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TRANSMISSION DYNAMICS OF
STOCHASTIC SVIR INFLUENZA MODELS

WITH MEDIA COVERAGE

Xinhong Zhang1,†, Zhenfeng Shi2 and Hao Peng1

Abstract This paper focuses on the dynamical behaviors of two stochastic
SVIR models with media coverage. The first system is based on system per-
turbation. It is shown that the transmission dynamics can be classified by a
critical value Rs

0. If Rs
0 < 1, the disease will die out. Rs

0 > 1 implies that
the disease will persist. Furthermore, the system has an ergodic stationary
distribution if Rs

0 > 1. The second system is based on transmission parameter
perturbation. Sufficient conditions for persistence and extinction are derived.
Finally, theoretical results and numerical simulations show the effect of media
coverage and environmental white noise.
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1. Introduction
Vaccination and media coverage are two important strategies for controlling and
preventing diseases [4, 6, 7, 15, 16, 19]. J. M. Tchuenche et.al [21] established the
following SIR influenza model with vaccination and media coverage to reflect the
transmission dynamics

dS
dt = Λ+ ωV − (θ + µ)S −

(
β1 − β2

I
m+I

)
SI + σR,

dI
dt =

(
β1 − β2

I
m+I

)
SI +

(
β1 − β3

I
m+I

)
(1− γ)V I − (α+ µ+ λ)I,

dV
dt = θS − (µ+ ω)V −

(
β1 − β3

I
m+I

)
(1− γ)V I,

dR
dt = λI − (µ+ σ)R.

(1.1)

Here S(t), I(t), V (t) and R(t) denote the densities of susceptible, infected, vac-
cinated and recovered individuals, respectively. All the parameters in the model
are positive and defined in Table 1. Generally speaking, the immunity acquired by
natural infection is more robust and lasts longer than that induced by a vaccine [1],
so we assume σ ≤ ω. Saturated incidence functions β2

I
m+I and β3

I
m+I measure the
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Table 1. Description of the variables and associated parameters
Parameters Description
Λ recruitment rate
θ vaccination rate
µ natural death rate
β1 disease transmission rate
ω vaccine immune decline rate
γ vaccine efficacy
α disease-related death rate
λ recovery rate of infected individuals
σ natural infection immune decline rate

effect of reduction of the contact rate through reporting by media, respectively. We
further assume that β1 ≥ β2 and β1 ≥ β3, which ensure that infection rates remain
non-negative. From [21] it follows that R0 = β1Λ(µ+ω)+β1(1−γ)θΛ

µ(α+µ+λ)(θ+µ+ω) is a threshold
parameter.

In the real world, environmental variations have a critical influence on biomathe-
matical models [2,13,14]. Therefore it is necessary and important to study the trans-
mission dynamics of infectious disease affected by stochastic perturbation. In order
to obtain a stochastic system, many scholars use Brownian motion as a stochastic
perturbation factor to add to the deterministic model [5, 9, 11, 17, 22]. Generally
speaking, all the parameters involved in the epidemic systems exhibit random fluc-
tuation to a greater or lesser extent. In the real situation, the natural death rate µ
usually fluctuate around some average values due to the environmental white noise,
which should be seen as random variables µ̃. Therefore, by the well-known central
limit theorem, in [t, t+ dt),

−µ̃dt = −µdt+ δidBi(t),

here dBi(t) = Bi(t + dt) − Bi(t) is the increment of a standard Brownian motion,
i = 1, 2, 3, 4. It is easy to see that in [t, t + dt), −µ̃dt is normally distributed
with E(−µ̃dt) = −µdt and variance V ar(−µ̃dt) = δ2i dt. The variances tend to
zero as dt → 0. This is a reasonable way of introducing stochastic white noise
into population systems. Therefore, replace −µdt in (1) with −µdt + δidBi(t)
(i = 1, 2, 3, 4), respectively, then model (1) becomes the following stochastic model

dS =

(
Λ + ωV − (θ + µ)S −

(
β1 − β2

I

m+ I

)
SI + σR

)
dt+ δ1SdB1(t),

dI =

((
β1 − β2

I

m+ I

)
SI +

(
β1 − β3

I

m+ I

)
(1− γ)V I − (α+ µ+ λ)I

)
dt

+ δ2IdB2(t),

dV =

(
θS − (µ+ ω)V −

(
β1 − β3

I

m+ I

)
(1− γ)V I

)
dt+ δ3V dB3(t),

dR =(λI − (µ+ σ)R) dt+ δ4RdB4(t),
(1.2)

where Bi(t) (i = 1, 2, 3, 4) are independent Brownian motions and δ2i (i = 1, 2, 3, 4)
are their intensities. We will mainly give the threshold for the extinction and
persistence of the disease, and also study the stationary distribution of stochastic
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model (1.2). On the other hand, the disease transmission coefficient β1 is a key
parameter. If β1 is perturbed by white noise, that is β1 → β1 + δḂ(t), then system
(1.1) becomes



dS =

(
Λ + ωV − (θ + µ)S −

(
β1 − β2

I

m+ I

)
SI + σR

)
dt− δSIdB(t),

dI =

[(
β1 − β2

I

m+ I

)
SI +

(
β1 − β3

I

m+ I

)
(1− γ)V I − (α+ µ+ λ)I

]
dt

+ δSIdB(t) + δ(1− γ)V IdB(t),

dV =

(
θS − (µ+ ω)V −

(
β1 − β3

I

m+ I

)
(1− γ)V I

)
dt− δ(1− γ)V IdB(t),

dR =(λI − (µ+ σ)R) dt,
(1.3)

where B(t) is a standard Brownian motion, and δ2 denotes the intensity of white
noise. We aim to obtain conditions for persistence and extinction of infectious
disease for model (1.3).

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a σ-field filtration {Ft}t≥0 satisfying the usual conditions(i.e. it is increasing
and right continuous while F0 contains all P-null sets). We denote R+ = [0,∞),
R4,o

+ = {(x1, x2, x3, x4) ∈ R4 : xi > 0, i = 1, 2, 3, 4}. If f(t) is an integrable function
on [0,∞), define ⟨f⟩t = 1

t

∫ t

0
f(s)ds. If f(t) is a bounded function on [0,∞), define

f̌ = supt∈[0,∞) f(t). In general, let x(t) be a d-dimensional stochastic process on
t ≥ 0 presented as the following stochastic differential equation

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+,Rd), g ∈ L2(R+,Rd×m) and B(t)={
(
B1

t , B
2
t , · · · , Bm

t

)T }t≥0

is an m-dimentional Brownian motion defined on the complete probability space
(Ω,F , P ). For any function V ∈ C2,1(Rd × R+;R), define the differential operator
LV (x(t), t) as follows:

LV (x(t), t) = Vt(x(t), t) + Vx(x(t), t)f(t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t))

where

Vt =
∂U

∂t
, Vx =

(
∂V

∂x1
, · · · , ∂V

∂xd

)
, Vxx =


∂2U

∂x1∂x1
· · · ∂2V

∂x1∂xd

...
...

...
∂2V

∂xd∂x1
· · · ∂2V

∂xd∂xd

 .

The rest of this paper is organized as follows. In section 2, we will analyze the
transmission dynamics of stochastic model (1.2) and make numerical simulations to
support theoretical results. In section 3, we will study the persistence and extinction
of disease of stochastic model (1.3) and employe numerical simulations to support
theoretical results.
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2. Dynamics of stochastic influenza model (1.2)
2.1. The properties of the global solution
Firstly, we give the result of existence and uniqueness of globally positive solution
for model (1.2).

Theorem 2.1. For any initial value (S(0), I(0), V (0), R(0)) ∈ R4,o
+ , system (1.2)

has a unique positive solution (S(t), I(t), V (t), R(t)) ∈ R4,o
+ for any t ≥ 0 almost

surely.

This theorem can be proved by using a similar argument as that in the proof of
Theorem 3 given by [20]. Here we only define the following C2-function V̄ : R4,o

+ →
R+:

V̄ (S, I, V,R) = (S−a−a ln(S/a))+(I−1−ln I)+(V −b−b ln(V/b))+(R−1−lnR),

where a = α/β1, b = µ/β1(1− γ). Applying Itô’s formula, we have

LV̄ =
(
1− a

S

)(
Λ + ωV − (θ + µ)S −

(
β1 − β2

I

m+ I

)
SI + σR

)
+

aδ21
2

+

(
1− 1

I

)[(
β1 − β2

I

m+ I

)
SI +

(
β1 − β3

I

m+ I

)
(1− γ)V I

− (α+ µ+ λ)I

]
+

δ22
2

+

(
1− b

V

)[
θS − (µ+ ω)V −

(
β1 − β3

I

m+ I

)
(1

− γ)V I

]
+

bδ23
2

+

(
1− 1

R

)
(λI − (µ+ σ)R) +

δ24
2

≤Λ− (α+ µ)I + aβ1I + bβ1(1− γ)I + a

(
θ + µ+

δ21
2

)
+

(
α+ µ+ λ+

δ22
2

)
+ b

(
µ+ ω +

δ23
2

)
+

(
µ+ σ +

δ24
2

)
=Λ+ a

(
θ + µ+

δ21
2

)
+

(
α+ µ+ λ+

δ22
2

)
+ b

(
µ+ω+

δ23
2

)
+

(
µ+ σ+

δ24
2

)
:=K,

where K is a positive constant. The remainder of the proof can refer to [20].
According to the results of [23], the solution (S(t), I(t), V (t), R(t)) of model (1.2)

has the following properties.

Lemma 2.1. For any initial value (S(0), I(0), V (0), R(0)) ∈ R4,o
+ , the solution

(S(t), I(t), V (t), R(t)) of model (1.2) satisfies

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

V (t)

t
= 0, lim

t→∞

R(t)

t
= 0, a.s. (2.1)

and
lim sup
t→∞

lnS(t)

t
≤ 0, lim sup

t→∞

ln I(t)

t
≤ 0,

lim sup
t→∞

lnV (t)

t
≤ 0, lim sup

t→∞

lnR(t)

t
≤ 0, a.s.

(2.2)
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Moreover, if µ > maxk=1,2,3,4
δ2k
2 , then

lim
t→∞

∫ t

0
S(r)dB1(r)

t
= 0, lim

t→∞

∫ t

0
I(r)dB2(r)

t
= 0,

lim
t→∞

∫ t

0
V (r)dB3(r)

t
= 0, lim

t→∞

∫ t

0
R(r)dB4(r)

t
= 0, a.s.

(2.3)

2.2. Threshold for extinction and persistence of the disease
In this subsection, we will study the extinction and persistence of disease I(t) in
model (1.2). Denote

Rs
0 =

β1Λ(µ+ ω) + β1(1− γ)θΛ

µ(α+ µ+ λ+ δ22/2)(θ + µ+ ω)
.

The following theorem gives the critical value for the extinction and persistence.

Theorem 2.2. Assume that µ > maxk=1,2,3,4
δ2k
2 . For any initial value (S(0), I(0),

V (0), R(0)) ∈ R4,o
+ , the following claims hold.

(i). If Rs
0 < 1, we have

lim sup
t→∞

ln I(t)

t
≤ (α+ µ+ λ+

δ22
2
)(Rs

0 − 1) < 0 a.s.,

and the disease will die out.
(ii). If Rs

0 > 1, then

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥
(α+ µ+ λ+

δ22
2 )(R

s
0 − 1)

( 1
m + a1 + a2)(α+ µ+ λ)

a.s.,

where a1 = β1(µ+ω)+β1(1−γ)θ
µ(θ+µ+ω) , a2 = β1ω+β1(1−γ)(θ+µ)

µ(θ+µ+ω) . This implies the disease will
spread.

Proof. (i). Integrating model (1.2) from 0 to t and and dividing by t, we obtain

S(t)− S(0)

t
=λ+ ω⟨V ⟩t − (θ + µ)⟨S⟩t −

1

t

∫ t

0

(
β1 − β2

I

m+ I

)
SIdt+ σ⟨R⟩t

+
δ1
t

∫ t

0

SdB1(t),

(2.4)
I(t)− I(0)

t
=
1

t

∫ t

0

(
β1 − β2

I

m+ I

)
SIdt+

1

t

∫ t

0

(
β1 − β3

I

m+ I

)
(1− γ)V Idt

− (α+ µ+ γ)⟨I⟩t +
δ2
t

∫ t

0

IdB2(t),

(2.5)
V (t)− V (0)

t
=θ⟨S⟩t − (µ+ ω)⟨V ⟩t −

1

t

∫ t

0

(
β1 − β3

I

m+ I

)
(1− γ)V Idt

+
δ3
t

∫ t

0

V dB3(t),

(2.6)
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R(t)−R(0)

t
= λ⟨I⟩t − (µ+ σ)⟨R⟩t +

δ4
t

∫ t

0

RdB4(t). (2.7)

Compute that (µ+δ)(µ+ω)×(2.4)+(µ+ω)σ×(2.5)+(µ+σ)ω×(2.6)+(µ+ω)σ×(2.7),
we can get

(µ+ δ)(µ+ ω)
S(t)− S(0)

t
+ (µ+ σ)ω

V (t)− V (0)

t

+ (µ+ ω)σ
I(t)− I(0)

t
+ (µ+ ω)σ

R(t)−R(0)

t
=(µ+ δ)(µ+ ω)Λ− µ(µ+ δ)(θ + µ+ ω)⟨S⟩t − (µ+ ω)(α+ µ)⟨I⟩t

− (µ+ ω)µ

t

∫ t

0

(
β1 − β2

I

m+ I

)
SIdt− µ(ω − σ)

t

∫ t

0

(
β1 − β3

I

m+ I

)
(1

− γ)V Idt+
(µ+ σ)(µ+ ω)

t

∫ t

0

δ1SdB1(t) +
(µ+ σ)ω

t

∫ t

0

δ2IdB2(t)

+
(µ+ ω)σ

t

∫ t

0

δ3V dB3(t) +
(µ+ ω)σ

t

∫ t

0

δ4RdB4(t)

≤(µ+ δ)(µ+ ω)Λ− µ(µ+ δ)(θ + µ+ ω)⟨S⟩t − (µ+ ω)(α+ µ)⟨I⟩t

+
(µ+ σ)(µ+ ω)

t

∫ t

0

δ1SdB1(t) +
(µ+ σ)ω

t

∫ t

0

δ2IdB2(t)

+
(µ+ ω)σ

t

∫ t

0

δ3V dB3(t) +
(µ+ ω)σ

t

∫ t

0

δ4RdB4(t).

Due to σ ≤ ω, we compute that

⟨S⟩t ≤ S̄ − (µ+ ω)(α+ µ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t + φ1(t), (2.8)

where S̄ = (µ+ω)Λ
µ(θ+µ+ω) , and φ1(t) is defined by

φ1(t) =
1

µ(µ+ σ)(θ + µ+ ω)

[
(µ+ σ)(µ+ ω)

t

∫ t

0

δ1SdB1(t)

+
(µ+ σ)ω

t

∫ t

0

δ2IdB2(t) +
(µ+ ω)σ

t

∫ t

0

δ3V dB3(t)

+
(µ+ ω)σ

t

∫ t

0

δ4RdB4(t)− (µ+ δ)(µ+ ω)
S(t)− S(0)

t

− (µ+ σ)ω
V (t)− V (0)

t
− (µ+ ω)σ

I(t)− I(0)

t
− (µ+ ω)σ

R(t)−R(0)

t

]
.

Note Lemma 2.1, so
lim
t→∞

φ1(t) = 0, a.s.

On the other hand, from the third equation of model (1.2), we get

V (t)− V (0)

t
≤ θ⟨S⟩t − (µ+ ω)⟨V ⟩t +

1

t

∫ t

0

δ3V dB3(t).
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This, combining (2.8), leads to

⟨V ⟩t ≤
θ

µ+ ω
S̄ − θ(α+ µ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t + φ2(t)

=V̄ − θ(α+ µ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t + φ2(t),

(2.9)

where V̄ = Λθ
µ(θ+µ+ω) , φ2(t) =

θ
µ+ωφ1(t)− 1

µ+ω
V (t)−V (0)

t + 1
(µ+ω)t

∫ t

0
δ3V dB3(t), and

φ2(t) → 0 as t → ∞.
Applying Itô’s formula, one has

d ln I(t) =

[(
β1−β2

I

m+ I

)
S+

(
β1−β3

I

m+ I

)
(1−γ)V −(α+µ+λ+

δ22
2
)

]
dt

+ δ2dB2(t).

Integrating from 0 to t, combining (2.8) and (2.9), we deduce

ln I(t)− ln I(0)

t
≤β1⟨S⟩t + β1(1− γ)⟨V ⟩t − (α+ µ+ λ+

δ22
2
) +

δ2B2(t)

t

≤β1S̄ + β1(1− γ)V̄ − (α+ µ+ λ+
δ22
2
)

− (α+ µ)(β1(µ+ ω) + β1(1− γ)θ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t

+ β1φ1(t) + β1(1− γ)φ2(t) +
δ2B2(t)

t

=(α+µ+λ+
δ22
2
)(Rs

0 − 1)− (α+µ)(β1(µ+ω)+β1(1−γ)θ)

µ(µ+σ)(θ+µ+ω)
⟨I⟩t

+ β1φ1(t) + β1(1− γ)φ2(t) +
δ2B2(t)

t
.

(2.10)

Using strong law of large numbers [12] it follows

lim
t→∞

δ2B2(t)

t
= 0, a.s. (2.11)

Thus, (2.10) implies that

lim sup
t→∞

ln I(t)

t
≤ (α+ µ+ λ+

δ22
2
)(Rs

0 − 1), a.s.

Therefore, we obtain that if Rs
0 < 1, then

lim
t→∞

I(t) = 0, a.s.

which means the disease dies out with probability one.
(ii). Applying Itô’s formula again, we have

L(ln I+ I

m
) =β1S−

β2

m
SI+

β1

m
SI+β1(1−γ)V − β3(1−γ)

m
V I+

β1(1−γ)

m
V I

− (α+ µ+ λ+
δ22
2
)− α+ µ+ λ

m
I

≥β1S + β1(1− γ)V − (α+ µ+ λ+
δ22
2
)− α+ µ+ λ

m
I,
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where we used β1 ≥ β2 and β1 ≥ β3. Then we define a C2-function

V1(S, I, V ) = ln I +
I

m
+ a1(S + I) + a2(V + I),

where a1 and a2 are positive constants which will be defined later. So

LV1 ≥β1S + β1(1− γ)V − (α+ µ+ λ+
δ22
2
)− α+ µ+ λ

m
I + a1Λ

− (a1(θ + µ)− a2θ)S − (a2(µ+ ω)− a1ω)V − (a1 + a2)(α+ µ+ λ)I.

Let
a1(θ + µ)− a2θ = β1, a2(µ+ ω)− a1ω = β1(1− γ),

by calculation,

a1 =
β1(µ+ ω) + β1(1− γ)θ

µ(θ + µ+ ω)
, a2 =

β1ω + β1(1− γ)(θ + µ)

µ(θ + µ+ ω)
.

Then

LV1 ≥a1Λ− (α+ µ+ λ+
δ22
2
)− (

1

m
+ a1 + a2)I

=(α+ µ+ λ+
δ22
2
)(Rs

0 − 1)− (
1

m
+ a1 + a2)(α+ µ+ λ)I.

(2.12)

Therefore, we obtain

ln I(t) + I(t)
m + a1(S(t) + I(t)) + a2(V (t) + I(t))

t

−
ln I(0) + I(0)

m + a1(S(0) + I(0)) + a2(V (0) + I(0))

t

≥(α+ µ+ λ+
δ22
2
)(Rs

0 − 1)− (
1

m
+ a1 + a2)(α+ µ+ λ)⟨I⟩t +

δ2B2(t)

t
+M(t),

where

M(t) =
1

mt

∫ t

0

δ2IdB2(t) +
a1
t

(∫ t

0

δ1SdB1(t) +

∫ t

0

δ2IdB2(t)

)
+

a2
t

(∫ t

0

δ3V dB1(t) +

∫ t

0

δ2IdB2(t)

)
.

From (2.2) and (2.3) it follows that

lim inf
t→∞

(
1

m
+ a1 + a2)(α+ µ+ λ)⟨I⟩t

≥ lim inf
t→∞

ln I(t)

t
+ lim inf

t→∞
(
1

m
+ a1 + a2)(α+ µ+ λ)⟨I⟩t

≥(α+ µ+ λ+
δ22
2
)(Rs

0 − 1).

Therefore,

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥
(α+ µ+ λ+

δ22
2 )(R

s
0 − 1)

( 1
m + a1 + a2)(α+ µ+ λ)

,

which means that the disease will spread if Rs
0 > 1. The proof is complete.
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Remark 2.1. Rs
0 can be seen as the basic reproduction number of stochastic model

(1.2), which is irrelevant to media coverage. On the other hand, Rs
0 is smaller than

R0, which means environmental noise can suppress the outbreak of the epidemic.

2.3. Existence of ergodic stationary distribution of system (1.2)
In this subsection, we will give the conditions for the existence of an ergodic station-
ary distribution which is corresponding to the stability of the endemic equilibrium
of deterministic version. The method we adopt is the theory of Khasminskii [10]
(see Appendix).

Theorem 2.3. Assume that Rs
0 > 1. Then model (1.2) has a unique stationary

distribution, and the solution (S(t), I(t), V (t), R(t)) is ergodic.

Proof. From the theory of Khasminskii, in order to prove Theorem 2.3, we should
verify Assumptions (A1) and (A2) in Appendix. Firstly, we will construct a series
of Lyapunov functions and a bounded set to verify (B2). Applying Itô’s formula,
we have

L(− lnS) ≤ −Λ

S
+ β1I + (θ + µ+

δ21
2
),

L(− lnV ) ≤ −θS

V
+ β1(1− γ)I + (µ+ ω +

δ23
2
),

L(− lnR) ≤ −λI

R
+ (µ+ δ +

δ24
2
).

Taking V1 = ln I + I
m + a1(S + I) + a2(V + I), from the proof of Theorem 2.2, we

obtain
L(−V1) ≤ −(α+ µ+ λ+

δ22
2
)(Rs

0 − 1) + (
1

m
+ a1 + a2)I.

We further denote
V2 =

1

θ + 1
(S + I + V +R)θ+1,

where θ is a sufficiently small number satisfying ρ := µ − θ
2 (maxk=1,2,3,4 δ

2
k) > 0.

Then

LV2 =(S + I + V +R)θ (Λ− µ(S + I + V +R)− αI)

+
θ

2
(S + I + V +R)θ−1

(
δ21S

2 + δ22I
2 + δ23V

2 + δ24R
2
)

≤Λ(S + I + V +R)θ − µ(S + I + V +R)θ+1

+
θ

2
( max
k=1,2,3,4

δ2k)(S + I + V +R)θ+1

≤Λ(S + I + V +R)θ −
(
µ− θ

2
( max
k=1,2,3,4

δ2k)

)
(S + I + V +R)θ+1

≤A− ρ

2
(S + I + V +R)θ+1

≤A− ρ

2

(
Sθ+1 + V θ+1 + Iθ+1 +Rθ+1

)
,

(2.13)

with A = sup(S,I,V,R)∈R4,o
+

{
µ(S + I + V +R)θ − ρ

2 (S + I + V +R)θ+1
}
.
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To this end, we define a C2-function in the following form

V0(S, I, V,R) = M(−V1) + V2 − lnS − lnV − lnR,

where M is sufficiently large such that

−M(α+ µ+ λ+
δ22
2
)(Rs

0 − 1) +B ≤ −2,

here B = A+ (θ + µ+
δ21
2 ) + (µ+ ω +

δ23
2 ) + (µ+ σ +

δ24
2 ). It is easy to check that

lim inf
ϵ→∞,(S,I,V,R)∈R4,o

+ \Uϵ

V0(S, I, V,R) = +∞,

where Uϵ = (1/ϵ, ϵ)× (1/ϵ, ϵ)× (1/ϵ, ϵ)× (1/ϵ, ϵ). The monotonicity and continuity
of V0 implies that V0(S, I, V,R) has the minimum value point (Ŝ, Î, V̂ , R̂) .

Then define the nonnegative C2-function as follows

V̂ = M(−V1) + V2 − lnS − lnV − lnR− V0(Ŝ, Î, V̂ , R̂).

Therefore, from above analysis, we obtain

LV̂ (S, I, V,R) ≤−M(α+ µ+ λ+
δ22
2
)(Rs

0 − 1)

+

(
M(

1

m
+ a1 + a2) + β1 + β1(1− γ)

)
I +B

− Λ

S
− θS

V
− λI

R
− ρ

2
Sθ+1 − ρ

2
Iθ+1 − ρ

2
V θ+1 − ρ

2
Rθ+1

=−M(α+ µ+ λ+
δ22
2
)(Rs

0 − 1) + f(I)

− Λ

S
− θS

V
− λI

R
− ρ

2
Sθ+1 − ρ

2
V θ+1 − ρ

2
Rθ+1,

where f(I) = −ρ
2I

θ+1 +
(
M( 1

m + a1 + a2) + β1 + β1(1− γ)
)
I +B.

Up to now, we have construct the suitable Lyapunov function V̂ (S, I, V,R).
Now, we are in the position to construct a compact set D ⊂ R4,o

+ such that
LV̂ (S, I, V,R) ≤ −1 for (S, I, V,R) ∈ R4,o

+ \D. Define

D =
{
ε ≤ S ≤ 1/ε, ε ≤ I ≤ 1/ε, ε2 ≤ V ≤ 1/ε2, ε2 ≤ R ≤ 1/ε2

}
,

where ε is a sufficiently small positive constant such that the following conditions
hold

− Λ

ε
+ f̌ ≤ −1, −θ

ε
+ f̌ ≤ −1, −λ

ε
+ f̌ ≤ −1, (2.14)

−M(α+µ+λ+
δ22
2
)(Rs

0−1)+

(
M(

1

m
+a1+a2)+β1+β1(1−γ)

)
ε+B ≤−1,

(2.15)

f̌ − ρ

2

1

εθ+1
≤ −1, (2.16)

f̌ − ρ

2

1

ε(2θ+2)
≤ −1. (2.17)
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Then
R4,o

+ \D = Dc
1 ∪Dc

2 ∪Dc
3 ∪Dc

4 ∪Dc
5 ∪Dc

6 ∪Dc
7 ∪Dc

8,

with

Dc
1 =

{
(S, I, V,R) ∈ R4,o

+ | 0 < S < ε
}
, Dc

2 =
{
(S, I, V,R) ∈ R4,o

+ | 0 < I < ε
}
,

Dc
3 =

{
(S, I, V,R) ∈ R4,o

+ | S > ε, 0 < V < ε2
}
,

Dc
4 =

{
(S, I, V,R) ∈ R4,o

+ | I > ε, 0 < R < ε2
}
,

Dc
5 =

{
(S, I, V,R) ∈ R4,o

+ | S >
1

ε

}
, Dc

6 =

{
(S, I, V,R) ∈ R4,o

+ | I >
1

ε

}
,

Dc
7 =

{
(S, I, V,R) ∈ R4,o

+ | V >
1

ε2

}
, Dc

8 =

{
(S, I, V,R) ∈ R4,o

+ | R >
1

ε2

}
.

From inequalities (2.14), (2.15), (2.16) and (2.17), we can easily deduce that

LV̂ (S, I, V,R) ≤ −1, (S, I, V,R) ∈ Dc
i , i = 1, 2, 3, 4, 5, 6, 7, 8.

Therefore, we obtain

LV̂ (S, I, V,R) ≤ −1, (S, I, V,R) ∈ R4,o
+ \D,

which implies that Assumption (B2) is satisfied.
On the other hand, the diffusion matrix of system (1.2) is

Ā(X) =


δ21S

2 0 0 0

0 δ22I
2 0 0

0 0 δ23V
2 0

0 0 0 δ24R
2

 .

There is a c = min{δ21S2, δ22I
2, δ23V

2, δ24R
2} > 0 such that

4∑
i,j=1

āij(X)ξiξj = δ21S
2ξ21 + δ22I

2ξ22 + δ23V
2ξ23 + δ24R

2ξ24 ≥ c|ξ|2

for (S, I, V,R) ∈ D̄ and ξ ∈ R4,o
+ . That is to say, Assumption (B1) holds. Conse-

quently, system (1.2) has an ergodic stationary distribution.

2.4. Numerical simulations
In this subsection, in order to show the transmission dynamics of stochastic SVIR
model with media coverage, we present some numerical simulations. We use the
Milstein’s high-order method [8] to simulate the stochastic model (1.2). The nu-
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merical scheme for stochastic model (1.2) is given by:

Sk+1 =Sk + [Λ + ωV k − (θ + µ)Sk − (β1 − β2
Ik

m+ Ik
)SkIk + σRk]∆t

+ δ1S
k
√
∆tξk +

δ21
2
Sk(ξ2k − 1)∆t,

Ik+1 =Ik + [(β1 − β2
Ik

m+ Ik
)SkIk + (β1 − β3

Ik

m+ Ik
)(1− γ)V kIk

− (α+ µ+ λ)Ik]∆t+ δ2I
k
√
∆tζk +

δ22
2
Ik(ζ2k − 1)∆t,

V k+1 =V k + [θSk − (µ+ ω)V k − (β1 − β3
Ik

m+ Ik
)(1− γ)V kIk]∆t

+ δ3V
k
√
∆tηk +

δ23
2
V k(η2k − 1)∆t,

Rk+1 =Rk + [λIk − (µ+ σ)Rk]∆t+ δ4R
k
√
∆tςk +

δ24
2
V k(ς2k − 1)∆t,

where the time increment ∆t > 0, ξk, ηk, ζk and ςk are independent Gaussian
random variables which follow the distribution N(0, 1) for k = 1, 2, ..., n.

We use the data of Florida form 2018 to 2019 [3] to estimate the parameters Λ
and µ by the following equations

S ′(t) = Λ− µS(t),
D′(t) = µS(t),
S(0) = 21, 299, 325, S(365) = 21, 477, 737, D(0) = 0, D(365) = 207, 002,

where S(t) and D(t) denote the number of susceptible people and the number
of deaths at time t, respectively. Then we obtain Λ = 1056 person day−1 and
µ = 0.01393 person−1 day−1.

Table 2. List of Parameters

Parameters Description Value Reference

Λ Recruitment rate 1056 person day−1 Estimated
ω Rate at which vaccine wanes 0.15 day−1 [21]
θ Vaccine uptake rate 0.7 day−1 [18]
µ Natural death rate 0.01393 day−1 Estimated
σ Loss of immunity 0.01 day−1 [19]
γ Vaccine efficacy 0.8 [19]
α Infection death rate 0.1 day−1 [19]
λ Recovery rate of Infectives 0.68 day−1 Assumed
m Reaction due to media coverage 500 person Assumed

Therefore, we take parameter values which are listed in Table 2, β1 = 3× 10−5

and β2 = β3 = 6× 10−6. With the parameters in Table 2, we can obtain that

R0 =
β1Λ(µ+ ω) + β1(1− γ)θΛ

µ(α+ µ+ λ)(θ + µ+ ω)
= 1.0077 > 0.

Figure 1 shows that the disease in deterministic model (1.1) is persistent. Now we
analyze the effect of white noise.
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Figure 1. Simulations of solution (S(t), I(t), V (t), R(t)) for deterministic model (1.1) and stochastic
model (1.2) with white noise δk = 0.16, (k = 1, 2, 3, 4).

Case 1. Let the environmental white noise intensities be fixed at δk = 0.16,
(k = 1, 2, 3, 4). Then µ = 0.01393 > δ2k/2 = 0.0128 and

Rs
0 =

β1Λ(µ+ ω) + β1(1− γ)θΛ

µ(α+ µ+ λ+ δ22/2)(θ + µ+ ω)
= 0.9917 < 1.

From Theorem 2.2 (i) it follows that the influenza in model (1.2) can not spread
and Fig. 1 confirms this. This also means that larger white noise can suppress the
outbreak of the influenza.

Case 2. Let the environmental white noise intensities be fixed at δk = 0.001,
(k = 1, 2, 3, 4). Then

Rs
0 =

β1Λ(µ+ ω) + β1(1− γ)θΛ

µ(α+ µ+ λ+ δ22/2)(θ + µ+ ω)
= 1.0077 > 1.

According to the results of Theorem 2.2 (ii) and Theorem 2.3, the influenza will be
persistent in the long time and Fig. 2 confirms this.

On the other hand, since the terms β2
I

m+I and β3
I

m+I measure the effect of
reduction of the contact rate when infectious and vaccinated individuals are reported
in the media, so if β2 and β3 are more larger, the number of infected population
is more smaller. We fix white noise intensities at δ1 = δ2 = δ3 = δ4 = 0.05, and
choose three different values of β2 = β3 as 0.04 (see green line), 0.02 (see red line)
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Figure 2. Left panels: Simulations of solution (S(t), I(t), V (t), R(t)) for stochastic model (1.2) . Right
panels: Histogram stochastic system (1.2) with white noise δk = 0.001, (k = 1, 2, 3, 4).

and 0.00 (see blue line), then Fig. 4 support the analytical results. Theoretical
results and numerical simulations show that environmental white noise and media
coverage can reduce the transmission of the disease.

3. Dynamics of stochastic influenza model (1.3)
3.1. The properties of the global solution
By constructing the same Lyapunov function as that in Theorem 2.1, we can show
that model (1.3) has a unique global positive solution. Here we only give the result.

Theorem 3.1. For any initial value (S(0), I(0), V (0), R(0)) ∈ R4,o
+ , there is a

unique positive solution (S(t), I(t), V (t), R(t)) ∈ R4,o
+ of model (1.3) on t ≥ 0, and

the solution will remain in R4,o
+ with probability 1.

Theorem 3.1 shows that model (1.3) has a unique global positive solution. Then
from the expression of model (1.3) it leads to

d(S + I + V +R)

dt
=Λ− µ(S + I + V +R)− αI

≤Λ− µ(S + I + V +R), a.s.
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Figure 3. Simulations of I(t) of deterministic model (1.1) and stochastic model (1.2) with different
β2 and β3 values.

Therefore, we deduce that if the initial value S(0) + I(0) + V (0) +R(0) ≤ Λ
µ , then

S(t) + I(t) + V (t) +R(t) ≤ Λ
µ a.s., that is to say

Γ = {(S, I, V,R) : S > 0, I > 0, V > 0, R > 0, S + I + V +R ≤ Λ

µ
}

is a positive invariant set of model (1.3). Hence we have

Lemma 3.1. Let (S(t), I(t), V (t), R(t)) be a positive solution of model (1.3), the
following properties hold

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

V (t)

t
= 0, lim

t→∞

R(t)

t
= 0, a.s. (3.1)

lim sup
t→∞

lnS(t)

t
≤ 0, lim sup

t→∞

ln I(t)

t
≤ 0,

lim sup
t→∞

lnV (t)

t
≤ 0, , lim sup

t→∞

lnR(t)

t
≤ 0, a.s.

(3.2)

On the other hand, denote M(t) =
∫ t

0
S(r)dB(r), then M(t) is a locally contin-

uous martingale with M(0) = 0, and

lim sup
t→∞

⟨M,M⟩t
t

≤ Λ2

µ2
< ∞, a.s.

Strong law of large numbers leads to

lim
t→∞

1

t

∫ t

0

S(r)dB(r) = 0, a.s.

Similarly, we have the following lemma.
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Lemma 3.2. Let (S(t), I(t), V (t), R(t)) be a positive solution of model (1.3). Then

lim
t→∞

∫ t

0
S(r)dB(r)

t
= 0, lim

t→∞

∫ t

0
V (r)dB(r)

t
= 0,

lim
t→∞

∫ t

0
S(r)I(r)dB(r)

t
= 0, lim

t→∞

∫ t

0
V (r)I(r)dB(r)

t
= 0, a.s.

(3.3)

3.2. Persistence and extinction of disease
In this subsection, we will find the conditions which determine the persistence and
extinction of disease in model (1.3).

Theorem 3.2. Let (S(t), I(t), V (t), R(t)) be a positive solution of system (1.3).
(i). If

δ2 >
β2
1

2(α+ µ+ λ)
(3.4)

then
lim sup
t→∞

ln I(t)

t
≤ −(α+ µ+ λ) +

β2
1

2δ2
< 0 a.s.;

if

Rs
01 = R0 −

δ2

2(α+ µ+ λ)
(S̄ + (1− γ)V̄ )2 < 1 and δ2 ≤ β1

S̄ + (1− γ)V̄
, (3.5)

then
lim sup
t→∞

ln I(t)

t
≤ (α+ µ+ λ)(Rs

01 − 1) < 0 a.s.

These mean the disease dies out with probability one.
(ii). If Rs

02 = R0 − δ2

2(α+µ+λ) (
Λ
µ + (1− γ)Λµ )

2 > 1, then

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥ (Rs
02 − 1)

1
m + a1 + a2

a.s.,

where a1 and a2 are same as those in Theorem 2.2. This implies the disease will
persist in a long term.

Proof. On the one hand, using the similar analysis as that in the proof of Theorem
2.2, we have

⟨S⟩t ≤ S̄ − (µ+ ω)(α+ µ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t + φ3(t), (3.6)

where S̄ = (µ+ω)Λ
µ(θ+µ+ω) , and φ3(t) is defined by

φ3(t) =
1

µ(µ+σ)(θ+µ+ω)

[
− (µ+ω)µ

t

∫ t

0

δSIdB(t)−µ(ω−σ)

t

∫ t

0

δ(1−γ)V IdB(t)

−(µ+δ)(µ+ω)
S(t)−S(0)

t
−(µ+σ)ω

V (t)−V (0)

t
−(µ+ω)σ

I(t)−I(0)

t

− (µ+ ω)σ
R(t)−R(0)

t

]
.
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From (3.1) and (3.3), it follows

lim
t→∞

φ3(t) = 0, a.s.

We also obtain

V (t)− V (0)

t
≤ θ⟨S⟩t − (µ+ ω)⟨V ⟩t −

1

t

∫ t

0

δ(1− γ)V IdB(t). (3.7)

Substituting (3.6) into (3.7), one has

⟨V ⟩t ≤ V̄ − θ(α+ µ)

µ(µ+ σ)(θ + µ+ ω)
⟨I⟩t + φ4(t), (3.8)

where V̄ = Λθ
µ(θ+µ+ω) , φ4(t) =

θ
µ+ωφ3(t)− 1

µ+ω
V (t)−V (0)

t − 1
(µ+ω)t

∫ t

0
δ(1−γ)V IdB(t),

and φ4(t) → 0 as t → ∞. Therefore,

⟨S⟩t + (1− γ)⟨V ⟩t ≤S̄ + (1− γ)V̄ − α+ µ

µ(µ+ σ)
⟨I⟩t + φ3(t) + φ4(t)

=
(µ+ ω)Λ + (1− γ)Λθ

µ(θ + µ+ ω)
− α+ µ

µ(µ+ σ)
⟨I⟩t + φ3(t) + φ4(t).

(3.9)

On the other hand, we can also obtain

a1
S(t)− S(0) + I(t)− I(0)

t
+ a2

V (t)− V (0) + I(t)− I(0)

t
≥a1Λ− β1⟨S⟩t − β1(1− γ)⟨V ⟩t − (a1 + a2)(α+ µ+ λ)⟨I⟩t

+
a1
t

∫ t

0

(1− γ)δV IdB(t) +
a2
t

∫ t

0

δSIdB(t),

where a1 and a2 are the same as those in Theorem 2.2. This leads to

β1⟨S⟩t + β1(1− γ)⟨V ⟩t ≥ a1Λ− (a1 + a2)(α+ µ+ λ)⟨I⟩t + φ5(t), (3.10)

where φ5(t) = a1

t

∫ t

0
(1 − γ)δV IdB(t) + a2

t

∫ t

0
δSIdB(t) − a1

S(t)−S(0)+I(t)−I(0)
t +

a2
V (t)−V (0)+I(t)−I(0)

t tends to zero as t → ∞.
(i). By Itô’s formula, we deduce that

ln I(t)−ln I(0)

t
≤β1⟨S+(1−γ)V ⟩t−(α+µ+λ)− δ2

2
⟨(S+(1−γ)V )2⟩t+

M2(t)

t

≤β1⟨S + (1− γ)V ⟩t − (α+ µ+ λ)− δ2

2
⟨S + (1− γ)V ⟩2t +

M2(t)

t

≤− δ2

2

(
⟨S + (1− γ)V ⟩t −

β1

δ2

)2

− (α+ µ+ λ) +
β2
1

2δ2
+

M2(t)

t
,

(3.11)

where M2(t) = δ
∫ t

0
(S + (1− γ)V )dB(t), and limt→∞

M2(t)
t = 0 due to Lemma 3.2.

On the one hand, in view of (3.11), if condition (3.4) holds, taking super limit on
both sides of (3.11), we obtain

lim sup
t→∞

ln I(t)

t
≤ −(α+ µ+ λ) +

β2
1

2δ2
< 0, a.s.
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On the other hand, if condition (3.5) holds, combining (3.9), then

lim sup
t→∞

ln I(t)

t
≤− δ2

2

(
S̄ + (1− γ)V̄ − β1

δ2

)2

− (α+ µ+ λ) +
β2
1

2δ2

=β1(S̄ + (1− γ)V̄ )− δ2

2
(S̄ + (1− γ)V̄ )2 − (α+ µ+ λ)

=(α+ µ+ λ)

(
R0 − 1− δ2

2(α+ µ+ λ)
(S̄ + (1− γ)V̄ )2

)
=(α+ µ+ λ)(Rs

01 − 1) < 0 a.s.

(ii). From the proof of Theorem 2.2, in view of (3.10), we also have

ln I(t)− ln I(0)

t
+

1

m

I(t)− I(0)

t

≥β1⟨S + (1− γ)V ⟩t − (α+ µ+ λ)− α+ µ+ λ

m
⟨I⟩t −

δ2

2
⟨(S + (1− γ)V )2⟩t

+
M2(t)

t
+

M3(t)

t

≥a1Λ− (α+ µ+ λ)− (
1

m
+ a1 + a2)(α+ µ+ λ)⟨I⟩t −

δ2

2

(
Λ

µ
+ (1− γ)

Λ

µ

)2

+ φ5(t) +
M2(t)

t
+

M3(t)

t

=(α+ µ+ λ)(Rs
02 − 1)− (

1

m
+ a1 + a2)(α+ µ+ λ)⟨I⟩t + φ5(t) +

M2(t)

t
+

M3(t)

t
,

where M3(t) =
δ
m

∫ t

0
(S + (1 − γ)V )IdB(t). Therefore, from Lemmas 3.1 and 3.2,

we obtain that if Rs
02 > 1, then

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥ (Rs
02 − 1)

1
m + a1 + a2

a.s.

This completes the proof.

Remark 3.1. Theorem 3.2 gives sufficient conditions for persistence and extinction
of the disease. Conditions (3.5) show that if Rs

01 < 1 provided the white noise is
small, the disease will extinct exponentially. But the disease will also go extinct if
the environmental white noise is large enough. In the mean while, we obtain that
the disease will persist if Rs

02 > 1 when the white noise is small.

3.3. Numerical simulations

In this subsection, we also use the Milstein’s high-order method to simulate the
stochastic model (1.3). The numerical scheme for stochastic model (1.3) is given
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by: 

Sk+1 =Sk + [Λ + ωV k − (θ + µ)Sk − (β1 − β2
Ik

m+ Ik
)SkIk + σRk]∆t

− δSkIk
√
∆tξk − δ2

2
SkIk(ξ2k − 1)∆t,

Ik+1 =Ik + [(β1 − β2
Ik

m+ Ik
)SkIk + (β1 − β3

Ik

m+ Ik
)(1− γ)V kIk

− (α+ µ+ λ)Ik]∆t+ δ(SkIk + (1− γ)V kIk)
√
∆tξk

+
δ2

2
(SkIk + (1− γ)V kIk)(ξ2k − 1)∆t,

V k+1 =V k + [θSk − (µ+ ω)V k − (β1 − β3
Ik

m+ Ik
)(1− γ)V kIk]∆t

− δ(1− γ)V kIk
√
∆tξk − δ2

2
(1− γ)V kIk(ξ2k − 1)∆t,

Rk+1 =Rk + [λIk − (µ+ σ)Rk]∆t,

where the time increment ∆t > 0, ξk is Gaussian random variables which follow the
distribution N(0, 1) for k = 1, 2, ..., n.
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Figure 4. Simulations of solution (S(t), I(t), V (t), R(t)) for deterministic model (1.1) and stochastic
model (1.3) with white noise δ = 0.05.

We also take parameter values which are similar with Section 2.4. Choose white
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noise intensities δ = 6×10−6, then we have δ2 = 3.6×10−11 ≤ β1/[S̄ + (1− γ)V̄ ] =
1.1249× 10−9 and

Rs
01 = R0 −

δ2

2(α+ µ+ λ)
(S̄ + (1− γ)V̄ )2 = 0.9916 < 1.

Theorem 3.2 (i) shows that the influenza will be extinct in the long time, and Fig.
4 confirms this. If we choose white noise δ = 3× 10−7, then

Rs
02 = R0 −

δ2

2(α+ µ+ λ)
(
Λ

µ
+ (1− γ)

Λ

µ
)2 = 1.0073 > 1.

From (ii) in Theorem 3.2, it follows the influenza will spread in a long run and
Fig. 5 confirms this. The impact of media coverage can be simulated by Fig.
6. Theoretical results and numerical simulations of model (1.3) also show that
environmental white noise and media coverage can reduce the spread of disease.
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Figure 5. Simulations of solution (S(t), I(t), V (t), R(t)) for deterministic model (1.1) and stochastic
model (1.3) with white noise δ = 0.008.

Appendix
Since the proof of our result is based on the theory of Khasminskii, we introduce
some definitions and results concerning stationary distribution and periodic Markov
processes (see [10]).
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Figure 6. Simulations of I(t) of deterministic model (1.1) and stochastic model (1.3) with different
β2 and β3 values.

Let X(t) be a homogeneous Markov process in El (El denotes euclidean l-space)
satisfying the stochastic equation

dX(t) = h(X)dt+

k∑
m=1

gm(X)dBm(t).

The diffusion matrix is

Ā(x) = (āij(x)), āij(x) =

k∑
m=1

g(i)m (x)g(j)m (x).

Assumption. There is a bounded domain U ⊂ El with regular boundary Γ, which
has the properties that

(A1) In the domain U and some neighborhood thereof, the smallest eigenvalue of
the diffusion matrix Ā(x) is bounded away from zero.

(A2) If x ∈ El \U , the mean time τ at which a path issuing from x reaches the set
U is finite, and supx∈K Exτ < +∞ for every compact subset K ∈ El.

Lemma 3.3. If Assumption holds, then the Markov process X(t) has a stationary
distribution µ(·). Let f(·) be a function integrable with respect to the measure µ.
Then

P
{

lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫
El

f(x)µ(dx)

}
= 1.

In order to verify (B1), we only need to show that F is uniformly elliptical in
U , where F (u) = h(x)ux + 0.5trace(Ā(x)uxx), that is to say, there is M > 0 such
that

k∑
i,j=1

āij(x)ξiξj > M |ξ|2, x ∈ U, ξ ∈ Rk. (3.12)
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