤ i ≤ M, 0 ≤ n ≤ N} defined on Ωh × Ωτ , introduce the
following operators:

δxu
n
i− 1

2
=

1

h
(un

i − un
i−1), δ2xu

n
i =

1

h

(
δxu

n
i+ 1

2
− δxu

n
i− 1

2

)
and the average operator

(Hu)ni =



2

3
un
0 +

1

3
un
1 , i = 0,

1

12
(un

i−1 + 10un
i + un

i+1), 1 ≤ i ≤ M − 1,

1

3
un
M−1 +

2

3
un
M , i = M.

Lemma 2.4 ( [8]). Denote θ(s) = (1− s)3[10− 3(1− s)2] and ξ(s) = (1− s)3[5−
3(1− s)2].
(1) If function g ∈ C6[x0, x1], then it holds[2

3
g′′(x0) +

1

3
g′′(x1)

]
− 2

h

[g(x1)− g(x0)

h
− g′(x0)

]
=
h2

12
g(4)(x0) +

7h3

180
g(5)(x0) +

h4

180

∫ 1

0

θ(s)g(6)(x0 + sh)ds. (2.8)

(2) If function g ∈ C6[xM−1, xM ], then it holds[1
3
g′′(xM−1) +

2

3
g′′(xM )

]
− 2

h

[
g′(xM )− g(xM )− g(xM−1)

h

]
=
h2

12
g(4)(xM )− 7h3

180
g(5)(xM ) +

h4

180

∫ 1

0

θ(s)g(6)(xM − sh)ds. (2.9)

(3) If function g ∈ C6[xi−1, xi+1], then it holds

1

12
[g′′(xi−1) + 10g′′(xi) + g′′(xi+1)]

=
1

h2
[g(xi−1)− 2g(xi) + g(xi+1)]

+
h4

360

∫ 1

0

ξ(s)[g(6)(xi − sh) + g(6)(xi + sh)]ds, 1 ≤ i ≤ M − 1. (2.10)

Remark 2.1. These equalities can be easily obtained by the formula of Taylor
expansion with integral remainder.

Lemma 2.5 ( [38]). If function u ∈ C3[tn−1, tn], σ is a constant and 0 < σ < 1, it
holds

u(tn−1+σ) = σu(tn) + (1− σ)u(tn−1) +O(τ2).

For simplicity, for any mesh function u = {u0, u1, · · · , uN} defined on Ωτ , denote

uσn = σu(tn) + (1− σ)u(tn−1), 1 ≤ n ≤ N

with the constant σ satisfying F (σ) = 0.
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3. The derivation of the fast compact finite differ-
ence scheme

In this section, we construct a fast difference scheme for the problem (2.1)-(2.4) by
the fast super-convergent approximation and the method of order reduction.

Let v(x, t) = uxx(x, t). Then Eqs. (2.1)–(2.4) can be transformed into

m∑
r=0

λr
C
0 D

αr
t u(x, t) + vxx(x, t) + qu(x, t) = f(x, t), x ∈ (0, L), t ∈ (0, T ], (3.1)

v(x, t) = uxx(x, t), x ∈ (0, L), t ∈ [0, T ], (3.2)
u(0, t) = g1(t), u(L, t) = g2(t), t ∈ (0, T ], (3.3)
ux(0, t) = γ1(t), ux(L, t) = γ2(t), t ∈ (0, T ], (3.4)
u(x, 0) = ϕ(x), x ∈ [0, L]. (3.5)

Suppose the exact solution u ∈ C(8,3)([0, L]× [0, T ]). Define the grid functions

Un
i = u(xi, tn), V n

i = v(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N ;

fn−1+σ
i = f(xi, tn−1+σ), 0 ≤ i ≤ M, 1 ≤ n ≤ N.

Considering Eq. (3.1) at the point (xi, tn−1+σ), we have

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) + vxx(xi, tn−1+σ) + qu(xi, tn−1+σ)

= f(xi, tn−1+σ), 0 ≤ i ≤ M, 1 ≤ n ≤ N. (3.6)

Acting the average operator H on both hand sides of (3.6), we get

H
m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) +Hvxx(xi, tn−1+σ) + qHu(xi, tn−1+σ)

= Hf(xi, tn−1+σ), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.7)

Applying the fast superconvergent approximation to the multi-term time-fractional
derivatives in the above equation, by Lemma 2.3, it yields

m∑
r=0

λr
C
0 D

αr
t u(xi, tn−1+σ) =

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

ω
(αr)
l û

(n−1,αr)
l,i

]
+c0

(
Un
i − Un−1

i

)
+O(τ3−α0 + ϵ), 1 ⩽ i ⩽ M − 1, 1 ⩽ n ⩽ N, (3.8)

û
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (3.9)

û
(n−1,αr)
l,i = e−s

(αr)
l τ û

(n−2,αr)
l,i +A

(αr)
l (Un−1

i − Un−2
i ) +B

(αr)
l (Un

i − Un−1
i ),

1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N. (3.10)
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Applying (3.8)–(3.10) into (3.7), by Lemma 2.4 and Lemma 2.5, we obtain

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

ω
(αr)
l Hû

(n−1,αr)
l,i

]
+ c0H

(
Un
i − Un−1

i

)
+ δ2xV

σn
i

+qHUσn
i = Hfn−1+σ

i +Rσn
i , 1 ⩽ i ⩽ M − 1, 1 ⩽ n ⩽ N, (3.11)

û
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (3.12)

û
(n−1,αr)
l,i = e−s

(αr)
l τ û

(n−2,αr)
l,i +A

(αr)
l (Un−1

i − Un−2
i ) +B

(αr)
l (Un

i − Un−1
i ),

1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N, (3.13)

where there is a positive constant c1, independent of h and τ , such that

|Rσn
i | ≤ c1(τ

2 + h4 + ε), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.14)

Next, considering Eq. (3.2) at the grid point (xi, tn) and performing the average
operator H on both hand sides of the resultant equation, we obtain

Hv(xi, tn) = Huxx(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N. (3.15)

According to Lemma 2.4, we get

HV n
i = δ2xU

n
i + Sn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N (3.16)

and there exists a positive constant c2 such that

|Sn
i | ≤ c2h

4, 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N. (3.17)

When i = 0, Eq. (3.15) reads

Hv(0, tn) = Huxx(0, tn), 0 ≤ n ≤ N. (3.18)

Letting x → 0+ in Eq. (2.1), using the boundary condition (2.2), one can obtain

∂4u(0, t)

∂x4
= f(0, t)−

m∑
r=0

λr
C
0 D

αr
t g1(t)− qg1(t). (3.19)

Meanwhile, differentiating the both hand sides of Eq. (2.1) with respect to x once
and letting x → 0+, using the boundary condition (2.3), we obtain

∂5u(0, t)

∂x5
= fx(0, t)−

m∑
r=0

λr
C
0 D

αr
t γ1(t)− qγ1(t). (3.20)

Noticing Lemma 2.4 and substituting (3.19), (3.20) into (3.18), we get

HV n
0 =

2

h

[
δxU

n
1
2
− γ1(tn)

]
+

h2

12

[
f(0, tn)−

m∑
r=0

λr
C
0 D

αr
t g1(tn)− qg1(tn)

]
+

7h3

180

[
fx(0, tn)−

m∑
r=0

λr
C
0 D

αr
t γ1(tn)− qγ1(tn)

]
+ Sn

0

:=
2

h
δxU

n
1
2
+ p(tn) + Sn

0 , 0 ≤ n ≤ N, (3.21)



2746 G.H. Gao, P. Xu & R. Tang

where

p(t) =− 2

h
γ1(t) +

h2

12

[
f(0, t)−

m∑
r=0

λr
C
0 D

αr
t g1(t)− qg1(t)

]
+

7h3

180

[
fx(0, t)−

m∑
r=0

λr
C
0 D

αr
t γ1(t)− qγ1(t)

]
and there exists a positive constant c3 such that

|Sn
0 | ≤ c3h

4, 0 ≤ n ≤ N. (3.22)

We note that the similar result can be obtained on the right boundary as

HV n
M =

2

h

[
γ2(tn)− δxU

n
M− 1

2

]
+

h2

12

[
f(xM , tn)−

m∑
r=0

λr
C
0 D

αr
t g2(tn)− qg2(tn)

]
− 7h3

180

[
fx(xM , tn)−

m∑
r=0

λr
C
0 D

αr
t γ2(tn)− qγ2(tn)

]
+ Sn

M

:=− 2

h
δxU

n
M− 1

2
+ q(tn) + Sn

M , 0 ≤ n ≤ N, (3.23)

where

q(t) =
2

h
γ2(t) +

h2

12

[
f(xM , t)−

m∑
r=0

λr
C
0 D

αr
t g2(t)− qg2(t)

]
− 7h3

180

[
fx(xM , t)−

m∑
r=0

λr
C
0 D

αr
t γ2(t)− qγ2(t)

]
and there exists a positive constant c4 such that

|Sn
M | ≤ c4h

4, 0 ≤ n ≤ N. (3.24)

Noticing the initial-boundary value conditions (3.3) and (3.5), we have

Un
0 = g1(tn), Un

M = g2(tn), 1 ≤ n ≤ N, (3.25)
U0
i = ϕ(xi), 0 ≤ i ≤ M. (3.26)

Omitting the small terms Rσn
i , Sn

i , S
n
0 , S

n
M in Eqs. (3.11), (3.16), (3.21), (3.23),

respectively, and replacing the exact solution {Un
i , V

n
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} with

its numerical one {un
i , v

n
i |0 ≤ i ≤ M, 0 ≤ n ≤ N}, we construct a fast compact

difference scheme for the problem (3.1)–(3.5) as follows:

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,i

]
+ c0H(un

i − un−1
i )

+δ2xv
σn
i + qHuσn

i = Hfn−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.27)

û
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (3.28)

û
(n−1,αr)
l,i = e−s

(αr)
l τ û

(n−2,αr)
l,i +A

(αr)
l (un−1

i − un−2
i ) +B

(αr)
l (un

i − un−1
i ),
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1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N, (3.29)

Hvni = δ2xu
n
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (3.30)

Hvn0 =
2

h
δxu

n
1
2
+ p(tn), 0 ≤ n ≤ N, (3.31)

HvnM = − 2

h
δxu

n
M− 1

2
+ q(tn), 0 ≤ n ≤ N, (3.32)

un
0 = g1(tn), un

M = g2(tn), 1 ≤ n ≤ N, (3.33)
u0
i = ϕ(xi), 0 ≤ i ≤ M. (3.34)

Theorem 3.1. The difference scheme (3.27)–(3.34) is equivalent to

19

36

{ m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,1

]
+ c0H(un

1 − un−1
1 ) + qHuσn

1

}

+
1

18

{ m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,2

]
+ c0H(un

2 − un−1
2 ) + qHuσn

2

}
+

2

h3
δxu

σn
1
2

− 5

3h2
δ2xu

σn
1 +

2

3h2
δ2xu

σn
2

=
19

36
Hfn−1+σ

1 +
1

18
Hfn−1+σ

2 − 1

h2
pn−1+σ, 1 ≤ n ≤ N, (3.35)

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l H2û

(n−1,αr)
l,i

]
+ c0H2(un

i − un−1
i ) + δ4xu

σn
i + qH2uσn

i

= H2fn−1+σ
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N, (3.36)

19

36

{ m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,M−1

]
+ c0H(un

M−1 − un−1
M−1) + qHuσn

M−1

}

+
1

18

{ m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,M−1

]
+ c0H(un

M−1 − un−1
M−1) + qHuσn

M−2

}
− 2

h3
δxu

σn

M− 1
2

− 5

3h2
δ2xu

σn

M−1 +
2

3h2
δ2xu

σn

M−2

=
19

36
Hfn−1+σ

M−1 +
1

18
Hfn−1+σ

M−2 − 1

h2
qn−1+σ, 1 ≤ n ≤ N, (3.37)

û
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (3.38)

û
(n−1,αr)
l,i = e−s

(αr)
l τ û

(n−2,αr)
l,i +A

(αr)
l (un−1

i − un−2
i ) +B

(αr)
l (un

i − un−1
i ),

1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N, (3.39)

un
0 = g1(tn), un

M = g2(tn), 1 ≤ n ≤ N, (3.40)
u0
i = ϕ(xi), 0 ≤ i ≤ M (3.41)

and

Hvni = δ2xu
n
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (3.42)

Hvn0 =
2

h
δxu

n
1
2
+ p(tn), 0 ≤ n ≤ N, (3.43)
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HvnM = − 2

h
δxu

n
M− 1

2
+ q(tn), 0 ≤ n ≤ N, (3.44)

where pn−1+σ = σp(tn) + (1− σ)p(tn−1) and qn−1+σ is similarly defined.

Proof. By (3.42), we can get

Hvσn
i = δ2xu

σn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.45)

In a similar way, we have

Hvσn
0 =

2

h
δxu

σn
1
2

+ pn−1+σ, 1 ≤ n ≤ N, (3.46)

Hvσn

M = − 2

h
δxu

σn

M− 1
2

+ qn−1+σ, 1 ≤ n ≤ N. (3.47)

Performing the average operator H and the operator δ2x on both hand sides of
(3.27) and (3.45), respectively, we have

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l H2û

(n−1,αr)
l,i

]
+ c0H2(un

i − un−1
i ) +Hδ2xv

σn
i

+qH2uσn
i = H2fn−1+σ

i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N, (3.48)
Hδ2xv

σn
i = δ4xu

σn
i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N. (3.49)

Substituting (3.49) into (3.48), we obtain

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l H2û

(n−1,αr)
l,i

]
+ c0H2(un

i − un−1
i ) + δ4xu

σn
i

+qH2uσn
i = H2fn−1+σ

i , 2 ≤ i ≤ M − 2, 1 ≤ n ≤ N, (3.50)

which is exactly (3.36).
For i = 0, rewriting the left hand side of (3.46) gives

Hvσn
0 = h2(b1δ

2
xv

σn
1 + b2δ

2
xv

σn
2 ) + b3Hvσn

1 + b4Hvσn
2 , 1 ≤ n ≤ N. (3.51)

Comparing the coefficients on both hand sides, we get the following system of linear
equations in the unknown {b1, b2, b3, b4}:

b1 +
b3
12

=
2

3
,

− 2b1 + b2 +
5

6
b3 +

1

12
b4 =

1

3
,

b1 − 2b2 +
b3
12

+
5

6
b4 = 0,

b2 +
b4
12

= 0,

which implies b1 = 19
36 , b2 = 1

18 , b3 = 5
3 and b4 = − 2

3 . Applying the results of (3.27)
and (3.45) with i = 1, 2 into (3.51), noticing (3.46), it yields

2

h
δxu

σn
1
2

+ pn−1+σ =h2

{
19

36

[
−

m∑
r=0

λr

Γ(1− αr)

(N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,1

)
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− c0H(un
1 − un−1

1 )− qHuσn
1 +Hfn−1+σ

1

]

+
1

18

[
−

m∑
r=0

λr

Γ(1− αr)

(N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,2

)
− c0H(un

2 − un−1
2 )− qHuσn

2 +Hfn−1+σ
2

]}

+
5

3
δ2xu

σn
1 − 2

3
δ2xu

σn
2 , 1 ≤ n ≤ N. (3.52)

In a similar way, we get

− 2

h
δxu

σn

M− 1
2

+ qn−1+σ

=h2

{
19

36

[
−

m∑
r=0

λr

Γ(1− αr)

(N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,M−1

)
− c0H(un

M−1 − un−1
M−1)

− qHuσn

M−1 +Hfn−1+σ
M−1

]
+

1

18

[
−

m∑
r=0

λr

Γ(1− αr)

(N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,M−2

)
− c0H(un

M−2 − un−1
M−2)− qHuσn

M−2 +Hfn−1+σ
M−2

]}
+

5

3
δ2xu

σn

M−1 −
2

3
δ2xu

σn

M−2,

1 ≤ n ≤ N. (3.53)

Rearranging the above two equalities, we can acquire (3.35) and (3.37) easily. The
proof ends.

Based on Theorem 3.1, we can calculate the numerical solution {un
i |0 ≤ i ≤

M, 0 ≤ n ≤ N} directly from the difference scheme (3.35)–(3.41) for the problem
(2.1)-(2.4), whereas, the theoretical analysis which follows will still start from the
difference scheme (3.27)-(3.34), which is more convenient for the analysis.

4. Stability and convergence analysis of the fast dif-
ference scheme

In this section, the stability and convergence of the fast compact difference scheme
(3.27)–(3.34) will be studied. To this end, we introduce some lemmas, which will
play a vital role in the subsequent analysis.

Lemma 4.1 ( [8]). Let v be a grid function defined on Ωh, then it holds

h

M−1∑
i=1

(Hvi)
2 ≥ 5

12
h

M−1∑
i=1

(vi)
2 − 5

72
h(v20 + v2M ). (4.1)

Lemma 4.2 ( [8]). For any grid functions u and v defined on Ωh, if u0 = uM = 0,
we have

h

M−1∑
i=1

δ2xvi · Hui − h

M−1∑
i=1

δ2xui · Hvi = (δxu 1
2
)v0 − (δxuM− 1

2
)vM . (4.2)
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Lemma 4.3 ( [9]). For a sufficiently small ϵ, the coefficient {Fc(n)k | 0 ≤ k ≤ n−1}
defined by (2.7) satisfies

Fc
(n)
1 > Fc

(n)
2 > · · · > Fc

(n)
n−1 ≥ CF > 0, (4.3)

(2σ − 1) Fc
(n)
0 − σ Fc

(n)
1 > 0, (4.4)

Fc
(n)
0 > Fc

(n)
1 , (4.5)

where the constant CF can be taken as

min
{ m∑

r=0

λrσ

Γ(2− αr)
t−αr
σ ,

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

ω
(αr)
l e−Ts

(αr)
l A

(αr)
l

]}
.

Lemma 4.4 ( [2,6]). Define Ůh = {u|u = (u0, u1, . . . , uM ), u0 = uM = 0}. Let (·, ·)
be an inner product defined in Ůh with the induced norm ∥ · ∥. Suppose {Fc(n)k |0 ≤
k ≤ n − 1, n ≥ 1} satisfies the conditions (4.3)-(4.5). For any grid functions
u0, u1, . . . , un, . . . ∈ Ůh, it holds that

n−1∑
k=0

Fc
(n)
k (un−k − un−k−1, uσn)

≥ 1

2

n−1∑
k=0

Fc
(n)
k (∥un−k∥2 − ∥un−k−1∥2), n = 1, 2, . . . .

The following theorem presents a priori estimation on the difference scheme
(3.27)–(3.34).

Theorem 4.1 (A priori estimate). Suppose that {un
i , v

n
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N}

is the solution of the following difference scheme

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hû

(n−1,αr)
l,i

]
+ c0H(un

i − un−1
i ) + δ2xv

σn
i + qHuσn

i

= Pn−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (4.6)

û
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (4.7)

û
(n−1,αr)
l,i = e−s

(αr)
l τ û

(n−2,αr)
l,i +A

(αr)
l (un−1

i − un−2
i ) +B

(αr)
l (un

i − un−1
i ),

1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N, (4.8)

Hvni = δ2xu
n
i +Qn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (4.9)

Hvn0 =
2

h
δxu

n
1
2
+Qn

0 , 0 ≤ n ≤ N, (4.10)

HvnM = − 2

h
δxu

n
M− 1

2
+Qn

M , 0 ≤ n ≤ N, (4.11)

u0
i = ωi, 0 ≤ i ≤ M, (4.12)

un
0 = 0, un

M = 0, 1 ≤ n ≤ N. (4.13)

Then we have

h

M−1∑
i=1

(un
i )

2 ≤12

5

{
h

M−1∑
i=1

(Hu0
i )

2 +
1

CF max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(P l−1+σ
i )2



Fast compact difference scheme for the fourth-order TMFDEs 2751

+ 2h

M−1∑
i=1

(Ql−1+σ
i )2 + h(Ql−1+σ

0 )2 + h(Ql−1+σ
M )2

]}
, 1 ≤ n ≤ N,

(4.14)

where the constant CF is defined in Lemma 4.3.

Proof. By (4.9)–(4.11), one can know that

Hvσn
i = δ2xu

σn
i +Qn−1+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (4.15)

Hvσn
0 =

2

h
δxu

σn
1
2

+Qn−1+σ
0 , 1 ≤ n ≤ N, (4.16)

Hvσn

M = − 2

h
δxu

σn

M− 1
2

+Qn−1+σ
M , 1 ≤ n ≤ N. (4.17)

Substituting (4.7) and (4.8) into (4.6), we can achieve

n−1∑
k=0

Fc
(n)
k H(un−k

i − un−k−1
i ) + δ2xv

σn
i + qHuσn

i = Pn−1+σ
i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (4.18)

Multiplying the both hand sides of (4.18) and (4.15) by hHuσn
i , hHvσn

i , respec-
tively, and summing up for i from 1 to M − 1, and multiplying the both hand sides
of (4.16) and (4.17) by h

2 v
σn
0 , h

2 v
σn

M , respectively, adding the results, we get

h

M−1∑
i=1

n−1∑
k=0

Fc
(n)
k (Hun−k

i −Hun−k−1
i )Huσn

i + h

M−1∑
i=1

δ2xv
σn
i · Huσn

i

+ qh

M−1∑
i=1

(Huσn
i )2 + h

M−1∑
i=1

(Hvσn
i )2 +

h

2
Hvσn

0 · vσn
0 +

h

2
Hvσn

M · vσn

M

= h

M−1∑
i=1

Pn−1+σ
i · Huσn

i + h

M−1∑
i=1

δ2xu
σn
i · Hvσn

i + h

M−1∑
i=1

Qn−1+σ
i · Hvσn

i

+ δxu
σn
1
2

· vσn
0 +

h

2
Qn−1+σ

0 · vσn
0 − δxu

σn

M− 1
2

· vσn

M +
h

2
Qn−1+σ

M · vσn

M , 1 ≤ n ≤ N.

(4.19)

Using the Cauchy-Schwarz inequality, we obtain

h

M−1∑
i=1

Pn−1+σ
i · Huσn

i ≤ qh

M−1∑
i=1

(Huσn
i )2 +

1

4q
h

M−1∑
i=1

(Pn−1+σ
i )2, 1 ≤ n ≤ N,

(4.20)

h

M−1∑
i=1

Qn−1+σ
i · Hvσn

i ≤ h

4

M−1∑
i=1

(Hvσn
i )2 + h

M−1∑
i=1

(Qn−1+σ
i )2, 1 ≤ n ≤ N. (4.21)

Noticing Lemmas 4.1-4.3 and substituting (4.20), (4.21) into (4.19), we get

1

2

n−1∑
k=0

Fc
(n)
k

[
h

M−1∑
i=1

(Hun−k
i )2 − h

M−1∑
i=1

(Hun−k−1
i )2

]
+

h

2
Hvσn

0 · vσn
0
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+
h

2
Hvσn

M · vσn

M +
5

16
h

M−1∑
i=1

(vσn
i )2

≤ 1

4q
h

M−1∑
i=1

(Pn−1+σ
i )2 + h

M−1∑
i=1

(Qn−1+σ
i )2 +

h

2
Qn−1+σ

0 · vσn
0

+
h

2
Qn−1+σ

M · vσn

M +
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2, 1 ≤ n ≤ N. (4.22)

For some terms related with the boundaries, one has

− h

2
(Hvσn

0 −Qn−1+σ
0 )vσn

0 − h

2
(Hvσn

M −Qn−1+σ
M )vσn

M +
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

= −h

2

(2
3
vσn
0 +

1

3
vσn
1 −Qn−1+σ

0

)
vσn
0 − h

2

(2
3
vσn

M +
1

3
vσn

M−1 −Qn−1+σ
M

)
vσn

M

+
5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

≤ −h

3
(vσn

0 )2 +
h

6

[1
4
(vσn

0 )2 + (vσn
1 )2

]
+

h

2

[1
4
(vσn

0 )2 + (Qn−1+σ
0 )2

]
− h

3
(vσn

M )2

+
h

6

[1
4
(vσn

M )2 + (vσn

M−1)
2
]
+

h

2

[1
4
(vσn

M )2 + (Qn−1+σ
M )2

]
+

5h

96
(vσn

0 )2 +
5h

96
(vσn

M )2

= −11h

96
(vσn

0 )2 +
h

6
(vσn

1 )2 − 11h

96
(vσn

M )2 +
h

6
(vσn

M−1)
2

+
h

2
(Qn−1+σ

0 )2 +
h

2
(Qn−1+σ

M )2

≤ h

6
[(vσn

1 )2 + (vσn

M−1)
2] +

h

2
[(Qn−1+σ

0 )2 + (Qn−1+σ
M )2], 1 ≤ n ≤ N. (4.23)

Noticing
h

6
[(vσn

1 )2 + (vσn

M−1)
2] ≤ 5

16
h

M−1∑
i=1

(vσn
i )2,

the substitution of (4.23) into (4.22) produces
n−1∑
k=0

Fc
(n)
k

[
h

M−1∑
i=1

(Hun−k
i )2 − h

M−1∑
i=1

(Hun−k−1
i )2

]

≤ 1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + 2h

M−1∑
i=1

(Qn−1+σ
i )2 + h[(Qn−1+σ

0 )2 + (Qn−1+σ
M )2],

that is

Fc
(n)
0 h

M−1∑
i=1

(Hun
i )

2 ≤
n−1∑
k=1

(Fc
(n)
k−1 −

Fc
(n)
k )h

M−1∑
i=1

(Hun−k
i )2

+Fc
(n)
n−1h

M−1∑
i=1

(Hu0
i )

2 +
1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + 2h

M−1∑
i=1

(Qn−1+σ
i )2

+h[(Qn−1+σ
0 )2 + (Qn−1+σ

M )2], 1 ≤ n ≤ N.

Noticing [9] Fc
(n)
n−1 ≥ CF > 0, further one can get

Fc
(n)
0 h

M−1∑
i=1

(Hun
i )

2
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≤
n−1∑
k=1

(Fc
(n)
k−1 −

Fc
(n)
k )h

M−1∑
i=1

(Hun−k
i )2

+ Fc
(n)
n−1

{
h

M−1∑
i=1

(Hu0
i )

2 +
1

CF

[
1

2q
h

M−1∑
i=1

(Pn−1+σ
i )2 + 2h

M−1∑
i=1

(Qn−1+σ
i )2

+ h(Qn−1+σ
0 )2 + h(Qn−1+σ

M )2
]}

, 1 ≤ n ≤ N.

The induction method applied to the above inequality will lead to

h

M−1∑
i=1

(Hun
i )

2 ≤h

M−1∑
i=1

(Hu0
i )

2 +
1

CF max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(P l−1+σ
i )2

+ 2h

M−1∑
i=1

(Ql−1+σ
i )2 + h(Ql−1+σ

0 )2 + h(Ql−1+σ
M )2

]
, 1 ≤ n ≤ N.

Noticing (4.13) and Lemma 4.1, further one can reach the desired inequality. The
proof ends.

Theorem 3.1 and Theorem 4.1 reveal the stability of the difference scheme (3.35)–
(3.41) with respect to the initial value and the right hand term f(x, t).

Theorem 4.2 (Stability). The difference scheme (3.35)–(3.41) is unconditionally
stable with respect to the right hand term f and the initial value.

In what follows, the convergence of the difference scheme (3.27)–(3.34) will be
concerned.

Theorem 4.3 (Convergence). Suppose that {Un
i , V

n
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} and

{un
i , v

n
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} are the solution of the problem (3.1)–(3.5) and the

difference scheme (3.27)–(3.34), respectively. Let

eni = Un
i − un

i , ϵni = V n
i − vni , 0 ≤ i ≤ M, 0 ≤ n ≤ N,

then there exists a positive constant C independent of h and τ , such that√√√√h

M−1∑
i=1

(eni )
2 ≤ C(τ2 + h4 + ϵ), 1 ≤ n ≤ N,

where
C2 =

12L

5CF

(
1

2q
c21 + 2c22 + c23 + c24

)
.

Proof. Subtracting Eqs. (3.27)–(3.34) from (3.11)–(3.13), (3.16), (3.21), (3.23)
and (3.25)–(3.26), respectively, we have the system of error equations

m∑
r=0

λr

Γ(1− αr)

[N(αr)
exp∑
l=1

w
(αr)
l Hê

(n−1,αr)
l,i

]
+ c0H(eni − en−1

i )

+δ2xϵ
σn
i + qHeσn

i = Rσn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (4.24)

ê
(0,αr)
l,i = 0, 1 ≤ l ≤ N (αr)

exp , 1 ⩽ i ⩽ M − 1, (4.25)
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ê
(n−1,αr)
l,i = e−s

(αr)
l τ ê

(n−2,αr)
l,i +A

(αr)
l (en−1

i − en−2
i ) +B

(αr)
l (eni − en−1

i ),

1 ≤ l ≤ N (αr)
exp , 1 ≤ i ≤ M − 1, 2 ≤ n ≤ N, (4.26)

Hϵni = δ2xe
n
i + Sn

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (4.27)

Hϵn0 =
2

h
δxe

n
1
2
+ Sn

0 , 0 ≤ n ≤ N, (4.28)

HϵnM = − 2

h
δxe

n
M− 1

2
+ Sn

M , 0 ≤ n ≤ N, (4.29)

e0i = 0, 0 ≤ i ≤ M, (4.30)
en0 = 0, enM = 0, 1 ≤ n ≤ N. (4.31)

The application of Theorem 4.1 into (4.24)–(4.31) produces

h

M−1∑
i=1

(eni )
2 ≤ 12

5

{
h

M−1∑
i=1

(He0i )
2 +

1

CF max
1≤l≤n

[
1

2q
h

M−1∑
i=1

(Rσl
i )2

+2h

M−1∑
i=1

(Sσl
i )2 + h(Sσl

0 )2 + h(Sσl

M )2
]}

, 1 ≤ n ≤ N.

Noticing (3.14), (3.17), (3.22) and (3.24), together with (4.30)–(4.31), further it
follows

h

M−1∑
i=1

(eni )
2 ≤ 12

5CF

[
L

2q
c21(τ

2 + h4 + ϵ)2 + (2Lc22 + hc23 + hc24)(h
4)2
]

≤ 12L

5CF

(
1

2q
c21 + 2c22 + c23 + c24

)
(τ2 + h4 + ϵ)2, 1 ≤ n ≤ N.

The proof ends.

5. Numerical examples
In this section, two numerical examples will be implemented to illustrate the cor-
rectness of theoretical analysis and the validity of the fast difference scheme (FDS)
proposed in current work. In addition, we aim to compare the direct difference
scheme (DDS) without the acceleration in time direction with the current fast dif-
ference scheme (FDS) , which shows that the FDS can reduce the CPU time greatly.

Applying Lemma 2.1 to handle the time-fractional derivatives and the same
techniques to treat the space derivatives, similar to the derivation of FDS, the DDS
scheme for the problem (2.1)–(2.4) has been obtained as follows [8]:

m∑
r=0

λr
τ−αr

Γ(2− αr)

n−1∑
k=0

c
(n,αr)
k H(un−k

i − un−k−1
i )

+δ2xv
σn
i + qHuσn

i = Hfn−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (5.1)

Hvni = δ2xu
n
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N, (5.2)

Hvn0 =
2

h
δxu

n
1
2
+ p(tn), 0 ≤ n ≤ N, (5.3)

HvnM = − 2

h
δxu

n
M− 1

2
+ q(tn), 0 ≤ n ≤ N, (5.4)
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u0
i = ϕ(xi), 0 ≤ i ≤ M, (5.5)

un
0 = g1(tn), un

M = g2(tn), 1 ≤ n ≤ N, (5.6)

with the global convergence order O(τ2 + h4).
Denote

err(h, τ) = max
0⩽i⩽M
0⩽n⩽N

|u(xi, tn)− un
i |, ordert = log2

err(h, τ)

err(h, τ/2)
,

orderx = log2
err(h, τ)

err(h/2, τ)
.

Example 5.1. In (2.1)–(2.4), take L = 1, T = 1, m = 2, q = 1, f(x, t) =[
24

m∑
r=0

λr
t4−αr

Γ(5− αr)
+π4t4+t4

]
sin(πx), ϕ(x) = 0, g1(t) = 0, g2(t) = 0, γ1(t) = πt4,

γ2(t) = −πt4.

The exact solution of this example is u(x, t) = t4 sin(πx).
Taking the parameter (λ0, λ1, λ2) = (1, 2, 3) and varying values of (α0, α1, α2),

the numerical examples are calculated using the FDS (3.35)–(3.41) with the tol-
erance error ϵ = 1e − 12. We present the corresponding results using the DDS
(5.1)–(5.6) for comparison.

On the one hand, we examine the numerical accuracy in time. Fixing the spatial
step size h = 1

100 , the maximum errors and convergence orders are shown in Table
1, from which, one can read off the second-order convergence of both schemes in
time.

On the other hand, the numerical accuracies of the difference scheme (3.35)–
(3.41) and the scheme (5.1)–(5.6) in space are tested. Fix the temporal step size
τ = 1

10000 . Table 2 presents the maximum errors and convergence orders with
the different spatial step sizes, from which, the fourth-order convergence of both
schemes in space is verified.
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Figure 1. Numerical solution and exact solution plots for Example 5.1 with t = 1, M = 100, N = 160,
(α0, α1, α2) = (1/3, 1/4, 1/5), (λ0, λ1, λ2) = (1, 2, 3) (Left: Numerical solution; Right: Exact solution)
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Table 1. Numerical errors and convergence orders of the DDS (5.1)–(5.6) and the FDS (3.35)–(3.41) in
time for solving Example 5.1 (M = 100).

.
DDS (5.1) − (5.6) FDS (3.35) − (3.41)

(α0, α1, α2) τ err(h, τ) ordert err(h, τ) ordert

( 1
3
, 1
4
, 1
5
)

1/10 1.324210e− 3 1.96 1.324210e− 3 1.96

1/20 3.412309e− 4 1.97 3.412308e− 4 1.97

1/40 8.682708e− 5 1.98 8.682677e− 5 1.98

1/80 2.196241e− 5 1.99 2.196265e− 5 1.99

1/160 5.539102e− 6 — 5.539134e− 6 —

( 2
3
, 1
2
, 1
3
)

1/10 2.335417e− 3 1.95 2.335417e− 3 1.95

1/20 6.027641e− 4 1.97 6, 027640e− 4 1.97

1/40 1.540140e− 4 1.98 1.540138e− 4 1.98

1/80 3.915502e− 5 1.98 3.915514e− 5 1.98

1/160 9.925806e− 6 — 9.925680e− 6 —

(1, 1
2
, 1
4
)

1/10 3.015353e− 3 1.95 3.015353e− 3 1.95

1/20 7.797358e− 4 1.98 7.797359e− 4 1.98

1/40 1.981352e− 4 1.99 1.981352e− 4 1.99

1/80 4.990732e− 5 2.00 4.990741e− 5 2.00

1/160 1.251736e− 5 — 1.251730e− 5 —

Table 2. Numerical errors and convergence orders of the DDS (5.1)–(5.6) and the FDS (3.35)–(3.41) in
space for solving Example 5.1 (N = 10000).

.
DDS (5.1) − (5.6) FDS (3.35) − (3.41)

(α0, α1, α2) h err(h, τ) orderx err(h, τ) orderx

( 1
3
, 1
4
, 1
5
)

1/4 6.067967e− 4 3.90 6.067967e− 4 3.90

1/8 4.063221e− 5 3.97 4.063221e− 5 3.97

1/16 2.588908e− 6 4.01 2.588908e− 6 4.01

1/32 1.612457e− 7 — 1.612436e− 7 —

( 2
3
, 1
2
, 1
3
)

1/4 6.031255e− 4 3.90 6.031255e− 4 3.90

1/8 4.038819e− 5 3.97 4.038819e− 5 3.97

1/16 2.572191e− 6 4.02 2.572190e− 6 4.02

1/32 1.590621e− 7 — 1.590627e− 7 —

(1, 1
2
, 1
4
)

1/4 6.020751e− 4 3.90 6.020951e− 4 3.90

1/8 4.031953e− 5 3.97 4.031953e− 5 3.97

1/16 2.567315e− 6 4.02 2.567315e− 6 4.02

1/32 1.582629e− 7 — 1.582661e− 7 —

Example 5.2. In (2.1)–(2.4), take L = 1, T = 1, m = 2, q = 1, f(x, t) =

[24

m∑
r=0

λr
t4−αr

Γ(5− αr)
+ π4t4 + t4] sin(πx) + 2 cosx, ϕ(x) = cosx, g1(t) = 1, g2(t) =

cos 1, γ1(t) = πt4, γ2(t) = −πt4 − sin 1.

The exact solution for this example is u(x, t) = t4 sin(πx) + cosx.

Table 3 lists the maximum errors and the temporal convergence orders when
the spatial step size h = 1/100 and τ is taken as 1/10, 1/20, 1/40, 1/80 and 1/160,
respectively, where the parameter (λ0, λ1, λ2) = (1, 2, 3). From this table, we can
see that, as what is expected, the convergence order in time of the fast difference
scheme (3.35)–(3.41) and the direct scheme (5.1)–(5.6) is both two. Besides, in
order to examine the convergence order in space, we choose a sufficiently small
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Table 3. Numerical errors and convergence orders of the DDS (5.1)–(5.6) and the FDS (3.35)–(3.41) in
time for solving Example 5.2 (M = 100).

.
DDS (5.1) − (5.6) FDS (3.35) − (3.41)

(α0, α1, α2) τ err(h, τ) ordert err(h, τ) ordert

( 1
3
, 1
4
, 1
5
)

1/10 1.324210e− 3 1.96 1.324210e− 3 1.96

1/20 3.412310e− 4 1.97 3.412310e− 4 1.97

1/40 8.682729e− 5 1.98 8.682667e− 5 1.98

1/80 2.196228e− 5 1.99 2.196276e− 5 1.99

1/160 5.539019e− 6 — 5.539074e− 6 —

( 2
3
, 1
2
, 1
3
)

1/10 2.335417e− 3 1.95 2.335417e− 3 1.95

1/20 6.027641e− 4 1.97 6.027639e− 4 1.97

1/40 1.540141e− 4 1.98 1.540136e− 4 1.98

1/80 3.915488e− 5 1.98 3.915119e− 5 1.98

1/160 9.925790e− 6 — 9.925521e− 6 —

(1, 1
2
, 1
4
)

1/10 3.015353e− 3 1.95 3.015353e− 3 1.95

1/20 7.797358e− 4 1.98 7.797360e− 4 1.98

1/40 1.981352e− 4 1.99 1.981353e− 4 1.99

1/80 2.286938e− 5 2.00 2.286940e− 5 2.00

1/160 1.251734e− 5 — 1.251723e− 5 —

Table 4. Numerical errors and convergence orders of the DDS (5.1)–(5.6) and the FDS (3.35)–(3.41) in
space for solving Example 5.2 (N = 10000).

.
DDS (5.1) − (5.6) FDS (3.35) − (3.41)

(α0, α1, α2) h err(h, τ) orderx err(h, τ) orderx

( 1
3
, 1
4
, 1
5
)

1/8 4.061643e− 5 3.97 4.061643e− 5 3.97

1/16 2.588559e− 6 4.00 2.588559e− 6 4.00

1/32 1.612435e− 7 — 1.612394e− 7 —

( 2
3
, 1
2
, 1
3
)

1/8 4.037236e− 5 3.97 4.037236e− 5 3.97

1/16 2.571840e− 6 4.02 2.571840e− 6 4.02

1/32 1.590599e− 7 — 1.590612e− 7 —

(1, 1
2
, 1
4
)

1/8 4.030370e− 5 3.97 4.030370e− 5 3.97

1/16 2.566965e− 6 4.02 2.566965e− 6 4.02

1/32 1.582586e− 7 — 1.582649e− 7 —

temporal step size τ = 1/10000 and h is taken as 1/8, 1/16 and 1/32, respectively.
Table 4 presents the computational results which are in accord with the theoretical
results we proved in last section. From Table 4, we can find that the fourth-order
convergence of both schemes in space can be numerically achieved.

Table 5 lists the maximum errors and the CPU time of the difference schemes
with τ = 1

200000 , (α0, α1, α2) = ( 13 ,
1
4 ,

1
5 ) and (λ0, λ1, λ2) = (1, 2, 3). The CPU time

for both schemes is shown in Table 5 which verifies the efficiency of the FDS (3.35)–
(3.41). From Table 5, we find that the computational cost of the fast difference
scheme (3.35)–(3.41) can be reduced significantly. The larger N is, more obvious
the advantage of the FDS (3.35)–(3.41) over the DDS (5.1)–(5.6) is.

For visualization, Figure 1 and Figure 2 illustrate the numerical and exact so-
lution plots when t = 1, M = 100, N = 160, (α0, α1, α2) = ( 13 ,

1
4 ,

1
5 ), (λ0, λ1, λ2) =

(1, 2, 3) indicating an excellent closeness between the numerical and exact ones.
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Figure 2. Numerical solution and exact solution plots for Example 5.2 with t = 1, M = 100, N = 160,
(α0, α1, α2) = (1/3, 1/4, 1/5), (λ0, λ1, λ2) = (1, 2, 3) (Left: Numerical solution; Right: Exact solution)

Table 5. The comparsion of the DDS (5.1)–(5.6) and the FDS (3.35)–(3.41) when N = 200000

. .
DDS (5.1) − (5.6) FDS (3.35) − (3.41)

h err(h, τ) CPU time err(h, τ) CPU time

Example 5.1

1/8 4.063368e− 5 9.46h 4.032271e− 5 34.80s

1/16 2.590384e− 6 11.19h 2.570491e− 6 37.65s

1/32 1.627221e− 7 15.42h 1.614391e− 7 45.42s

Example 5.2

1/8 4.037505e− 5 9.90h 4.061789e− 5 34.95s

1/16 2.574522e− 6 12.12h 2.590021e− 6 39.31s

1/32 1.617457e− 7 16.67h 1.627071e− 7 49.63s

Therefore, we conclude that the proposed scheme is efficient for the considered
problem.

Remark 5.1. Both the numerical results and theoretical analyses show that the
expected accuracy of the proposed fast difference scheme (3.35)–(3.41) can be at-
tained if the solution has enough regularity. If no so, the scheme is still valid but
with a possible polluted accuracy.

6. Conclusion
In this paper, a fast compact difference scheme for the fourth-order time multi-
term fractional sub-diffusion equations with the first Dirichlet boundary is derived
by the SOE approximation and the method of order reduction, then some basic
properties of this difference scheme are investigated. The unconditional convergence
and stability of the scheme are proved by the discrete energy method and the
convergence accuracy is second-order in time and fourth-order in space. In order
to show the efficiency and advantages of the proposed fast scheme in current work,
we compare it with the direct scheme without acceleration in time. The numerical
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examples reveal that the CPU time of the fast difference scheme is markedly reduced
compared with the direct difference scheme, especially for the case with the large
value of temporal levels.
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