
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 6, December 2021, 2762–2791 DOI:10.11948/20200411

A STRONG CONVERGENCE HALPERN-TYPE
INERTIAL ALGORITHM FOR SOLVING

SYSTEM OF SPLIT VARIATIONAL
INEQUALITIES AND FIXED POINT

PROBLEMS∗

A. A. Mebawondu1,2,5, L. O. Jolaoso3,†, H. A. Abass1,2,
O. K Oyewole1,2 and K. O. Aremu1,3,4

Abstract In this paper, we propose a new Halpern-type inertial extrapola-
tion method for approximating common solutions of the system of split varia-
tional inequalities for two inverse-strongly monotone operators, the variational
inequality problem for monotone operator, and the fixed point of composi-
tion of two nonlinear mappings in real Hilbert spaces. We establish that
the proposed method converges strongly to an element in the solution set of
the aforementioned problems under certain mild conditions. In addition, we
present some numerical experiments to show the efficiency and applicability of
our method in comparison with some related methods in the literature. This
result improves and generalizes many recent results in this direction in the
literature.

Keywords Generalized system of variational inequality problem, split fea-
sibility problem, inertial iterative scheme, firmly nonexpansive, fixed point
problem.

MSC(2010) 47H06, 47H09, 47J05, 47J25.

†The corresponding author.
Email: jollatanu@yahoo.co.uk, lateef.jolaoso@smu.ac.za(L. O. Jolaoso)

1School of Mathematics, Statistics and Computer Science, University of
KwaZulu-Natal, Durban, 4001, South Africa

2DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-
MaSS)

3Department of Mathematics and Applied Mathematics, Sefako Makgatho
Health Sciences University, P.O. Box 94 Medunsa 0204, Pretoria, South
Africa

4Department of Mathematics, Usmanu Danfodiyo University Sokoto, Sokoto
state, Nigeria

5Department of Mathematics, Mountain Top University, Prayer City, Ogun
statee, Nigeria.

∗A. A. Mebawondu and H. A. Abass acknowledge with thanks the bursary
and financial support from Department of Science and Technology and Na-
tional Research Foundation, Republic of South Africa Center of Excellence in
Mathematical and Statistical Sciences (DSI-NRF COE-MaSS) Post-Doctoral
Bursary.

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200411


Inertial iterative algorithms for common solution 2763

1. Introduction
Let C be a nonempty closed convex subset of a real Hilbert H with inner product
⟨·, ·⟩, induced norm ∥ · ∥ and A : H → H be an operator. The classical Variational
Inequality Problem (shortly, VIP) is to find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0 ∀ y ∈ C. (1.1)

The notion of VIP was introduced by Stampacchia [36] and Fichera [13, 14] for
modeling problems arising from mechanics and for solving Signorini problem. It is
well-known that many problems in economics, mathematical sciences, mathemat-
ical physics can be formulated as VIP (see for instance, [17, 21, 22] and references
therein). The set of solution of VIP (1.1) is denoted by Ω.

Due to the fruitful applications of VIPs, many researchers have developed different
iterative algorithm to approximate the solution of (1.1). For example, the author
in [19] introduced the following iterative process:

xn+1 = PC(I − λnA)xn. (1.2)

It has been established that if A is strongly monotone and Lipschitz continuous,
then the iterative scheme (1.2) converges strongly under some suitable conditions.
In addition, if A is inverse strongly monotone, the iterative scheme (1.2) converges
weakly under some suitable conditions. When the condition on A is relaxed (say,
e.g., to monotone), the method (1.2) fails to converge (even weakly) to a solution
of the VIP. An attempt to overcome this setback was made by Korpelevich [23].
He introduced the following extragradient type algorithm and established a weak
convergence of their iterative method when A is monotone and Lipschitz continuous
in the finite-dimensional Euclidean space as follows:


x1 ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn) ∀ n ∈ N.
(1.3)

Under some suitable conditions, he established that the sequence {xn} generated
iteratively by (1.3) converges to an element in the solution set Ω. Since then, many
authors have studied the VIP in Hilbert spaces using different approach, (see [1,
16, 20, 34] and the references therein). However, in all of these approaches, the
convergence of their methods were obtained under the monotonicity and Lipschitz
continuity assumptions of the underlying operator A. It is sometimes challenging or
even impossible to calculate the Lipschitz constant of the given monotone operator,
thus, making their methods very difficult in applications. Finding an iterative
algorithm which uses a single projection operator with limited number of evaluation
of the cost function for solving the VIP has become a fruitful effort in the last decade.
It is worth noting that several researchers have attempt to generalized the concept
of VIP in the literature. In the light of this fact, Verma [44] introduced a System of
Nonlinear Variational Inequalities Problems (SNVIP) and in 2008, Ceng et. al. [7]
generalized the concept of SNVIP introduced by Verma by introducing a new system



2764 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

of variational inequalities problem (SNVIP) as follows: Find (x, y) ∈ C × C such
that {

⟨ηA2(y) + x− y, z − x⟩ ≥ 0 ∀ z ∈ C,

⟨γA1(x) + y − x, z − y⟩ ≥ 0 ∀ z ∈ C,
(1.4)

where A1, A2 : C → H are two mappings and η, γ are two constants. It is easy to
see that if A1 = A2, then (1.4) becomes, find (x, y) ∈ C × C such that{

⟨ηA1(y) + x− y, z − x⟩ ≥ 0 ∀ z ∈ C,

⟨γA1(x) + y − x, z − y⟩ ≥ 0 ∀ z ∈ C,
(1.5)

which is the SNVIP introduced by Verma in [44]. More so, if x = y, then (1.4)
reduces to (1.1). In the light of generalizing the notion of SNVIP introduced by
Verma [44] and Ceng et al. [7], in 2017, Sahu et. al. [31] introduced a new system of
variational inequalities problem involving two nonempty closed and convex subsets
C and D of a real Hilbert space H as follows: Find (x, y) ∈ C ×D such that{

⟨ηA2(y) + x− y, z − x⟩ ≥ 0 ∀ z ∈ D,

⟨γA1(x) + y − x, z − y⟩ ≥ 0 ∀ z ∈ C,
(1.6)

where A1 : C → H,A2 : D → H are σ1, σ2 inversely strongly monotone operators,
respectively and η, γ > 0 are constants. In [32], Sahu introduced the notion of
alternating point technique and established that the SNVIP (1.6) is equivalent to
the following alternating points formulation. Find (x, y) ∈ C ×D such that{

y = PD(I − λ1A1)x,

x = PC(I − λ2A2)y.
(1.7)

The SNVIP is denoted by SNV I({A1, C}, {A2, D}) and the set of solution of (1.6)
is denoted by Γ.

The concept of Split Feasibility Problem (SFP) was introduced by Censor and
Elfving [10] in the framework of finite-dimensional Hilbert spaces. The SFP is
finding

x ∈ C such that Bx ∈ D, (1.8)

where C and D are nonempty, closed and convex subsets of real Hilbert spaces H1

and H2 respectively, and B : H1 → H2 is a bounded linear operator. The SFP
finds real life applications in image recovery, signal processing, control theory, data
compression, computer tomography and so on (see [6, 8], and references therein).
Therefore, it constitutes for a lot of work being done by researchers in various
abstract spaces (see [38, 45]). In 2009, Censor and Segal [9] further extend the
notion of SFP by introducing the concept of Split Common Fixed Point Problem
(SCFP), which is finding

x ∈ F (T ) such that Bx ∈ F (S), (1.9)

where F (T ), F (S) denote the set of fixed points of T and S respectively, T : C →
C, S : D → D are two nonlinear operators and B : H1 → H2 is a bounded



Inertial iterative algorithms for common solution 2765

linear operator. Motivated by the results of Takahashi et al. [39], Censor et al. [11]
and Tian and Jiang [41] introduced and studied the following Generalized Split
Feasibility Problem (GSFP) over the solution set of VIP, which is to find

x ∈ C such that ⟨A(x), y − x⟩ ≥ 0 ∀y ∈ C and Bx ∈ F (S), (1.10)

where C is a nonempty, closed and convex subset of H1, B : H1 → H2 is a bounded
linear operator, A : C → H1 is a single-valued operator and S : H2 → H2 is
a nonexpansive mapping. Tian and Jiang [40] proposed the following iterative
algorithm for finding solutions of the GSFP (1.10): Let x1 ∈ C, define the sequence
{xn}, {yn} and {tn} by

yn = PC(xn − τnB
∗(I − S)Bxn),

tn = PC(yn − λnA(yn)),

xn+1 = PC(yn − λnA(tn)),

(1.11)

for each n ∈ N, where {τn} ⊂ [a, b] for some a, b ∈
(
0,

1

∥B∥2

)
and {λn} ⊂ [c, d]

for some c, d ∈
(
0,

1

L

)
, S : H2 → H2 is a nonexpansive mapping, A : C → H1

is a monotone and L-Lipschitz continuous. They proved that the sequence {xn}
generated by Algorithm (1.11) converges weakly to the solution of the following
problem: Find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0 ∀ y ∈ C and such that Bx ∈ F (S).

Since strong convergence is more desirable than weak convergence. Tian and Jiang
in [41] extends Algorithm (1.11) and obtained a strong convergent result. They
defined the iterative algorithm as follows: Let x1 ∈ C, define the sequence {xn},
{yn}, {wn} and {tn} by

yn = PC(xn − τnB
∗(I − S)Bxn),

tn = PC(yn − λnA(yn)),

wn = PC(yn − λnA(tn)),

xn+1 = αnh(xn) + (1− αn)wn,

(1.12)

where h : H → H is a contraction, {αn} ⊂ (0, 1) and S,B,A are the same as defined
in Algorithm (1.11).

Remark 1.1. In Algorithm (1.11) and Algorithm (1.12) the underlying operator
A is not inversely strongly monotone but monotone and L-Lipschitz continuous.
However, researchers tends to reduce the number of metric projection in an iterative
algorithm due to its negative effect on the convergence rate of the iterative scheme.
Thus, we are back to the question of whether there is an iterative method designed
to solve the VIP (1.1) or GSFP (1.10), where the underlying operator is monotone
and with a minimum number of metric projections.

On the other hand, the inertial extrapolation method has proven to be an ef-
fective way for accelerating the rate of convergence of iterative algorithms. The
technique was introduced in 1964 and is based on a discrete version of a second
order dissipative dynamical system [26,29]. The inertial type algorithms use its two



2766 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

previous iterates to obtain its next iterate [2,24]. For details on the inertia extrap-
olation, see [1, 3–5] and the references therein. In 2018, Dong et al. [12] proposed
an inertial type iterative algorithm for approximating the solution of (1.1). The
method is of the form:

x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),

yn = PC(wn − λAwn),

d(wn, yn) = wn − yn − λ(Awn −Aun),

xn+1 = wn − ζηnd(wn, yn),

(1.13)

where ζ ∈ (0, 2), λ ∈ (0, 1
L ) and

ηn =

{
ϕ(wn,yn)
d(wn,yn)

, if d(wn, yn) ̸= 0,

0, if d(wn, yn) = 0,
(1.14)

where ϕ(wn, yn) = ⟨wn − yn, d(wn, yn)⟩. They established that the sequence {xn}
converges weakly to an element of Ω.

In 2020, Sahu et al. [33] introduced an inertial type iterative algorithm for ap-
proximating the solution of a class of variational inequality problems for monotone
operators and system of nonlinear variational inequalities problems for two inverse
strongly monotone operators. The propose algorithm is of the form:

x0, x1 ∈ C,

un = xn + θn(xn − xn−1),

vn = PC(I − µ2A2)PD(I − µ1A1)un,

zn = PC(vn −Avn),

yn = (1− λn)vn + λnzn,

where λn = lmn and mn is the smallest nonnegative integer m such that
⟨Avn −A(1− lm)vn + lmzn), vn − zn⟩ ≤ µ∥vn − zn∥2,
xn+1 = (1− βn)un + βnPC(vn − γndn) ∀ n ∈ N,

(1.15)

where µ1 ∈ (0, 2η2) and µ2 ∈ (0, 2η2), dn = vn − zn + 1
λn

A(yn) and γn = ρ(1 −
µ)∥vn−zn∥

∥dn∥2 if dn ̸= 0 and γn = 0 if dn = 0. They established that the sequence {xn}
converges weakly to an element of the solution set of (1.1) and (1.6).

Remark 1.2. In Algorithm (1.13), the underlying operator A is monotone and
L-Lipschitz continuous, since strong convergence is more desirable than weak con-
vergence. It is therefore natural to ask if Algorithm (1.13) can be further modified
to get a strong convergence and with weaker operator.

Remark 1.3. In Algorithm (1.15), the underlying operator A for VIP is not in-
versely strongly monotone nor monotone and L-Lipschitz continuous. Thus, this
algorithm provides an affirmative answer to the question of developing an itera-
tive algorithm that can approximate a VIP in which the underlying operator is
monotone. However, the number of metric projection in the iterative algorithm will
slow down the rate of convergence. Thus, we are back to the question of whether



Inertial iterative algorithms for common solution 2767

there is an iterative method designed to solve the VIP (1.1) in which the underlying
operator is monotone and SNVIP (1.6), with minimum metric projection.

Remark 1.4. Having highlight the setbacks in the above algorithms, one of the
purpose of this paper is to address the setbacks in the above algorithms by intro-
ducing an iterative algorithm together with an inertial extrapolation method based
on altering point technique. The following are our contributions in the paper.

1. Observe that Algorithm 3 can be viewed as a single projection method for
solving the classical VIP (1.1) and a fixed point problem of composition of
two mappings in one space H1 in which the underlying operator A is just
monotone. In addition, a double projection alternating points formulation
method under a bounded linear operator B for solving SNVIP (1.6) in an-
other space H2 with no extra projection. A notable advantage of this method
(Algorithm 3) for solving VIP is that the strongly inversely monotonicity and
Lipschitz continuity of the operator A usually used in other papers to guar-
antee convergence, is removed and no extra projection required under this
setting (see for example, [27, 33] and the references therein).

2. The choice of stepsize σn :=

(
ϵ, ∥(GD−I)Bvn∥2

∥B∗(GD−I)Bvn∥2 − ϵ

)
used in Algorithm 3

does not require the knowledge of the operator norms ∥B∥. It is known that
Algorithms with parameters depending on operator norm are not easy in
practice to execute (see, [40, 41] and the references therein).

3. In addition, in establishing our results, the condition
∞∑

n=1
θn∥xn−xn−1∥2 < ∞

as used by authors who use inertial type algorithm (see [25] and the references
therein) to solve some optimization problems is not used in this work.

The rest of this paper is organized as follows: In Section 2, we recall some useful
definitions and results needed to establish the main result in this paper. In Section 3,
we present our proposed method and highlight some of its advantages over existing
methods in this area of study. In Section 4, we establish strong convergence result
of our method. In Section 5, we present some examples and numerical experiments
of the proposed method in comparison with Algorithm 1.13 and Algorithm 1.15 to
show the efficiency and applicability of our method in the framework of infinite and
finite dimensional Hilbert spaces. In Section 6, we make some concluding remarks.
The result in this paper generalizes, unifies and extends other corresponding results
in the literature.

2. Preliminaries
In this section, we begin by recalling some known and useful results which are
needed in the sequel.

Let H be a real Hilbert space. The set of fixed point of T will be denoted by
F (T ), that is F (T ) = {x ∈ H : Tx = x}. We denote strong and weak convergence
by “→” and “⇀”, respectively. For any x, y ∈ H and α ∈ [0, 1], it is well-known
that

⟨x, y⟩ = 1

2
(∥x∥2 + ∥y∥2 − ∥x− y∥2). (2.1)



2768 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩. (2.2)
∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2. (2.3)

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H.
For any u ∈ H, there exists a unique point PCu ∈ C such that

∥u− PC∥ ≤ ∥u− y∥ ∀y ∈ C.

PC is called the metric projection of H onto C. It is well-known that PC is a
nonexpansive mapping and that PC satisfies

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2,

for all x, y ∈ H. Furthermore, PCx is characterized by the properties PCx ∈ C,

⟨x− PCx, PCx− y⟩ ≥ 0

for all y ∈ C and
∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2

for all x ∈ H and y ∈ C.

Lemma 2.1 ( [33]). Let C be a nonempty closed convex subset in Hilbert space H.
The vector u is the projection of the vector x onto C if and only if

⟨u− x, y − y⟩ ∀ y ∈ C. (2.4)

Definition 2.1. Let T : H → H be an operator. Then the operator T is called

(a) L-Lipschitz continuous if

∥Tx− Ty∥ ≤ L∥x− y∥,

where L > 0 and x, y ∈ H. If L = 1, Then T is called nonexpansive. Also, if
y ∈ F (T ) and L = 1, Then T is called quasi-nonexpansive.

(b) monotone if

⟨Tx− Ty, x− y⟩ ≥ 0, ∀x, y ∈ H.

(c) firmly nonexpansive if

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀ x, y ∈ H,

or equivalently

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀ x, y ∈ H,

(d) k-inverse strongly monotone (k-ism) if there exists k > 0, such that

⟨Tx− Ty, x− y⟩ ≥ k∥Tx− Ty∥2, ∀ x, y ∈ H.

(e) α-strongly quasi-nonexpansive mapping with α > 0 if

∥Tx− z∥2 ≤ ∥x− z∥2 − α∥x− Tx∥2, ∀ z ∈ F (T ), x ∈ H. (2.5)



Inertial iterative algorithms for common solution 2769

It is well-known that for any nonexpansive mapping T, the set of fixed point is
closed and convex. Also, T satisfies the following inequality

⟨(x− Tx)− (y − Ty), T y − Tx⟩ ≤ 1

2
∥(Tx− x)− (Ty − y)∥2, ∀ x, y ∈ H. (2.6)

Thus, for all x ∈ H and x∗ ∈ F (T ), we have that

⟨x− Tx, x∗ − Tx⟩ ≤ 1

2
∥Tx− x∥2, ∀ x, y ∈ H. (2.7)

Lemma 2.2 ( [33]). Let D1 and D2 be nonempty closed and convex subset of H.
A1 : D1 → H and A2 : D2 → H be nonlinear operator. Let ν1 and ν2 be positive
constants and GD : D1 → D1 be an operator defined by

GDx = PD1(I − ν2A2)PD2(I − ν1A1)x, ∀ x ∈ D1. (2.8)

Let (x, y) ∈ D1 ×D2. Then

(x, y) is a solution of SNVIP (1.6) ⇔ (x, y) ∈ Alt(PD1(I − ν2A2)PD2(I − ν1A1))

⇔ GDx = x. (2.9)

Lemma 2.3 ( [33]). Let D1 and D2 be nonempty closed and convex subset of H.
A1 : D1 → H2 and A2 : D2 → H2 are ϱ1 and ϱ2 inversely strongly monotone
operator with ν1 ∈ (0, 2ϱ1) and ν2 ∈ (0, 2ϱ2), then, the operator GD defined by (2.8)
is a nonexpansive operator.

Lemma 2.4 ( [18]). Let C be a closed and convex subset of a Hilbert space H and
T : C → C be nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in C
weakly converging to p and if {(I−T )xn} converges strongly to q, then (I−T )p = p.
In particular, if q = 0, then p ∈ F (T ).

Lemma 2.5 ( [37]). Let C be a nonempty, closed and convex subset of H. Let
A : C → H be a continuous, monotone mapping and w ∈ C. Then

w ∈ Ω if and only if ⟨Ax, x− w⟩ ≥ 0, ∀x ∈ C. (2.10)

Lemma 2.6 ( [28]). Let H be a real Hilbert space. Then for all x, y, z ∈ H and
α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

||αx+βy+γz||2 = α||x||2+β||y||2+γ||z||2−αβ||x−y||2−αγ||x−z||2−βγ||y−z||2.

Lemma 2.7 ( [30]). Let {an} be a sequence of positive real numbers, {αn} be a
sequence of real number in (0, 1) such that

∑∞
n=1 αn = ∞ and {dn} be a sequence

of real numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
n→∞

an = 0.



2770 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

3. Proposed Algorithm
In this section, we present our proposed method. We begin with the following as-
sumptions under which our strong convergence is obtained.

Assumption A. Suppose the following hold:

1. The set C is nonempty closed and convex subset of H1 and the sets D1, D2

are nonempty closed and convex subsets of H2.

2. A : H1 → H1 is a monotone operator.
3. A1 : D1 → H2 and A2 : D2 → H2 are ϱ1 and ϱ2 inversely strongly monotone

operators with ν1 ∈ (0, 2ϱ1) and ν2 ∈ (0, 2ϱ2) and GD : D1 → D1 is an
operator defined by

GDx = PD1
(I − ν2A2)PD2

(I − ν1A1)x ∀ x ∈ D1.

4. T1 : H1 → H1 is an α-strongly quasi-nonexpansive mapping and T2 : H1 → H1

is a firmly nonexpansive mapping.
5. B : H1 → H2 is a bounded linear operator and the solution set Sol = {x∗ ∈

Ω ∩ F (T1 ◦ T2) : Bx∗ ∈ Γ} is nonempty, where Ω is the solution set for VIP
(1.1) and Γ is the solution set for SNVIP (1.6).

We present the following algorithm.
Algorithm 3
Initialization: Given λ0 > 0 and ηn, βn, αn, µ ∈ (0, 1), for all n ∈ N, such that
ηn ≤ βn ≤ αn with ηn + βn + αn = 1. Let x0, x1, u ∈ H1 be arbitrary.

Iterative step:
Step 1: Given the iterates xn−1 and xn for all n ∈ N, choose θn such that 0 ≤
θn ≤ θ̄n, where

θ̄n =

{
min

{
θ, ϵn

||xn−xn−1||
}
, if xn ̸= xn−1,

θ, otherwise,
(3.1)

where θ > 0 and {ϵn} is a positive sequence such that ϵn = ◦(αn).
Step 2. Set

wn = xn + θn(xn − xn−1).

Then, compute

un = PC(wn − λnAwn) and vn = wn − τnbn, (3.2)

where bn := wn − un − λn(Awn −Aun),

τn =

{
⟨wn−un,bn⟩

∥bn∥2 , if bn ̸= 0

0, otherwise.
(3.3)

and

λn+1 =

{
min

{
λn,

µ∥wn−un∥
∥Awn−Aun∥

}
, if Awn ̸= Aun,

λn, otherwise.
(3.4)



Inertial iterative algorithms for common solution 2771

Step 3. Compute
yn = vn + σnB

∗(GD − I)Bvn,

where σn :=

(
ϵ, ∥(GD−I)Bvn∥2

∥B∗(GD−I)Bvn∥2 −ϵ

)
, if GDBvn ̸= Bvn, otherwise, σn = ε (ε being

a small non-negative real number).
Step 4. Compute

xn+1 = αnu+ βnxn + ηn(T1 ◦ T2)yn. (3.5)

Stopping criterion: If wn = un = vn = yn = xn, then stop, otherwise, set
n := n+ 1 and go back to Step 1.

Remark 3.1. Note that in Algorithm 3, it is easy to compute step 1 since the
value of ∥xn − xn−1∥ is a prior knowledge before choosing θn. More so, it is easy
to see that the sequence {λn} generated by (3.4) is non-increasing and bounded
below by min

{
λ0,

µ
L

}
. Hence, the limit limn→∞ λn exists which we denote by λ,

i.e., limn→∞ λn = λ > 0. In addition, if un = wn or bn = 0 in Algorithm 3, then,
un ∈ Ω. Indeed, using the expression of bn and (3.4), we have that

∥bn∥ = ∥wn − un − λn(Awn −Aun)∥
= ∥wn − un + λn(Aun −Awn)∥
≤ ∥wn − un∥+ λn∥Awn −Aun∥

≤ (1 +
λnµ

λn+1
)∥wn − un∥. (3.6)

Also, we have that

∥bn∥ = ∥wn − un − λn(Awn −Aun)∥
≥ ∥wn − un∥ − λn∥Awn −Aun∥

= (1− λnµ

λn+1
)∥wn − un∥. (3.7)

Using (3.6) and (3.7), we obtain

(1− λnµ

λn+1
)∥wn − un∥ ≤ ∥bn∥ ≤ (1 +

λnµ

λn+1
)∥wn − un∥ ∀ n ∈ N. (3.8)

Note that limn→∞(1− λnµ
λn+1

) = 1−µ > 0. Thus, there exists an integer N ∈ N such
that for n ≥ N ,

(1− µ)∥wn − un∥ ≤ ∥bn∥ ≤ (1 + µ)∥wn − un∥ ∀n ≥ N.

Hence wn = un if and only if bn = 0. Thus, if wn = un or bn = 0 for all n ≥ N,
then wn = un and so

un = PC(un − λnAun)

that is un ∈ Ω.
Also, if yn = vn = wn, then, GDBwn = Bwn and consequently wn ∈ Γ. If

yn = vn = wn, it is easy to see that

wn = wn − σnB
∗(GD − I)Bwn ⇒ σnB

∗(GD − I)Bwn = 0 ⇒ B∗(GD − I)Bwn = 0.



2772 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

That is

GDBwn = Bwn + x, (3.9)

where 0 = B∗x. Suppose that p ∈ Γ, using (3.9) and the nonexpansivity of GD, we
have that

∥Bwn −Bp∥2 = ∥Bwn −Bp∥2 + 2⟨wn − p,B∗x⟩
= ∥Bwn −Bp∥2 + 2⟨Bwn −Bp, x⟩
= ∥Bwn + x−Bp∥2 − ∥x∥2

= ∥GDBwn −GDBp∥2 − ∥x∥2

≤ ∥Bwn −Bp∥2 − ∥x∥2, (3.10)

which implies that ∥x∥2 = 0 and so, we have x = 0. It follows from (3.9) that
GDBwn = Bwn and consequently wn ∈ Γ.

Remark 3.2. It is easy to see from (3.1) that lim
n→∞

θn
αn

∥xn − xn−1∥ = 0.

Proof. Since, {ϵn} is a positive sequence such that ϵn = ◦(αn), which means that
lim
n→∞

ϵn
αn

= 0. Clearly, we have that that θn∥xn − xn−1∥ ≤ ϵn for all n ∈ N, which
together with lim

n→∞
ϵn
αn

= 0, it follows that

lim
n→∞

θn
αn

∥xn − xn−1∥ ≤ lim
n→∞

ϵn
αn

= 0.

4. Convergence Analysis
In this section, we provide the convergence analysis of our Algorithm 3. We begin
by proving the following important lemmas.

Lemma 4.1. Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. Let T1 : C → C be α-strongly quasi-nonexpansive mapping and T2 :
C → C be firmly nonexpansive mapping. Then F (T1 ◦ T2) = F (T1) ∩ F (T2).

Proof. We need to establish that F (T1◦T2) ⊆ F (T1)∩F (T2) and F (T1)∩F (T2) ⊆
F (T1 ◦T2). It is easy to see that F (T1)∩F (T2) ⊆ F (T1 ◦T2). We now establish that
F (T1 ◦ T2) ⊆ F (T1) ∩ F (T2). Let y ∈ F (T1 ◦ T2) and x ∈ F (T1) ∩ F (T2), we have

∥y − x∥2 = ∥T1(T2y)− T1x∥2

≤ ∥T2y − x∥2 − α∥T2y − T1(T2y)∥2

≤ ∥T2y − x∥2. (4.1)

Also, using (4.1), we have

∥T2y − x∥2 = ⟨T2y − x, y − x⟩

=
1

2
∥T2y − x∥2 + 1

2
∥y − x∥2 − 1

2
∥T2y − y∥2

≤ 1

2
∥T2y − x∥2 + 1

2
∥T2y − x∥2 − 1

2
∥T2y − y∥2, (4.2)



Inertial iterative algorithms for common solution 2773

which implies that ∥T2y− y∥2 = 0 ⇒ ∥T2y− y∥ = 0 ⇒ T2y = y. Using this fact, we
have that

y = (T1 ◦ T2)y = T1(T2y) = T1y ⇒ y ∈ F (T1) ∩ F (T2). (4.3)

Hence, F (T1 ◦ T2) ⊆ F (T1) ∩ F (T2), and so F (T1 ◦ T2) = F (T1) ∩ F (T2).

Lemma 4.2. Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. Let T1 : C → C be α-strongly quasi-nonexpansive mapping and T2 :
C → C be firmly nonexpansive mapping. Then, T1 ◦ T2 is a quasi-nonexpansive
mapping.

Proof. Let x ∈ C and y ∈ F (T1 ◦ T2), using Lemma 4.1, we have that y ∈
F (T1) ∩ F (T2), which implies that y = T1y and y = T2y. Now, observe that

∥(T1 ◦ T2)x− y∥2 = ∥T1(T2x)− T1y∥2

≤ ∥T2x− y∥2 − α∥T2x− T1(T2x)∥2

≤ ∥T2x− T2y∥2

≤ ∥x− y∥2 − ∥(x− y)− (T2x− T2y)∥2

= ∥x− y∥2 − ∥x− T2x∥2

≤ ∥x− y∥2.

Lemma 4.3. Let {xn} be a sequence generated by Algorithm 3. Then under the
Assumptions (3), we have that {xn} is bounded.

Proof. Let p ∈ Sol and since lim
n→∞

θn
αn

∥xn − xn−1∥ = 0, there exists N1 > 0 such
that θn

αn
∥xn − xn−1∥ ≤ N1. Then from Algorithm 3, we have

∥wn − p∥2 = ∥xn + θn(xn − xn−1)− p∥2

= ∥xn − p∥2 + 2θn⟨xn − p, xn − xn−1⟩+ θ2n∥xn − xn−1∥2

≤ ∥xn − p∥2 + 2θn∥xn − p∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2

= ∥xn − p∥2 + θn∥xn − xn−1∥[2∥xn − p∥+ θn∥xn − xn−1∥]

= ∥xn − p∥2 + θn∥xn − xn−1∥[2∥xn − p∥+ αn
θn
αn

∥xn − xn−1∥]

≤ ∥xn − p∥2 + θn∥xn − xn−1∥[2∥xn − p∥+ αnN1]

≤ ∥xn − p∥2 + θn∥xn − xn−1∥N2, (4.4)

where N2 := 2∥xn − p∥+ αnN1.

Since un = PC(wn − λnAwn) and p ∈ Ω, then by Lemma 2.1, we have

⟨un − p, un − wn + λnAwn⟩ ≤ 0.

Using the monotonicity of A and the fact that p ∈ Sol, we obtain

⟨un − p, bn⟩ = ⟨un − p, wn − un − λnAwn⟩+ λn⟨un − p,Aun⟩
≥ λn⟨un − p,Aun⟩



2774 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

= λn⟨un − p,Aun −Ap⟩+ λn⟨un − p,Ap⟩ ≥ 0.

Thus, we have

⟨wn − p, bn⟩ = ⟨wn − un, bn⟩+ ⟨un − p, bn⟩
≥ ⟨wn − un, bn⟩. (4.5)

Hence from (4.5) and the condition on τn (3.3), we have

∥vn − p∥2 = ∥wn − τnbn − p∥2

= ∥wn − p∥2 + τ2n∥bn∥2 − 2τn⟨wn − p, bn⟩
≤ ∥wn − p∥2 + τ2n∥bn∥2 − 2τn⟨wn − un, bn⟩
≤ ∥wn − p∥2 + τ2n∥bn∥2 − 2τ2n∥bn∥2

= ∥wn − p∥2 − ∥τnbn∥2

≤ ∥wn − p∥2. (4.6)

Furthermore, using Algorithm 3, (2.7) and condition on σn, we have that

∥yn − p∥2 = ∥vn + σnB
∗(GD − I)Bvn − p∥2

= ∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2 + 2σn⟨vn − p,B∗(GD − I)Bvn⟩

= ∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2 + 2σn⟨Bvn −Bp, (GD − I)Bvn⟩

= ∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2

+ 2σn⟨Bvn −GDBvn +GDBvn −Bp, (GD − I)Bvn⟩
= ∥vn − p∥2+σ2

n∥B∗(GD − I)Bvn∥2+2σn⟨GDBvn−Bp,GDBvn−Bvn⟩
− 2σn∥(GD − I)Bvn∥2

≤ ∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2 + σn∥GDBvn −Bp∥2

− 2σn∥(GD − I)Bvn∥2

= ∥vn − p∥2 − σn[∥GDBvn −Bp∥2 − σn∥B∗(GD − I)Bvn∥2]
≤ ∥vn − p∥2. (4.7)

Lastly, using Algorithm 3, Lemma 4.2, we have

∥xn+1 − p∥2 = ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥(T1 ◦ T2)yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥vn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥wn − p∥2

≤ αn∥u− p∥2 + (1− αn − ηn)∥xn − p∥2

+ ηn(∥xn − p∥2 + θn∥xn − xn−1∥N2)

≤ αn∥u− p∥2 + (1− αn)∥xn − p∥2 + θn∥xn − xn−1∥N2

≤ max{∥xn − p∥2, ∥u− p∥2}+ θn∥xn − xn−1∥N2

≤ max{max{∥xn−p∥2, ∥u−p∥2}+θn−1∥xn−1−xn−2∥N2, ∥u− p∥2}



Inertial iterative algorithms for common solution 2775

+ θn∥xn − xn−1∥N2

= max{∥xn − p∥2, ∥u− p∥2}+ αn−1
θn−1

αn−1
∥xn−1 − xn−2∥N2

+ αn
θn
αn

∥xn − xn−1∥N2, (4.8)

using the fact that lim
n→∞

θn
αn

∥xn−xn−1∥ = 0, there exists N1 > 0 such that θn
αn

∥xn−
xn−1∥ ≤ N1, (4.8) becomes

∥xn+1 − p∥2 ≤ max{∥xn − p∥2, ∥u− p∥2}+N4

≤ max{∥x0 − p∥2, ∥u− p∥2}+N4,

where N4 = N3N2 +N2N1, thus {xn} generated by Algorithm 3 is bounded.
We now present our strong convergence result as follows.

Theorem 4.1. Let {xn} be the sequence generated by Algorithm 3. Suppose
the control parameters satisfy lim

n→∞
αn = 0,

∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1, and 0 < lim infn→∞ ηn ≤ lim supn→∞ ηn < 1, lim infn→∞ λn >
0. Then, {xn} converges strongly to p ∈ PSolu.

Proof. Let p ∈ Γ. From (2.2), we have

∥xn+1 − p∥2 = ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

= ∥αn(u− p) + βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2

≤ ∥βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2 + 2αn⟨u− p, xn+1 − p⟩
≤ β2

n∥xn−p∥2+η2n∥(T1 ◦ T2)yn−p∥2+2βnηn∥xn−p∥∥(T1 ◦ T2)yn−p∥
+ 2αn⟨u− p, xn+1 − p⟩

≤ β2
n∥xn − p∥2 + η2n∥yn − p∥2 + 2βnηn∥xn − p∥∥yn − p∥

+ 2αn⟨u− p, xn+1 − p⟩
≤ β2

n∥xn − p∥2 + η2n∥yn − p∥2 + βnηn[∥xn − p∥2 + ∥yn − p∥2]
+ 2αn⟨u− p, xn+1 − p⟩

= βn(βn+ηn)∥xn−p∥2+ηn(ηn+βn)∥yn − p∥2+2αn⟨u−p, xn+1 − p⟩
= βn(1−αn)∥xn − p∥2+ηn(1−αn)∥yn−p∥2+2αn⟨u−p, xn+1−p⟩
≤ βn(1− αn)∥xn−p∥2+ηn(1−αn)∥vn−p∥2+2αn⟨u− p, xn+1−p⟩
≤ βn(1−αn)∥xn−p∥2+ηn(1−αn)∥wn − p∥2+2αn⟨u−p, xn+1−p⟩
≤ βn(1− αn)∥xn − p∥2 + ηn(1− αn)[∥xn − p∥2 + θn∥xn − xn−1∥N2]

+ 2αn⟨u− p, xn+1 − p⟩
≤ (1− αn)

2∥xn − p∥2 + αn(1− αn)[θn∥xn − xn−1∥N2]

+ 2αn⟨u− p, xn+1 − p⟩
≤ (1− αn)∥xn − p∥2 + αn[θn∥xn − xn−1∥N2 + 2⟨u− p, xn+1 − p⟩]
= (1− αn)∥xn − p∥2 + αn[θn∥xn − xn−1∥N2 + 2⟨u− p, xn+1 − p⟩]
= (1− αn)∥xn − p∥2 + αnδn, (4.9)

where δn := θn∥xn − xn−1∥N2 + 2⟨u − p, xn+1 − p⟩. According to Lemma 2.7, to
conclude our proof, it is sufficient to establish that lim supk→∞ δnk

≤ 0 for every



2776 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

subsequence {∥xnk
− p∥} of {∥xn − p∥} satisfying the condition:

lim inf
k→∞

{∥xnk+1 − p∥ − ∥xnk
− p∥} ≥ 0. (4.10)

To establish that lim supk→∞ δnk
≤ 0, we suppose that for every subsequence

{∥xnk
− p∥} of {∥xn − p∥} such that (4.10) holds. Then,

lim inf
k→∞

{∥xnk+1 − p∥2 − ∥xnk
− p∥2}

= lim inf
k→∞

{(∥xnk+1 − p∥ − ∥xnk
− p∥)(∥xnk+1 − p∥+ ∥xnk

− p∥)} ≥ 0. (4.11)

Now, using Algorithm 3 and Lemma 4.2, we have

∥xn+1 − p∥2

= ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

= ∥αn(u− p) + βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥(T1 ◦ T2)yn − p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2

≤ βn∥xn − p∥2 + ηn∥yn − p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2 + αn∥u− p∥2

≤ βn∥xn − p∥2 + ηn∥vn − p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2 + αn∥u− p∥2

≤ βn∥xn − p∥2 + ηn∥wn − p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2 + αn∥u− p∥2

≤ ηn[∥xn − p∥2 + θn∥xn − xn−1∥N2] + βn∥xn − p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2

+ αn∥u− p∥2

= (ηn + βn)∥xn − p∥2 + ηnθn∥xn − xn−1∥N2 + αn∥u− p∥2

− βnηn∥(T1 ◦ T2)yn − xn∥2

≤ ∥xn − p∥2 + αnθn∥xn − xn−1∥N2 + αn∥u− p∥2 − βnηn∥(T1 ◦ T2)yn − xn∥2.
(4.12)

Thus from (4.11), we obtain

lim sup
k→∞

[βnk
ηnk

∥(T1 ◦ T2)ynk
− xnk

∥2]

≤ lim sup
k→∞

[∥xnk
− p∥2 − ∥xnk+1 − p∥2

+ αnk
θnk

∥xnk
− xnk−1∥N2 + αnk

∥u− p∥2]
≤ − lim inf

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2] ≤ 0, (4.13)

which gives

lim
k→∞

∥(T1 ◦ T2)ynk
− xnk

∥ = 0. (4.14)

Also, using Algorithm 3 and Lemma 4.2, we have

∥xn+1 − p∥2

= ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

= ∥αn(u− p) + βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥(T1 ◦ T2)yn − p∥2



Inertial iterative algorithms for common solution 2777

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2

− σn∥(GD − I)Bvn∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥wn − p∥2 − ϵ2∥B∗(GD − I)Bvn∥2

≤ ηn[∥xn − p∥2 + θn∥xn − xn−1∥N2] + βn∥xn − p∥2 + αn∥u− p∥2

− ϵ2∥B∗(GD − I)Bvn∥2

≤ (ηn+βn)∥xn−p∥2+ηnθn∥xn−xn−1∥N2+α2
n∥u−p∥2−ϵ2∥B∗(GD − I)Bvn∥2

≤ ∥xn − p∥2 + αnθn∥xn − xn−1∥N2 + α2
n∥u− p∥2 − ϵ2∥B∗(GD − I)Bvn∥2

this implies from (4.11)

lim sup
k→∞

[ϵ2∥B∗(GD − I)Bvnk
∥2] ≤ lim sup

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2

+ αnk
θnk

∥xnk
− xnk−1∥N2 + αnk

∥u− p∥2]
≤ − lim inf

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2] ≤ 0,

(4.15)

which gives

lim
k→∞

∥B∗(GD − I)Bvnk
∥ = 0. (4.16)

Also, using Algorithm 3 and Lemma 4.2, we have

∥xn+1 − p∥2

= ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

= ∥αn(u− p) + βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥(T1 ◦ T2)yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥vn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2

− σn∥(GD − I)Bvn∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥wn − p∥2 + σ2
n∥B∗(GD − I)Bvn∥2

− σn∥(GD − I)Bvn∥2

≤ ∥xn − p∥2 + αnθn∥xn − xn−1∥N2 + αn∥u− p∥2 + σ2
n∥B∗(GD − I)Bvn∥2

− σn∥(GD − I)Bvn∥2 (4.17)

this implies from (4.11)

lim sup
k→∞

[σn∥(GD − I)Bvnk
∥2]

≤ lim sup
k→∞

[∥xnk
− p∥2 − ∥xnk+1 − p∥2

+ αnk
θnk

∥xnk
− xnk−1∥N2 + αnk

∥u− p∥2 + σ2
n∥B∗(GD − I)Bvnk

∥2]
≤ − lim inf

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2] ≤ 0, (4.18)



2778 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

which gives

lim
k→∞

∥(GD − I)Bvnk
∥ = 0. (4.19)

Furthermore, using (4.16), we have that

lim
k→∞

∥ynk
− vnk

∥ = lim
k→∞

∥B∗(GD − I)Bvnk
∥ = 0. (4.20)

Also, using Algorithm 3, (3.2) and Lemma 4.2, we have

∥xn+1 − p∥2 = ∥αnu+ βnxn + ηn(T1 ◦ T2)yn − p∥2

= ∥αn(u− p) + βn(xn − p) + ηn((T1 ◦ T2)yn − p)∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥(T1 ◦ T2)yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥yn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥vn − p∥2

≤ αn∥u− p∥2 + βn∥xn − p∥2 + ηn∥wn − p∥2 − ηn∥τnbn∥2

≤ ∥xn − p∥2 + αnθn∥xn − xn−1∥N2 + αn∥u− p∥2 − ηn∥wn − vn∥2.
(4.21)

This implies from (4.11)

lim sup
k→∞

[ηnk
∥wnk

− vnk
∥2] ≤ lim sup

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2

+ αnk
θnk

∥xnk
− xnk−1∥N2 + αnk

∥u− p∥2]
≤ − lim inf

k→∞
[∥xnk

− p∥2 − ∥xnk+1 − p∥2] ≤ 0, (4.22)

which gives

lim
k→∞

∥wnk
− vnk

∥ = 0. (4.23)

Now, observe that

⟨wnk
− unk

, bnk
⟩ = ⟨wnk

− unk
, wnk

− unk
− λnk

(Awnk
−Aunk

)⟩
= ∥wnk

− unk
∥2 − ⟨wnk

− unk
, λnk

(Awnk
−Aunk

)⟩
≥ ∥wnk

− unk
∥2 − λnk

∥wnk
− unk

∥∥Awnk
−Aunk

∥

≥ ∥wnk
− unk

∥2 − µλnk

λnk+1
∥wnk

− unk
∥2

= (1− µλnk

λnk+1
)∥wnk

− unk
∥2 (4.24)

which implies that

∥wnk
− unk

∥2 ≤ 1

(1− µλnk

λnk+1
)
⟨wnk

− unk
, bnk

⟩

=
1

(1− µλnk

λnk+1
)
ηnk

∥bnk
∥2



Inertial iterative algorithms for common solution 2779

=
1

(1− µλnk

λnk+1
)
ηnk

∥bnk
∥∥wnk

− unk
− λnk

(Awnk
−Aunk

)∥

≤ 1

(1− µλnk

λnk+1
)
ηnk

∥bnk
∥[∥wnk

− unk
∥+ λnk

∥Aunk
−Awnk

∥]

≤
(1 +

µλnk

λnk+1
)

(1− µλnk

λnk+1
)
ηnk

∥bnk
∥∥wnk

− unk
∥

≤
(1 +

µλnk

λnk+1
)

(1− µλnk

λnk+1
)
∥wnk

− vnk
∥∥wnk

− unk
∥. (4.25)

Using (4.23), we have that

lim
k→∞

∥wnk
− unk

∥ = 0. (4.26)

It is easy to see that, as k → ∞, we have

∥wnk
− xnk

∥ = θnk
||xnk

− xnk−1|| = βnk
· θnk

βnk

||xnk
− xnk−1|| → 0. (4.27)

In addition, we have that

∥unk
− xnk

∥ ≤ ∥unk
− wnk

∥+ ∥wnk
− xnk

∥ → 0 as k → ∞. (4.28)
∥vnk

− xnk
∥ ≤ ∥vnk

− wnk
∥+ ∥wnk

− xnk
∥ → 0 as k → ∞. (4.29)

∥ynk
− xnk

∥ ≤ ∥vnk
− xnk

∥+ σn∥B∗(GD − I)vnk
∥ → 0 as k → ∞. (4.30)

∥(T1 ◦ T2)ynk
− ynk

∥ ≤ ∥(T1 ◦ T2)ynk
− xnk

∥+ ∥xnk
− ynk

∥ → 0 as k → ∞. (4.31)

From the Algorithm 3 and (4.14), observe that

∥xnk+1 − (T1 ◦ T2)ynk
∥ = ∥αnu+βnxn+ηn(T1 ◦ T2)ynk

−(T1 ◦ T2)ynk
∥

≤ αnk
∥u− (T1 ◦ T2)ynk

∥+ βnk
∥xnk

− (T1 ◦ T2)ynk
∥

+ ηnk
∥(T1 ◦ T2)ynk

−(T1 ◦ T2)ynk
∥ → 0 as k→∞. (4.32)

Using (4.32) and (4.14), it is easy to see that

∥xnk+1 − xnk
∥ ≤ ∥xnk+1 − (T1 ◦ T2)ynk

∥+ ∥(T1 ◦ T2)ynk
− xnk

∥ → 0 as k → ∞.
(4.33)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that {xnkj

}
converges weakly to x∗ ∈ H1. By (4.14), (4.28), (4.29), (4.30) and (4.31), we have
that the subsequences {wnkj

} of {wnk
}, {unkj

} of {unk
}, {vnkj

} of {vnk
}, and

{ynkj
} of {ynk

}, all converge weakly to x∗ respectively. Hence, with (4.14) and
by the demiclosedness of (T1 ◦ T2) (Lemma 2.4) and Lemma 4.1, we have that
x∗ ∈ F (T1 ◦ T2) = F (T1) ∩ F (T2). Furthermore, we show that x∗ ∈ Ω. Since
unk

= PC(wnk
− λnk

Awnk
), then

⟨wnk
− λnk

Awnk
− unk

, u− unk
⟩ ≤ 0 ∀u ∈ C.



2780 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

Thus

⟨wnk
− unk

, u− unk
⟩ ≤ λnk

⟨Awnk
, u− unk

⟩
= λnk

⟨Awnk
, wnk

− unk
⟩+ λnk

⟨Awnk
, u− wnk

⟩ ∀u ∈ C.
(4.34)

Fix u ∈ C and let k → ∞ in the last inequality, since ∥wnk
− unk

∥ → 0 and
lim infk→∞ λnk

> 0, we have

0 ≤ lim inf
k→∞

⟨Awnk
, u− wnk

⟩, ∀u ∈ C. (4.35)

Since A is monotone, then

⟨Au, u− wnk
⟩ ≥ ⟨Awnk

, u− wnk
⟩ ∀u ∈ C.

Taking liminf of both sides, we get

lim inf
k→∞

⟨Au, u− wnk
⟩ ≥ lim inf

k→∞
⟨Awnk

, u− wnk
⟩ ≥ 0, ∀u ∈ C.

More so, since wnk
⇀ x∗, then it follows from (4.35) that

⟨Au, u− x∗⟩ = lim
k→∞

⟨Au, u− wnk
⟩ = lim inf

k→∞
⟨Au, u− wnk

⟩ ≥ 0.

Therefore using Lemma 2.5, we get x∗ ∈ Ω.
Next, we show that Bx∗ ∈ Γ. Observe that

∥(G− I)Bx∗∥2

= ⟨GBx∗ −Bx∗, GBx∗ −Bx∗⟩
= ⟨GBx∗ −Bx∗, GBx∗ −GBvnk

+GBvnk
−Bwnk

+Bvnk
−Bx∗⟩

= ⟨GBx∗ −Bx∗, Bvnk
−Bx∗⟩+ ⟨GBx∗ −Bx∗, GBvnk

−Bvnk
⟩

+ ⟨GBx∗ −Bx∗, GBp−GBvnk
⟩ (4.36)

≤ ⟨GBx∗ −Bx∗, Bvnk
−Bx∗⟩+ ⟨GBx∗ −Bx∗, GBvnk

−Bvnk
⟩.

Since B is a bounded linear operator, we have that lim
n→∞

∥Bvnk
−Bx∗∥ = 0. Hence

using (4.19), we have that ∥(G− I)Bx∗∥ = 0, as such, we obtain that Bx∗ ∈ Γ.
Since {xnk

} is bounded, it follows that there exists a subsequence {xnkj
} of {xnk

}
that converges weakly to x∗ such that

lim sup
k→∞

⟨u− p, xnk
− p⟩ = lim

j→∞
⟨u− p, xnkj

− p⟩ = ⟨u− p, x∗ − p⟩. (4.37)

Hence, since p = PΓu, we have obtain from (4.37) that

lim sup
k→∞

⟨u− p, xnk
− p⟩ = ⟨u− p, x∗ − p⟩ ≤ 0, (4.38)

which implies that

lim sup
k→∞

⟨u− p, xnk+1 − p⟩ ≤ 0. (4.39)

Using using our assumption and (4.38), we have that lim supk→∞ δnk
:= βn

θn
βn

∥xn−
xn−1∥N2 + 2⟨u − p, xn+1 − p⟩ ≤ 0. Thus, the last part of Lemma 2.7 is achieved.
Hence, we have that lim

n→∞
∥xn−p∥ = 0. Thus, {xn} converges strongly to p ∈ PSolu.



Inertial iterative algorithms for common solution 2781

Remark 4.1. We emphasize here, some of the advantages of our Algorithm 3.

1. Our method provide a solution to the setbacks noted in Algorithm 1.13 and
Algorithm 1.15. In addition, our method is more applicable and converges
faster than the methods of [31,33,40].

2. The implementation of previous algorithms in this direction require at least
a prior estimate of the norm of the bounded linear operator B which is very
difficult in practice. Moreover, the stepsize defined by this process is often
too small and detriorates the convergence of the method. In Algorithm 3, the
stepsize is determined self-adaptively and does not require the prior estimate
of the norm of the bounded linear operator.

3. Another notable advantage of Algorithm 3 for solving the VIP is that the the
conditions of strongly inversely monotonicity or Lipschitz continuity of the
operator A usually used in other papers to guarantee convergence is removed
and no extra projection required under this setting (see for example, [27, 33]
and the references therein). Note that for Algorithm 3, we only assumed that
A is a monotone operator on H1.

4. The sequence generated by the proposed method converges strongly to a so-
lution set of the aforementioned problems in real Hilbert spaces. In addition,
the strong convergence analysis of our proposed method does not rely on the
usual ”Two Cases Approach” widely used in many papers to guarantee strong
convergence (see for example, [15, 42,43]).

5. Numerical Examples
In this section, we present some numerical experiments to illustrate the performance
of the algorithm.

Example 5.1. Let H1 = H2 = R3 endowed with norm ∥ · ∥ : R3 → R defined

by ∥x∥ =

(
3∑

i=1

|xi|2
) 1

2

and inner product ⟨·, ·⟩ : R3 × R3 → R defined by ⟨x, y⟩ =
3∑

i=1

xiyi for all x = (x1, x2, x3) ∈ R3 and y = (y1, y2, y3) ∈ R3. Let C = [−10, 10]×

[−10, 10]× [−10, 10], D1 = [−5, 5]× [−5, 5]× [−5, 5] and D2 = [−10, 10]× [−10, 10]×
[−10, 10]. Let A : R3 → R3 be defined by

Ax = (2x1, 2x2, 2x3) for x ∈ R3

and let A1 : D1 → R3 and A2 : D2 → R3 be defined by

A1x =

(
x1 − 2

3
,
2x2 − 4

5
,
x3 − 2

4

)
∀x ∈ D1,

and
A2x =

(
x1 − 2,

x2 − 2

3
,
x3 − 3

5

)
x ∈ D2.

It is easy to see that A is monotone and A1, A2 are 1-inverse strongly monotone
with ν1, ν2 ∈ (0, 2) respectively. More so, let B : R3 → R3 be defined by Bx = 3x
for all x ∈ R3. Then B is a bounded linear operator. Let T1, T2 : R3 → R3



2782 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

be defined by T1x = x−5
2 and T2x = x

2 . It is easy to see that T1 is 1-strongly
quasi-nonexpansive mapping and T2 is firmly nonexpansive. Choose µ = 0.38, θ =
0.1, αn = 1

n+1 , ϵn = 1
(n+1)2 , βn = 3n

8(n+1) , ηn = 1 − αn − βn, u = (10,−10, 10)′. It
is easy to verify that all hypothesis of Theorem 4.1 are satisfied. Moreover, Sol =
{0}. We use different choices of x0, x1 and test the convergence of our algorithm
with ∥xn+1 − xn∥ < 10−6 as stopping criterion. First, we study the behaviour of
the sequence generated by Algorithm 3 by choosing µ = 0.23, θ = 0.5, λ0 = 0.1,
ϵn = 1

ns (s = 0.1, 0.4, 0.8, 0.99), αn = ϵ2n, ηn = 2n
5n+8 , βn = 1 − αn − βn. We used

the following initial points: Case I: x0 = (−5,−5,−5)′, x1 = (2, 2, 2)′, Case II:
x0 = (10, 10, 10)′, x1 = (4, 4, 4)′. The numerical result are shown in Table 1 and
Figure 1. We also compare the performance of Algorithm 3 with Algorithm (1.15)
of Sahu and Singh [31]. For (1.15), we use µ1 = 0.38, µ2 = 0.24, ρ = 1.78, µ =
0.04, l = 0.28, αn = 3n

8(n+1) , βn = 1
n+1 and θn = 1

(n+1)2 . More so, the following input
values were used for the computation:

Case I: x0 = (3,−3, 4)′, x1 = (5,−5, 5)′;

case II: x0 = (7, 9,−10)′, x1 = (2, 5, 8)′;

Case III: x0 = (1, 10, 5)′, x1 = (−4, 4, 8)′;

Case IV: x0 = (−3, 3, 9)′, x1 = (6,−1, 4)′.

The computational results are shown in Table 2 and Figure 2.

Table 1. Computation result for Example 5.1.

s = 0.1 s = 0.4 s = 0.8 s = 0.99

Case I No of Iter. 11 10 12 12
CPU time (sec) 0.0037 0.0030 0.0046 0.0039

Case II No of Iter. 11 10 11 12
CPU time (sec) 0.0033 0.0032 0.0039 0.0038

0 2 4 6 8 10 12
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

0 2 4 6 8 10 12
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

Figure 1. Example 5.1: Performance of Algorithm 3 for different values of s; Left: Case I, Right: Case
II.

Next, we give an example in infinite dimensional spaces to support the strong con-
vergence of Theorem 4.1.



Inertial iterative algorithms for common solution 2783

Table 2. Comparison of the performance of Algorithm 3 with Algorithm (1.15) for Example 5.1.

Algorithm 3 Algorithm (1.15)
Case 1 No of Iter. 12 31

CPU time (sec) 0.0029 0.0065
Case 2 No of Iter. 12 29

CPU time (sec) 0.0040 0.0076
Case 3 No of Iter. 11 31

CPU time (sec) 0.0030 0.0073
Case 4 No of Iter. 11 23

CPU time (sec) 0.0016 0.0043

0 5 10 15 20 25 30 35
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh  (2020)

0 5 10 15 20 25 30
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh  (2020)

0 5 10 15 20 25 30 35
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh  (2020)

0 5 10 15 20 25
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh  (2020)

Figure 2. Example 5.1, Top Left: Case 1; Top Right: Case 2; Bottom Left: case 3; Bottom Right: Case
4.



2784 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

Example 5.2. Let H1 = H2 = ℓ2 be the linear space whose elements consists of
all 2-summable sequence of scalars (x1, x2, . . . , xj , . . . ), i.e.,

ℓ2 =

x̄ = (x1, x2, . . . , xj , . . . ) and
∞∑
j=1

|xj |2 < ∞


with inner product ⟨·, ·⟩ : ℓ2 × ℓ2 → R defined by ⟨x̄, ȳ⟩ =

∑∞
j=1 xjyj and norm

∥x∥2 :=
(∑∞

j=1 |xj |2
) 1

2

, where x̄ = {xj} ∈ ℓ2 and ȳ = {yj} ∈ ℓ2. Let C be defined
by C = {x ∈ ℓ2 : ⟨a, x⟩ = b} where a = (1, 3, 1, 0, . . . , 0, . . . ) and b = 2 and
Di := {x ∈ ℓ2 : ⟨c, x⟩ ≥ di} where c = (2,−1, 1, 0, ,̇0, . . . ) and di = −2i for i = 1, 2.
Then, we have

PC(x̄) = max

{
0,

b− ⟨a, x̄⟩
∥a∥22

}
a+ x̄,

and
PDi(x̄) =

di − ⟨c, x̄⟩
∥c∥22

c+ x̄.

Let A : ℓ2 → ℓ2 be given by Ax̄ = (2x1, 2x2, . . . , 2xj , . . . ) and A1 : D1 → ℓ2 and
A2 : D2 → ℓ2 are given by A1x̄ =

(
x1

6 , x2

6 , . . . ,
xj

6 , . . .
)

and A2x̄ =
(
x1

5 , x2

5 , . . . ,
xj

5

)
,

respectively. Then A1 and A2 are 1-inverse strongly monotone with ν1, ν2 ∈ (0, 2).
Let B : ℓ2 → ℓ2 be defined by Bx̄ = 2x̄, then B is a bounded linear operator. We
choose µ = 0.5, θ = 0.025, ϵn = 1

(n+1)s (s = 0.1, 0.4, 0.6, 0.8, 0.99), αn = ϵ2n, θn =
1

n+1 , βn = 9n
10n+1 , ηn = 1 − αn − βn, u = (1, 1, 1, . . . , 1, . . . ). One can easily verified

that the hypothesis of Theorem 4.1 are satisfied. The numerical result for the
performmance of Algorithm 3 for the values of s are shown in Table 3 and Figure
3. We also compare the performance of Algorithm 3 with (1.15). We choose ρ =
1.99, µ1 = 0.58, µ2 = 0.24, µ = 1, ζ = 0.58, l = 0.55, αn = 1√

n+1
, and θn = 1

n+1 . We
test the algorithms using the following initial points and ∥xn+1 − xn∥ < 10−6 as
stopping criterion:

Case 1: Take x0 = (1, 2, 3, . . . ), x1 = (3.2158,−5.8091, 0, . . . ).

Case 2: Take x0 = (1, 0.5, 0.25, . . . ), x1 = (2.7601,−3.6457, 0, . . . ).

Case 3: Take x0 = (2, 2, 2, . . . ), x1 = (1.8501,−2.7557, 0, . . . ).

Case 4: Take x0 = (1, 3, 1, . . . ), x1 = (1.4501,−2.3457, 0, . . . ).

The computation results can be seen in Figure 4 and Table 4.

Table 3. Computation result for Example 5.2.

s = 0.1 s = 0.4 s = 0.8 s = 0.99

Case I No of Iter. 7 7 9 9
CPU time (sec) 0.0478 0.0441 0.0512 0.0556

Case II No of Iter. 7 8 10 10
CPU time (sec) 0.0204 0.0214 0.0228 0.0293



Inertial iterative algorithms for common solution 2785

2 4 6 8
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

2 4 6 8 10
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

Figure 3. Example 5.2: Performance of Algorithm 3 for different values of s; Left: Case I, Right: Case
II.

Table 4. Comparison of the performance of Algorithm 3 with Algorithm (1.15) for Example 5.2.

Algorithm 3 Algorithm (1.15)
Case 1 No of Iter. 7 38

CPU time (sec) 0.0103 0.0157
Case 2 No of Iter. 7 37

CPU time (sec) 0.0046 0.0474
Case 3 No of Iter. 9 36

CPU time (sec) 0.0109 0.0140
Case 4 No of Iter. 7 8

CPU time (sec) 0.0051 0.0102

Example 5.3. Let H1 = H2 = L2([0, 1]) be equipped with the inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 1]) and ∥x∥ :=

√∫ 1

0

|x(t)|2dt

∀x, y,∈ L2([0, 1]).

Now, define the operators A,A1, A2, B : L2([0, 1]) → L2([0, 1]) by

Ax(t) =

∫ 1

0

(
x(t)−

(
2tset+s

e
√
e2 − 1

)
cosx(s)

)
ds+

2tet

e
√
e2 − 1

, x ∈ L2([0, 1]),

A1x(t) = 2x, x ∈ L2([0, 1]),

A2x(t) =
2

5
x, x ∈ L2([0, 1]),

Bx(t) = max{0, x(t)}, t ∈ [0, 1].

Then A is Lipschitz continuous and monotone, and B is maximal monotone on
L2([0, 1]). Let S : L2([0, 1]) → L2([0, 1]) be defined by

Sx(t) =

∫ 1

0

κ(s, t)x(t)dt ∀ x ∈ L2([0, 1]),



2786 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

0 10 20 30 40
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 10 20 30 40
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 10 20 30 40
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 10 20 30 40
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

Figure 4. Example 5.2, Top Left: Case 1; Top Right: Case 2; Bottom Left: case 3; Bottom Right: Case
4.

where κ is a continuous real-valued function defined on [0, 1] × [0, 1]. Then, S is a
bounded linear operator with adjoint

S∗x(t) =

∫ 1

0

κ(t, s)x(t)dt ∀ x ∈ L2([0, 1]).

Let T1, T2 : L2([0, 1]) → L2([0, 1]) be defined by

T1x(t) =

∫ 1

0

tx(s)ds, and T2x(t) =
x

2
(t) t ∈ [0, 1].

It is easy to see that T1 and T2 are nonexpansive mappings. Let C = {y ∈ L2([0, 1]) :
⟨a, y⟩ = α}, where a ̸= 0 and α ∈ R, then C is a nonempty, closed and convex subset
of L2([0, 1]). Thus, we define the metric projection PC as:

PC(x) = x− ⟨a, x⟩ − α

∥a∥2
a.

First, we study the behaviour of the sequence generated by Algorithm 3 by choosing
µ = 0.23, θ = 0.5, λ0 = 0.1, ϵn = 1

ns (s = 0.1, 0.4, 0.8, 0.99), αn = ϵ2n, ηn =
2n

5n+8 , βn = 1 − αn − βn. The initial points used for the computation are: Case I:
x1(t) = 3et, x0(t) = cos(2t); Case II: x1(t) = sin(2t), x0(t) = t3 + 1. The numerical
results are shown in Table 5 and Figure 5. Also, we compare the performance of



Inertial iterative algorithms for common solution 2787

Algorithm 3 with Algorithm (1.15). We take θ = 0.36, λ0 = 0.1, , ϵn = 1√
n+1

, αn =
1

n+1 , ηn = 3n
5n+5 , βn = 1 − ηn − αn. We use ||xn+1 − xn|| < 10−4 as tolerance level

for the computation with different initial values which are given as follows:

Case 1: Take x1(t) = t2 + 2t+ 45, x0(t) = et
2

.

Case 2: Take x1(t) = t2 + 2, x0(t) = 3et.

Case 3: Take x1(t) = cos(t) + 2t, x0(t) = t2 + et.

Case 4: Take x1(t) = sin(t) + 2t2 + 5, x0(t) = t+ et + 45.

The numerical results for the comparison of Algorithm 3 with Algorithm (1.15) are
shown in Table 6 and Figure 6.

Table 5. Computation result for Example 5.3.

s = 0.1 s = 0.4 s = 0.8 s = 0.99

Case I No of Iter. 7 6 6 6
CPU time (sec) 3.5969 6.5984 6.800 7.0366

Case II No of Iter. 6 6 6 6
CPU time (sec) 5.6975 8.3069 8.2852 8.553

1 2 3 4 5 6 7
Iteration number (n)

10-4

10-2

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

1 2 3 4 5 6
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

s = 0.1
s = 0.4
s = 0.8
s = 0.99

Figure 5. Example 5.3: Performance of Algorithm 3 for different values of s; Left: Case I, Right: Case
II.

6. Conclusion
In this paper, we propose a new halpern type inertial extrapolation method for
for approximating split system of variational inequalities problems for two inverse
strongly monotone operators, variational inequality problem for monotone operator,
and the fixed point of two composed mappings and establish that the proposed
method converges strongly to a solution set of the aforementioned problems when
the underlying operator for the variational inequality problem is monotone which is
much more weaker assumptions than the inverse strongly monotonicity assumptions
and the monotonicity and Lipschitz continuity assumptions used in the literature.
In addition, we present some examples and numerical experiments to show the



2788 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

Table 6. Comparison of the performance of Algorithm 3 with Algorithm 1.15 for Example 5.3.

Algorithm 3 Algorithm (1.15)
Case 1 No of Iter. 6 16

CPU time (sec) 5.7342 7.4992
Case 2 No of Iter. 7 19

CPU time (sec) 4.1436 7.7330
Case 3 No of Iter. 7 15

CPU time (sec) 8.3193 11.6183
Case 4 No of Iter. 7 21

CPU time (sec) 1.7011 3.5331

0 5 10 15
Iteration number (n)

10-5

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 5 10 15 20
Iteration number (n)

10-4

10-2

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 5 10 15
Iteration number (n)

10-4

10-2

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

0 5 10 15 20 25
Iteration number (n)

10-6

10-4

10-2

100

||x
n+

1 -
 x

n|| 

Algorithm 3
Sahu & Singh (2020)

Figure 6. Example 5.3, Top Left: Case 1; Top Right: Case 2; Bottom Left: case 3; Bottom Right: Case
4.

efficiency and applicability of our method in comparison with the iterative algorithm
introduced in the framework of infinite and finite dimensional Hilbert spaces.

List of Abbreviations. VIP: Variational Inequality Problem; SFP: Split Feasi-
bility Problem; GSFP: Generalized Split Feasibility Problem; SNVIP: System of
Nonlinear Variational Inequality.

Acknowledgement. A.A. Mebawondu, H.A. Abass and O.K. Oyewole acknowl-
edge with thanks the bursary and financial support from Department of Science



Inertial iterative algorithms for common solution 2789

and Technology and National Research Foundation, Republic of South Africa Cen-
ter of Excellence in Mathematical and Statistical Sciences (DSI-NRF COE-MaSS)
Doctoral Bursary.
Funding. This paper is supported by the Department of Mathematics and Applied
Mathematics, Sefako Makgatho Health Sciences University, South Africa.
Availability of data and materials. Not applicable.
Competing interest. The authors declare that there is not competing interest on
the paper.
Authors’ contributions. All authors worked equally on the results and approved
the final manuscript.

References
[1] H. A. Abass, K. O. Aremu, L. O. Jolaoso and O. T. Mewomo, An inertial

forward-backward splitting method for approximating solutions of certain opti-
mization problem, J. Nonlinear Funct. Anal., 2020, Article ID 6.

[2] F. Alvarez and H. Attouch, An inertial proximal method formaximal monotone
operators via discretization of a nonlinear oscillator with damping, Set-Valued
Anal., 2001, 9, 3–11.

[3] H. Attouch, X. Goudon and P. Redont, The heavy ball with friction. I. The
continuous dynamical system, Commun Contemp Math., 2000, 21(2), 1–34.

[4] H. Attouch, and M. O. Czarnecki, Asymptotic control and stabilization of non-
linear oscillators with non-isolated equilibria, J Diff Eq., 2002, 179, 278–310.

[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imaging Sci., 2009, 2(1), 183–202.

[6] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility
problem, Inverse Prob., 2002, 18, 441–453.

[7] L. Ceng, C. Wang and J. Yao, Strong convergence theorems by a relaxed extra-
gradient method for a general system of variational inequalities, Math. Methods
Oper. Res., 2008, 67, 375–390.

[8] Y. Censor, T. Elfving, N. Kopt and T. Bortfeld, The multiple-sets split feasi-
bility problem and its applications, Inverse Prob., 2005, 21, 2071–2084.

[9] Y. Censor and Y. Segal, The split common fixed point for directed operators,
J. Convex. Anal., 2009, 16, 587–600.

[10] Y. Censor and T. Elfving. A multi projection algorithm using Bregman projec-
tions in a product space, Numer. Algor., 1994, 8(2), 221–239.

[11] Y. Censor, A. Gibali, and S. Reich, The split variational inequality problem.
The Technion-Israel Institue of Technology, Haifa, 2010.

[12] L. Dong, Y. J. Cho, L. Zhong and M. Th. Rassias, Inertial projection and
contraction algorithms for variational inequalities, J. Glob. Optim., 2018, 70,
687–704.

[13] G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al
contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 1963, 34,
138–142.



2790 A. Mebawondu, L. Jolaoso, H. Abass, O. Oyewole & K. Aremu

[14] G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini
con ambigue condizioni al contorno. Atti Accad. Naz. Lincci. Cl. Sci. Fis. Mat.
Nat., Sez., 1964, 7, 91–140.

[15] A. Gibali, D. V. Thong and P. A. Tuan. Two simple projection-type methods for
solving variational inequalities in Euclidean spaces, J. Nonlinear Anal. Optim.,
2015, 6, 41–51.

[16] A. Gibali, S. Reich and R. Zalas, Outer approximation methods for solving
variational inequalities in Hilbert space, Optimization, 2017, 66, 417–437.

[17] R. Glowinski, J. L. Lions and R. Trémoliéres, Numerical Analysis of Variational
Inequalities, North-Holland, Amsterdam, 1981.

[18] K. Goebel and S. Reich, convexity, hyperbolic geometry, and nonexpansive
mappings. New York, Marcel Dekker, 1984.

[19] A. A. Goldstein, Convex programming in Hilbert space, Bull. Am. Math. Soc.,
1964, 70, 709–710.

[20] Y. He. A new double projection algorithm for variational inequalities, J. Com-
put. Appl. Math., 2006, 185(1), 166–173.

[21] L. O. Jolaoso and Y. Shehu, Single Bregman projection method for solving
variational inequalities in reflexive Banach spaces, Appl. Analysis., 2021, 1–22.
https://doi.org/10.1080/00036811.2020.1869947.

[22] L. O. Jolaoso, Y. Shehu and J. C. Cho, Convergence Analysis for Variational
Inequalities and Fixed Point Problems in Reflexive Banach Spaces, J. Inequal.
and Appl., 2021, 44. https://doi.org/10.1186/s13660-021-02570-6

[23] G. M. Korpelevich, An extragradient method for finding saddle points and for
other problems, Èkon. Mat. Metody., 1976, 12, 747–756.

[24] P. E. Mainge, Regularized and inertial algorithms for common fixed points of
nonlinear operators, J Math Anal Appl., 2008, 34, 876–887.

[25] A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method
for monotone operators, J. Comput. Appl. Math., 2013, 155, 447–454.

[26] Y. Nesterov, A method of solving a convex programming problem with conver-
gence rate O(1/k2), Soviet Math. Doklady., 1983, 27, 372–376.

[27] F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of an inertial accel-
erated iterative algorithm for solving split variational inequality problem, Adv.
Pure Appl. Math., 2019, 10(4), 1–15.

[28] M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for
fixed points of pseudocontractions and solutions of monotone type operator
equations, Comput. Math. Appl., 2000, 40, 559–567.

[29] B. T. Polyak, Some methods of speeding up the convergence of iterates methods,
U. S. S. R Comput. Math. Phys., 1964, 4(5), 1–17.

[30] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly mono-
tone operators in Banach spaces, Nonlinear Anal., 2012, 75, 742–750.

[31] D. R. Sahu, S. M. Kang and A. Kumar, Convergence analysis of parallel S-
iteration process for system of generalized variational inequalities, J. Funct.
Spaces., Article ID 5847096, 2017, 10, 1–10.



Inertial iterative algorithms for common solution 2791

[32] D. R. Sahu,, Altering points and applications, Nonlinear Stud., 2014, 21(2),
349–365.

[33] D. R. Sahu and A. K. Singh, Inertial iterative algorithms for common solution of
variational inequality and system of variational inequalities problems, Journal
of Applied Mathematics and Computing, 2020, 1–28.

[34] Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational in-
equalities in Hilbert spaces, Calcolo, 2019, 56. https://doi.org/10.1007/s10092-
018-0300-5.

[35] Y. Shehu and O. S. Iyiola, Projection methods with alternating inertial steps
for variational inequalities: Weak and linear convergence, Appl. Numer. Math.,
2020, 157, 315–337.

[36] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C.
R. Math. Acad. Sci., Paris, 1964, 258, 4413–4416.

[37] W. Takahashi, Nonlinear Functional Analysis. Yokohama Publishers, Yoko-
hama, 2000.

[38] S. Suantai, N. Pholosa and P. Cholamjiak, The Modified Inertial Relaxed CQ
Algorithm for Solving the Split Feasibility Problems, J. Industrial and Manage-
ment Optimization, 2017. DoI:10.3934/jimo.2018023.

[39] W. Takahashi, H. Xu, and J. Yao, Iterative methods for generalized split feasi-
bility problems in Hilbert spaces, Set-Valued Var. Anal., 2015, 23(2), 205–221.

[40] M. Tian, and B. Jiang, Weak convergence theorem for a class of split variational
inequality problems and applications in a Hilbert space, J. Ineq and Appl., 2017,
1, 1–17.

[41] M. Tian, and B. Jiang, Viscosity Approximation Methods for a Class of Gener-
alized Split Feasibility Problems with Variational Inequalities in Hilbert Space,
Numer. Funct. Anal. Optim., 2019, 40(8), 902–923.

[42] D. V. Thong and N. T. Vinh, Inertial methods for fixed point problems and
zero point problems of the sum of two monotone mappings, Optimization, 2019,
68(5), 1037–1072.

[43] D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for varia-
tional inequality problems, Numer. Algor., 2017. DOI 10.1007/s11075-017-0412-
z.

[44] R. U. Verma, On a new system of nonlinear variational inequalities and associ-
ated iterative algorithms, Mathematical Sciences Research, 1999, 3(8), 65–68.

[45] F. Wang and H. Xu, Approximating curve and strong convergence of the CQ al-
gorithm for split feasibility problem, J. Inequal. Appl., 2010, Article ID 102085.

[46] H. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim.
Theory Appl., 2011, 150, 360–378.


	Introduction
	Preliminaries
	Proposed Algorithm
	Convergence Analysis
	Numerical Examples
	Conclusion

