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Abstract In this paper, by using the orthogonal decompositions of projection
matrices, a new general approach is proposed to construct asymmetrical OAs,
namely array subtraction, the operation of which is not the usual subtraction
but it is interesting since many so called atoms of asymmetrical OAs can
be obtained by the array subtraction. It is important to find these atoms
from some known asymmetrical OAs since they can make up of many new
asymmetrical OAs. As an application of the method, some old and new mixed-
level OAs of run sizes 72 and 100 are constructed.
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1. Introduction

An n×m matrix A, having ki columns with pi levels, i = 1, . . . , t,m =
t∑

i=1

ki, pi ̸= pj ,

for i ̸= j, is called an orthogonal array(OA) of strength d and size n if each n × d
submatrix of A contains all possible 1 × d row vectors with the same frequency.
Unless stated otherwise, an OA of strength 2 is considered, using the notation
Ln(p

k1
1 · · · pkt

t ) for such an array. An OA is said to have mixed level (or asymmetrical
) if t ≥ 2. Asymmetrical OAs was formally introduced by Rao [27, 28], although
examples of such arrays appeared in earlier publications, for example Addelman [1,2]
Addelman and Kempthome [3,4].

Clearly n must be a multiple of pipj , i ̸= j. If ki ≥ 2, n must be a multiple
of p2i . Therefore, without loss of generality, we assume that n = prq for mixed
level OA’s. The proceeding definition also includes the case that t = 1, but the
array is usually called a symmetrical OA, denoted by Ln(p

m). These arrays were
introduced by Rao [27], although the adjective “orthogonal” seems to have been
added by Bush [6] and Bose etc [7]. For simplicity, it will be no longer demanded
that t ≥ 2 and that pi ̸= pj , for i ̸= j. The symmetrical and asymmetrical will only
be used when needed.

Orthogonal arrays are not only beautiful but also useful. Furthermore they are
essential in Statistics and they play important roles in coding theory, computer
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science and cryptography. More details are illustrated by Heydayet etc [14].
In Statistics they are primarily used in designing experiments, which simply

means that they are immensely important in all areas of human investigation: for
example in medicine, agriculture and manufacturing.

A new theory or procedure of constructing asymmetrical OAs by using the or-
thogonal decompositions of projection matrices has been given by Zhang etc [37].
Suen [31], Suen etc [32] and Luo etc [19] have obtained some OAs by this procedure.
Similarly, Leng etc [20] have constructed some fusion frames by investigating de-
compositions of positive matrices as weighted sums of orthogonal projections. The
idea of the orthogonal decompositions of projection matrices for constructing de-
signs comes from the theory of multilateral matrices in Zhang [40]– a mathematical
technique to solve the problems of system with complexity. In general, the proce-
dure of constructing asymmetrical OAs in our theory has been partitioned mainly
into five parties: orthogonal-array addition, subtraction, multiplication, division
and replacement.

The technique, namely generalized Kronecker product which belongs to the class
of orthogonal-array multiplications, has also been proposed for the construction of
asymmetrical OAs by Zhang [40] in the theory of multilateral matrices. Pang et
al. [26] have discussed the generalized concept of matrices orthogonal-array multi-
plications. Zhang [41] has discussed the special technique of Kronecker sum from
generalized Hadamard product and Zhang etc [42] have proposed a particular gen-
eralized Kronecker product about generalized difference matrices. Luo etc [21] con-
tinue to develop the technique of generalized Kronecker product.

The technique, namely generalized Hadamard product which belongs to the
class of orthogonal-array additions, has also been proposed for the construction of
asymmetrical OAs by Zhang [40] in the theory of multilateral matrices. Zhang etc
[43] construct a lot of new asymmetrical OAs by the generalized Hadamard matrices
D(rm(r+1), rm(r+1); p). Zhang etc [44] construct a lot of new asymmetrical OAs
by a generalized Hadamard product.

Furthermore, Luo [22] has discussed the relationship between generalized differ-
ence matrices and mixed OAs. The relationship is similar to a general “expansive
replacement method” for constructing mixed-level OAs of an arbitrary strength
established by Jiang etc [17], a construction and decomposition of OAs with non-
prime-power numbers of symbols on the complement of a Baer subplane demon-
strated by Yamada etc [36], and the existence of mixed OAs with four and five
factors of strength two investigated by Chen etc [8] .

The current emphasis on quality control and product improvement has rejuve-
nated research in the area of asymmetrical factorial design, or namely asymmetrical
OAs. Practical considerations have spurred research in various new or newly empha-
sized directions. Among these is that of the use and construction of asymmetrical
OAs, examplified by research of Taguchi [33], Cheng [11], Agrawal etc [5], Dey
etc [13], Wu etc [34] and Hedayet etc [16] .

In the past three years, scholars have made outstanding contributions to the con-
struction of orthogonal arrays. For the first time, a new general iterative construc-
tion method for asymmetric OAs of high strength was proposed by Pang etc [23].
Pang etc [24] have put forward a new method for constructing OAs, which is a
general method to construct symmetric and asymmetric OAs of strength t by or-
thogonal partition. Pang etc [25] have given new construction methods for symmet-
ric and asymmetric orthogonal arrays (OAs) with high strength are proposed by
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using lower strength orthogonal partitions of spaces and OAs. Moreover, Charles
etc [12] claims a way that completely solves the problem of constructing basic OAs
with n = 2, assuming the truth of the Hadamard matrix conjecture. Literature [15]
mainly studies the system construction of COAs (component orthogonal arrays as
fractional designs of all possible permutations on experimental factors). As a conse-
quence, the proposed COAs not only possess reasonable run sizes, but also have high
efficiencies under the PWO (pair-wise ordering) model. A new method for identi-
fying and evaluating irregular design complex alias structures of all symmetric and
asymmetric orthogonal, regular and irregular asymmetric arrays is proposed by X.
P. Xue etc [9].X. P. Xue etc [10] also constructed a new orthogonal-array based on
composite minimax loss designs, which are more robust in terms of D-efficiency and
the generalized standard deviation for a missing design point.

The mathematical theory is extremely wonderful: OAs are related to combina-
torics, finite fields, geometry and error-correcting codes. The definition of an OA is
simple and natural and many elegant constructions can be known-yet there are at
least as many unsolved problems. In fact, the construction of orthogonal arrays as
fractional factorial designs is so sufficiently documented that it requires no further
explanation. Many new construction methods on the asymmetrical OAs have been
proposed, for example, a grouping scheme by Wu [35], a method from the theory of
group or domain [34], and Baer subplane by Ryoh [29]. Most of these methods on
the asymmetrical OAs are only or mainly from the theory of group or domain. The
theory of the construction of asymmetrical OAs has not received yet a considerable
amount of attention in the literature since the problem is too difficulty to solve.
But the work must be done because of the requirement of the quality control and
product improvement.

The technique, namely array subtraction (Definition 2.3), has been first proposed
for the construction of asymmetrical OAs by Zhang [40] in the theory of multilateral
matrices. In this paper, the technique will further be explained and extend to
construct some new asymmetrical (or mixed-level) OAs by using the orthogonal
decompositions of projection matrix in Zhang etc [37].

Section 2 contains the basic concepts and main theorems. In Section 3 the
method of construction is described. Some old and new mixed level OAs with run
sizes 72 and 100 are constructed in Section 4.

2. Basic Concepts and Main Theorems
In our procedure, an important idea is to find the relationship among OAs, permu-
tation matrices and projection matrices. The following notations had to be used.

0 Let x ∈ En = V
⊕

W .Then x can be uniquely decomposed into

x = x1 + x2(where x1 ∈ V and x2 ∈ W ).

The transformation that maps x into x1 is called the projection matrix (or simply
projector) onto V along W and is denoted as ϕ.

Let 1r be the r×1 vector of 1’s, 0r the r×1 vector of 0’s, Ir the identity matrix
of order r and Jr,s the r × s matrix of 1’s, also Jr =: Jr,r. Of course, the two
matrices Pr = (1/r)1r1

T
r = (1/r)Jr and τr = Ir − Pr are projection matrices.

Define

(r) = (0, . . . , r − 1)Tr×1, (r)
◦2 = (r) + (r), mod r, ei(r) = (0 · · · 0

i
1 0 · · · 0)Tr×1,
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where ∗T means the transpose of matrix ∗ and ei(r) is the base vector of Rr (r-
dim vector space) for any i. Two r × r and pq × pq permutation matrices can be
constructed by the r×1,p×1and q×1 base vectors ei(r),ei(p)and ej(q)respectively
as follows:

Nr = e1(r)e
T
2 (r) + · · ·+ er−1(r)e

T
r (r) + er(r)e

T
1 (r)

and

K(p, q) =

p∑
i=1

q∑
j=1

ei(p)e
T
j (q)⊗ ej(q)e

T
i (p), (2.1)

where ⊗ is the usual Kronecker product in the theory of matrices. The permutation
matrices Nr and K(p, q) have the following properties:

Nr · (r) = 1r + (r), mod r, and K(p, λp) · ((λp)⊕ (p)) = (p)⊕ (λp),

where ⊕ is the usual Kroneker sum in the theory of matrices (Shrikhande [30]).
Definition 2.1. Let A be an OA of strength 1, i.e.,

A = (a1, . . . , am) = (S1(0r1 ⊕ (p1)), . . . , Sm(0rm ⊕ (pm))),

where ripi = n, Si is a permutation matrix for any i = 1, . . . ,m. The following
projection matrix,

Aj = Sj(Prj ⊗ τpj
)ST

j , (2.2)

is called the matrix image (MI) of the jth column aj of A, denoted by m(aj) = Aj

for j = 1, . . . ,m. In general,the MI of a subarray of A is defined as the sum of the
MI’s of all its columns. In particular, denoted the MI of A by m(A).

If a design is an OA, then the MI’s of its columns has some interesting properties
which can be used to construct OAs. For example, by the definition, there is

m(0r) = Pr and m((r)) = τr.

Theorem 2.1. For any permutation matrix S and any array L,

m(S(L⊕ 0r)) = S(m(L)⊗ Pr)S
T and m(S(0r ⊕ L)) = S(Pr ⊗m(L))ST .

Theorem 2.2. Let the array A be an OA of strength 1, i.e.,

A = (a1, . . . , am) = (S1(0r1 ⊕ (p1)), . . . , Sm(0rm ⊕ (pm))),

where ripi = n, Si is a permutation matrix, for i = 1, . . . ,m.
The following statements are equivalent.
(1). A is an OA of strength 2.
(2). The MI of A is a projection matrix.
(3). The MI’s of any two columns of A are orthogonal, i.e m(ai)m(aj) = 0(i ̸=

j).
(4). The projection matrix τn can be decomposed as

τn = m(a1) + . . .+m(am) +△,

where rk(△) = n− 1−
m∑
j=1

(pj − 1) is the rank of the matrix △.
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Definition 2.2. An OA Ln = Ln(p1 · · · pm) of run size n is said to be saturated if
m∑
j=1

(pj − 1) = n− 1 ( or,equivalently, m(Ln) = τn).

Corollary 2.1. Let (L,H) and K be OAs of run size n. Then (K,H) is an
orthogonal array if m(K) ≤ m(L), where m(K) ≤ m(L) means that the difference
m(K)−m(L) is nonnegative definite.

Corollary 2.2. Suppose L and H are OAs. Then K = (L,H) is also an OA if m(L)
and m(H) are orthogonal, i.e., m(L)m(H) = 0. In this case m(K) = m(L)+m(H).

These theorems and corollaries can be found in Zhang [38–40].
The following theorem is elementary for the procedure of so called array sub-

traction although it is simple. The concept of array subtraction can be introduced
from it.

Theorem 2.3. Let Ln = (K,H) be an OA of run size n. If there exists an n× n
projection matrix Θ such that m(K) ≥ Θ, then the sub-array H of Ln is also an
orthogonal whose MI is less than or equal to τn −Θ, i.e.,

m(H) ≤ τn −Θ. (2.3)

Proof. From Definition 2.1 and Corollary 2.2, we have

m(Ln) = m(K) +m(H),

i.e.,m(H) = m(Ln) − m(K). By Theorem 2.2, the inequality m(Ln) ≤ τn holds
for any orthogonal arrays of run size n. Thus by the condition m(K) ≥ Θ, the
projection matrix m(H) ≤ τn −Θ can be obtained. Of course H is an OA since it
is a subarray of OA, completing the proof.

Definition 2.3. Let K be an OA of run size n. If there exists an OA H such that
m(H) ≤ τn −m(K), then the OA H is called an atom of asymmetrical OAs of run
size n corresponding to the OA K.

In general, let both K and Ln be two OAs of run size n, if there exists an OA
H such that m(H) ≤ m(Ln)−m(K), then the OA H is called an atom of the OA
Ln corresponding to the OA K (or a difference of Ln and K).When K = 0n, the
OA H is called simply an atom of Ln.

For given asymmetrical OAs K and Ln, the operation of finding all atoms H of
Ln corresponding K from known asymmetrical OAs is called array subtraction.

In our procedure, it is a key to constructing asymmetrical OAs that for a given
projection matrix A an OA H can be found from known OAs such that m(H) ≤ A.
The problem is often solved by the array subtraction. Therefore the operation of
array subtraction is important.

The following theorems are very useful in the operation of array subtraction.

Theorem 2.4. Let H be an atom of Ln corresponding to K and let T be an n× n
permutation matrix.Then the OA TH is also an atom of TLn corresponding to
TK.

Proof. Let H be an atom of Ln corresponding to K, i.e.

m(H) ≤ m(Ln)−m(K). (2.4)
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Let T be an n× n permutation matrix, i.e.

m(TH) = Tm(H)TT . (2.5)

By 2.4 and 2.5,it is gotten that

m(TH) = Tm(H)TT ≤ Tm(Ln)T
T − Tm(K)TT = m(TLn)−m(TK).

By Definition 2.3,it is gotten that the OA TH is an atom of TLn corresponding
to TK.

Theorem 2.5. Let H be an atom of Ln corresponding to K and let H1 be an atom
of the OA H. Then the OA H1 is also an atom of Ln corresponding to K.
Proof. Let H be an atom of Ln corresponding to K, i.e.

m(H) ≤ m(Ln)−m(K). (2.6)

Let H1 be an atom of the OA H, i.e.

m(H1) ≤ m(H). (2.7)

By 2.6 and 2.7, it is gotten that

m(H1) ≤ m(Ln)−m(K).

By Definition 2.3, it is gotten that the OA H1 is an atom of Ln corresponding
to K.

Theorem 2.6. Let H be an atom of Ln corresponding to K and let K1 be an atom
of the OA K. Then the OA H is also an atom of Ln corresponding to K1.
Proof. Let H be an atom of Ln corresponding to K,i.e.

m(H) ≤ m(Ln)−m(K). (2.8)

Let K1 be an atom of the OA K,i.e.

m(K1) ≤ m(K). (2.9)

By 2.8 and 2.9, it is gotten that

m(H) ≤ m(Ln)−m(K) ≤ m(Ln)−m(K1).

By Definition 2.3, it is gotten that the OA H is an atom of Ln corresponding
to K1.

3. General Methods for Constructing OA’s by Ar-
ray Subtraction

Our procedure of constructing mixed-level OAs by using the array subtraction based
on the orthogonal decomposition of the projection matrix τn consists of the following
three steps:
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Step 1. Orthogonally decompose the projection matrix τn :

τn =T1[Pr1 ⊗ (τp1 −Θ1)]T
T
1 + . . .+ Tk1 [Prk1

⊗ (τpk1
−Θk1)]T

T
k1

+ C1 + . . .+ Ck2
+△,

where ripi = n, Θi ≤ τpi
, Θi, Cs,△ are projection matrices and Tt is a permutation

matrix for any i, s, t.
Step 2. Suppose that there exists an OA Li such that m(Li) ≥ Θi for any i =

1, 2, . . . , k1. Find all (or many) atoms Hi of Lpi (an OA of run size pi) corresponding
to Li and find all (or many ) orthogonal Hs from some known OAs such that

m(Hi) ≤ τpi
−Θi and m(Hs) ≤ Cs,

for any i = 1, 2, . . . , k1, s = 1, 2, . . . , k2.
Step 3. Lay out the new OA L by Theorem 2.1,Corollaries 2.1 and 2.2 :

L = (T1(0r1 ⊕H1), . . . , Tk1
(0rk1

⊕Hk1),H1, . . . , Hk2
).

Based on Step 1, the following orthogonal decomposition of τn is very useful,

τpq = Ip ⊗ τq + τp ⊗ Pq = τp ⊗ Pq + Pp ⊗ τq + τp ⊗ τq = τp ⊗ Iq + Pp ⊗ τq,

τprq = τp ⊗ Ir ⊗ Pq + Pp ⊗ τrq + τp ⊗ Ir ⊗ τq. (3.1)

These equations are easy to verify from τp = Ip−Pp, Ppq = Pp⊗Pq and Ipq = Ip⊗Iq.

Definition 3.1. Let Ln be an OA. The Ln is called having a clear structure if there
exist two OAs A, B and m permutation matrices Tj = fj(Nr,K(p, q)), j = 1, . . . ,m,
such that

Ln = (T1(A⊕ 0λ), . . . , Tm(A⊕ 0λ), 0µ ⊕B),

where Tj = fj(Nr,K(p, q)) means that Ti can be written into a matrix function of
Nr and K(p, q).

Lemma 3.1. There exist OAs L4(2
3), L9(3

4) and L18(3
661) having the following

clear structures:

L4(2
3) = [(2)⊕ 02, Q1((2)⊕ 02), Q2((2)⊕ 02)],

L9(3
4) = [(3)⊕ 03, S1((3)⊕ 03), S2((3)⊕ 03), 03 ⊕ (3)],

and

L18(3
661) = [(3)⊕D0(3, 2; 3)⊕ 02,

M1((3)⊕D0(3, 2; 3)⊕ 02),M2((3)⊕D0(3, 2; 3)⊕ 02), 03 ⊕ (6)],

where Q1 = K(2, 2), Q2 = K(2, 2)diag(I2, N2)K(2, 2)T ;

S1 = K(3, 3)diag(I3, N3, N
2
3 )K(3, 3)T , S2 = K(3, 3)diag(I3, N2

3 , N3)K(3, 3)T ;

and

M1 = K(3, 6)diag(N3, N
2
3 , Q1 ⊗ I3)K(3, 6)T ,

M2 = K(3, 6)diag(N2
3 , N3, Q2 ⊗ I3)K(3, 6)T ;
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and where D0(3, 2; 3) = ((3), (3)◦2) =


0 0

1 2

2 1

 (an atom of difference matrix

D(3, 3; 3)).

A key to construct asymmetrical OAs by using array subtraction is to find a
clear structure for known orthgonal arrays.

In applying Step 2, the following theorems play very useful roles in the procedure:
Theorem 3.1. There exist three atoms:

L
(−)
12 (29), L

(−)
12 (2231), L

(−)
12 (61), (3.2)

of L12 corresponding to [06 ⊕ (2), 03 ⊕ (2)⊕ (2)], i.e., there exist three OAs in (3.2)
such that their matrix images are less than or equal to the following projection
matrix:

τ12 − P6 ⊗ τ2 − P3 ⊗ τ2 ⊗ τ2 = τ3 ⊗ I4 + P3 ⊗ τ2 ⊗ P2.

Proof. Consider the following OA L12(2
11)(in (3.3)).

L12(2
11) = (b1, . . . , b11) =



0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 1 1 0 1

0 1 0 1 0 1 1 1 0 0 1

1 0 1 1 0 1 0 1 0 1 0

0 0 0 1 1 0 0 1 1 1 1

1 1 0 0 1 1 0 0 0 1 1

0 1 1 0 1 0 1 1 0 1 0

1 0 1 1 1 0 1 0 0 0 1

0 0 1 0 0 1 1 0 1 1 1

1 1 0 1 0 0 1 0 1 1 0

0 1 1 1 1 1 0 0 1 0 0

1 0 0 0 1 1 1 1 1 0 0



, (3.3)

which is obtained by a computer searches from a Hadamard matrix D(12, 12; 2) in
Zhang etc [43].

Define
L
(−)
12 (29) = (b3, . . . , b11),

L
(−)
12 (2231) = (b3, b4, (3)⊕ 04),

and
L
(−)
12 (61) = (6)⊕ 02.

They are really the desired atoms (or OAs ) by using array subtraction.

Corollary 3.1. There exist two atoms: L
(−)
12 (27) and L

(−)
12 (31) of L

(−)
12 (29) (in

(3.2)) corresponding to (b3, b4) (in (3.3)).
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Above Theorem 3.1 and Corollary 3.1 have been used to construct some new
asymmetrical OAs of run sizes 36 such as L36(2

2731), L36(2
2032), L36(2

183161) by
using the orthogonal decomposition of projection matrices in Zhang etc [37].

L36(2
2731) =[(S1 ⊗Q1)(13 ⊗ L12(2

9)), (S2 ⊗Q2)(13 ⊗ L12(2
9)),

(S3 ⊗Q3)(13 ⊗ L12(2
9), (S4 ⊗ I4)(13 ⊗ (3)⊗ I4)],

L36(2
2032) =[(S1 ⊗Q1)(13 ⊗ L12(3

1), b3b4), (S2 ⊗Q2)(13 ⊗ L12(3
1), b3b4),

(S3 ⊗Q3)(13 ⊗ L12(3
1), b3b4), (S4 ⊗ I4)(13 ⊗ (3)⊗ I4)],

L36(2
183161) =[(S1 ⊗Q1)(13 ⊗ L12(6

1)), (S2 ⊗Q2)(13 ⊗ L12(6
1)),

(S3 ⊗Q3)(13 ⊗ L12(6
1)), (S4 ⊗ I4)(13 ⊗ (3)⊗ I4)].

In the above formulae,

S1 =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1



S2 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



S3 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0



S4 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0



Q1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Q2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 Q3 =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


Theorem 3.2. There exists an atom L

(−)
18 (34) of L18 corresponding to

[03 ⊕ (6), (3)⊕ (3)⊕ 02, (3)⊕ (3)◦2 ⊕ 02],
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where (3)◦2 = (021)T = (3) + (3)mod3.

On the other words, there exists an OA L
(−)
18 (34) such that its matrix image is

equal to the following projection matrix:

τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2 = τ3 ⊗ I3 ⊗ τ2 + τ3 ⊗ P6,

where m([(3)⊕ (3), (3)⊕ (3)2]) = τ3 ⊗ τ3.

proof. Consider the following OA L18(3
661)(in (3.4)).

L18(3
661) = (c1, . . . , c6, f) =



0 0 1 1 2 2 0

0 0 2 2 1 1 1

1 2 1 2 1 2 2

1 2 2 1 2 1 3

2 1 1 2 2 1 4

2 1 2 1 1 2 5

1 1 2 2 0 0 0

1 1 0 0 2 2 1

2 0 2 0 2 0 2

2 0 0 2 0 2 3

0 2 2 0 0 2 4

0 2 0 2 2 0 5

2 2 0 0 1 1 0

2 2 1 1 0 0 1

0 1 0 1 0 1 2

0 1 1 0 1 0 3

1 0 0 1 1 0 4

1 0 1 0 0 1 5



, (3.4)

which is really the structure in Lemma 3.1 and obtained by the construction of
generalized Hadamard matrices D(rm(r + 1), rm(r + 1); p) (Zhang etc [43] ).

Define
L
(−)
18 (34) = (c3, . . . , c6).

The OA is really the desired atom by using array subtraction.

Corollary 3.2. There exists one atom L
(−)
18 (3461) of L18 corresponding to [(3) ⊕

(3)⊕ 02, (3)⊗ (3)◦2 ⊕ 02] whose matrix image is

τ18 − τ3 ⊗ τ3 ⊗ P2 = I9 ⊗ τ2 + (τ3 ⊗ P3 + P3 ⊗ τ3)⊗ P2,

where τ3 ⊗ P3 + P3 ⊗ τ3 = m((3) ⊕ 03, 03 ⊕ (3)) = m(M [(3) ⊕ (3), (3) ⊕ (3)2]) =
Mτ3 ⊗ τ3M

T in which M = diag(I3, N2
3 , N3)K(3, 3)diag(I3, N2

3 , N3)K(3, 3)T .
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Proof. By (3.4), let L
(−)
18 (3461) = (c3, . . . , c6, f). The orthogonal is really the

desired atom by using subtraction.
Above Theorem 3.2 and Corollary 3.2 have been used to construct some asym-

metrical OAs of run sizes 36 and 72 such as L36(2
13862), L36(2

103861), L36(2
93462),

L72(2
1132061121) by using the methods of so called orthogonal decomposition of

projection matrices (Zhang etc [37]) and so called generalized Hadamard product
(Zhang etc [44]).

L36(2
13862) =[(T1 ⊗Q1)(L18(6 · 34)⊗ 12), (T2 ⊗Q2)(L18(6 · 34)⊗ 12),

(I9 ⊗Q3)(19 ⊗ (2)⊗ 12)],

L36(2
103861) =[13 ⊗ L12(2

9), (S1 ⊗Q1)(L18(3
4)⊗ 12), 118 ⊗ (2),

(S2 ⊗Q2)((3)⊗ 112)□(19 ⊗ (2)⊗ 12), L18(3
4)⊗ 12],

L36(2
93462) =[13 ⊗ L12(2

9), (S1 ⊗Q1)((3)⊗ 112□19 ⊗ (2)⊗ 12),

(S2 ⊗Q2)((3)⊗ 112□19 ⊗ (2)⊗ 12), L18(3
4)⊗ 12].

In the above formulae,

T1 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



, T2 =



1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0



.

Theorem 3.3. There exist three atoms:

L
(−)
20 (217), L

(−)
20 (2651), L

(−)
20 (101), (3.5)

of L20 corresponding to [010 ⊕ (2), 05 ⊕ (2) ⊕ (2)], i.e., there exist three OAs in
(8) such that their matrix images are less than or equal to the following projection
matrix:

τ20 − P10 ⊗ τ2 − P5 ⊗ τ2 ⊗ τ2 = τ5 ⊗ I4 + P5 ⊗ τ2 ⊗ P2.

Proof. Consider the following OA L20(2
19)(in (9)).

Define

L
(−)
20 (217) = (b3, . . . , b19),

L
(−)
20 (2651) = (b3, . . . , b8, (5)⊕ 04),

and
L
(−)
20 (101) = (10)⊕ 02.
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They are the desired atoms (or OAs ) by using array subtraction.

Corollary 3.3. There exist two atoms: L
(−)
20 (211) and L

(−)
20 (51) of L

(−)
20 (217) (in

(8)) corresponding to (b3, b4, b5, b6, b7, b8) (in (3.6)).

A particular form of OAs having above properties is

L20(2
19) = (b1, . . . , b19) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0

0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0

1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1

0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1

1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0

0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0

1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0

1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1

0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1

1 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1

0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1

1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0

0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1

1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1

1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0



, (3.6)

which is obtained by a computer searches from a Hadamard matrix D(20, 20; 2) in
Zhang etc [43].

Above Theorem 3.3 and Corollary 3.3 have been used to construct some new
asymmetrical OAs of run sizes 60 such as L60(2

2831) and L60(2
2661) by using a

method of so called generalized difference matrices (Zhang etc [42]).

L60(2
2831) = [D5(3, 14; 2, 19)

k
⊗ (c1, . . . , c19), 13 ⊗ (c6, . . . , c19), (3)⊗ 120]

L60(2
2661)=[D5(3, 13; 2, 18)

k
⊗(c2, . . . , c19), 13⊗(c7, . . . , c19), ((3))⊗120 ⋄ (13⊗c1)]

Dt(3, 3t; 2, 4t) =[D1(3, 3; 2, 4)
k
⊗ (a1, at+1, at+2, at+3), t. . .,

D1(3, 3; 2, 4)
k
⊗ (at, a4t−2, a4t−1, a4t)];
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Dt+1(3, 3t+ 2; 2, 4t+ 3) =[D1(3, 3; 2, 4)
k
⊗ (a1, at+2, at+3, at+4), t. . .,

D1(3, 3; 2, 4)
k
⊗ (at, a4t−1, a4t, a4t+1)];

Dt+2(3, 3t+ 4; 2, 4t+ 6) =[D1(3, 3; 2, 4)
k
⊗ (a1, at+3, at+4, at+5), t. . .,

D1(3, 3; 2, 4)
k
⊗ (at, a4t, a4t+1, a4t+2),

D1(3, 2; 2, 3)
k
⊗ (at+1, a4t+3, a4t+4),

D1(3, 2; 2, 3)
k
⊗ (at+2, a4t+5, a4t+6)];

D1(3, 2; 2, 3) =


a1 a3

a2 a1

−a2 − a3

 .

Theorem 3.4. There exist four atoms L
(−)
24 (28121), L

(−)
24 (21641), L

(−)
24 (274161),

L
(−)
24 (293141) of L24(in (3.7)) corresponding to [b1, b2, b3, b4] (in (3.7)), where the

four columns (b1, b2, b3, b4) in (10) satisfy the following equation

2∑
i=1

(Mi ⊗Qi) · (P9 ⊗ I2 ⊗ τ2 ⊗ P2) · (Mi ⊗Qi)
,T = P3 ⊗m(b1, b2, b3, b4),

where M1,M2, Q1, Q2 are defined in Lemma 3.1.

On the other words, the forms of four columns b1, b2, b3, b4 are

03 ⊕ (b1, b2)=(M1⊗Q1)(09⊕[02, (2)]⊕(2)⊕ 02)=03⊕[06, (010011)
T ]⊕ 02 ⊕ (2),

03 ⊕ (b3, b4)=(M2 ⊗Q2)(09⊕[02, (2)]⊕(2)⊕ 02)=03 ⊕ [06, 03 ⊕ (2)]⊕ (2)⊕ (2).

Proof. Consider the following array (b1, . . . , b23, c, d, f, l)(in (10)).
Define

L
(−)
24 (28121) = (b16, . . . , b23, l),

L
(−)
24 (21641) = (b2, . . . , b17, b20, . . . , b23, d),

L
(−)
24 (293141) = (b2, b3, b4, b12, . . . , b17, b20, . . . , b23, c, d),

L
(−)
24 (274161) = (b2, b12, . . . , b17, b20, . . . , b23, d, f).

They are really the desired atoms (or OAs ) by using array subtraction because
(b1, . . . , b23) is an OA L24(2

23) and bj = b11+j , j = 1, . . . , 4.

Corollary 3.4. There exists an atom L
(−)
24 (28) = (b16, . . . , b23) of L24(in (3.7))

corresponding to [b1, b2, b3, b4, (12) ⊕ 02] (in (10)), where bj is the same as that in
Theorem 3.4 for any j.
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A particular form of OAs having the property is

(b1, . . . , b23, c, d, f, l) =



0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 3 0 0

0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 3 1 1

0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1

1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 2 0 2

1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 2

1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 2 1 3

1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 4

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 4

1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 2 5

1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 2 2 5

0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 3 6

0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 3 3 6

1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 2 3 7

1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 3 7

1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 2 1 4 8

1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 2 2 4 8

0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 2 0 4 9

0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 2 3 4 9

0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 2 3 5 10

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 2 0 5 10

1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 2 1 5 11

1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 2 2 5 11



,

(3.7)
which is obtained by a computer searches from an OA L24(2

12121).
Above Theorem 3.4 and Corollary 3.4 have been used to construct some new

asymmetrical OAs of run sizes 72 such as L72(2
1031662121) and L72(2

931263121) by
using a method of so called generalized Hadamard product (Zhang etc [44]). In this
paper, the result will be also used to construct an asymmetrical orthogonal array
L72(2

183465).

Theorem 3.5. There exist three atoms:

L
(−)
36 (2238), L

(−)
36 (213461), L

(−)
36 (62), (3.8)

of L36 corresponding to [(L
(−)
18 (3461))⊕03, 02⊕(L

(−)
12 (29))], where the OA L

(−)
18 (3461)

is the atom in Corollary 3.2 of L18 corresponding to [(3)⊕ (3), (3)⊕ (3)◦2]⊕ 02 and
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similarly the OA L
(−)
12 (29) is the atom in Theorem 3.1 of L12 corresponding to

03 ⊕ [02 ⊕ (2), (2)⊕ (2)].

On the other words, there exist three OAs in (11) such that their matrix images
are less than the following projection matrix:

τ36 − [(τ18 − τ3 ⊗ τ3 ⊗ P2)]⊗ P2 − P3 ⊗ [(τ12 − P3 ⊗ I2 ⊗ τ2)]

=τ3 ⊗ I6 ⊗ τ2 + τ3 ⊗ τ3 ⊗ P2 + P2 ⊗ I2 ⊗ τ2.

Proof. In general,let Ω1 = {0, 1, . . . , p−1},Ω2 = {0, 1, . . . , q−1},V = {0, 1, . . . , pq−
1} and h(i, j) = iq+j.In this case,the generalized Hadamard product h◦ also called a
jointing or repeating operation and denoted by □,can be used for the construction
of asymmetrical orthogonal arrays.

By the generalized Hadamard product h◦= ⋄, h(i, j) = i3 + j, in Zhang etc [44],
the following orthogonal OAs can be obtained

L
(−)
36 (2238)=[(S1⊗Q1)(L

(−)
18 (34)⊕02), (S2⊗Q2)(L

(−)
18 (34)⊕02), 09⊕(02, (2))⊕(2)],

L
(−)
36 (213461)=[(S1⊗Q1)(L

(−)
18 (34)⊕02), [(3)⊕(3)◦2⊕04] ⋄ [09⊕(2)⊕(2)], 018⊕(2)],

L
(−)
36 (62) = [[(3)⊕ (3)⊕ 04] ⋄ (018 ⊕ (2)], [(3)⊕ (3)◦2 ⊕ 04] ⋄ [09 ⊕ (2)⊕ (2)]],

in which L
(−)
18 (34) is the atom in Theorem 3.2 of L18 corresponding to [(3)⊕ (3)⊕

02, (3)⊕ (3)2 ⊕ 02, 03 ⊕ (6)]. This completes the proof.

Above Theorem 3.5 has been used to construct some asymmetrical OAs of run
sizes 72 such as L72(2

193204161) and L72(2
183164162) by using a method of so called

generalized Hadamard product in Zhang etc [44]. In this paper, the result will be
also used to construct some asymmetrical orthogonal arrays of run sizes 72 such as
L72(2

183465).

L72(2
193204161) =L72(12

162316210)

=[13 ⊗ L24(12
1 · 28), L36(3

8)⊗ 12, (M1 ⊗Q1)(L36(3
8)⊗ 12),

(M1 ⊗Q1)(L36(3
8)⊗ 12), (M1 ⊗Q1)19 ⊗ [Q1((2)⊗ 12),

Q2((2)⊗ 12)]⊗ 12,

(M2 ⊗Q2) · [S1((3)⊗ 13)]⊗ 18□19 ⊗ [Q1((2)⊗ 12)]⊗ 12,

(M2 ⊗Q2) · [S2((3)13)]⊗ 18□19 ⊗ [Q2((2)⊗ 12)]⊗ 12].

L72(2
183164162) =[13 ⊗ (L

(−)
24 (41 · 216)), L36(3

8)⊗ 12,

(M1 ⊗Q1) · (L36(3
8)⊗ 12),

(M1 ⊗Q1) · 19 ⊗ [Q1((2)⊗ 12), Q2((2)⊗ 12)]⊗ 12,

(M2 ⊗Q2) · [S1((3)⊗ 13)]⊗ 18□19 ⊗ [Q1((2)⊗ 12)]⊗ 12,

(M2 ⊗Q2) · [S2((3)⊗ 13)]⊗ 18□19 ⊗ [Q2((2)⊗ 12)]⊗ 12].
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S1 =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0



, S2 =



1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0



,

Q1 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , Q2 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 ,

M1 =



0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, M2 =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0



.

Theorem 3.6. There exist eleven atoms of 36-run OAs corresponding to L
(−)
18 (34)⊕

02 which is the same as that in Theorem 3.5 as follows:

L
(−)
36 (21138), L

(−)
36 (2103461), L

(−)
36 (2962), L

(−)
36 (2439),
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L
(−)
36 (233561), L

(−)
36 (223861), L

(−)
36 (223162), L

(−)
36 (213462),

L
(−)
36 (3941), L

(−)
36 (38121), L

(−)
36 (63), (3.9)

whose MI’s are less than or equal to

τ36 − (τ18 − τ3 ⊗ τ3 ⊗ P2 − P3 ⊗ τ6)⊗ P2 = I18 ⊗ τ2 + τ3 ⊗ τ3 ⊗ P2 + P3 ⊗ τ6 ⊗ P2

= P3 ⊗ τ12 + τ3 ⊗ I6 ⊗ τ2 + τ3 ⊗ τ3 ⊗ P4,

where τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2 = τ3 ⊗ I3 ⊗ τ2 + τ3 ⊗ P6.

Proof. By Theorem 3.2, there exists an atom L
(−)
18 (34) of L18 corresponding to

[03 ⊕ (6), (3)⊕ (3)⊕ 02, (3)⊕ (3)2 ⊕ 02], whose matrix image is equal to

τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2 = τ3 ⊗ I3 ⊗ τ2 + τ3 ⊗ P6.

By the array subtraction (Theorem 2.3), in order to find OAs such that whose MI’s
are less than or equal to

τ36 −m(L
(−)
18 (34)⊗ P2) = τ36 − (τ18 − τ6 − P2 ⊗ τ3 ⊗ τ3)⊕ P2,

it is needed to construct the 36-run OAs whose forms are as follows:

L36(2
x3y6z) = (L

(−)
18 (34)⊕ 02, L

(−)
36 (2x3y−46z)),

where y ≥ 4 and 20 = 30 = 60 = 11.
In fact, from the constructions in Zhang etc [44], the following seven OAs can

be found, denoted by L36,

L36(2
11312), L36(2

103861), L36(2
93462), L36(2

439),

L36(2
33961), L36(2

231261), L36(2
23562), L36(2

13862),

L36(3
1341), L36(3

12121), L36(3
463),

each of which contains the OA L
(−)
18 (34)⊕ 02.

By the array subtraction (Theorem 2.3), deleting the OA L
(−)
18 (34) ⊕ 02 from

L36, the desired OAs can be obtained. This completes the proof.
The result in Theorem 3.6 will be used to construct the new asymmetrical or-

thogonal arrays of run sizes 72 such as L72(2
183465). A clear structure of each of

atoms in Theorem 3.5 and 3.6 is need. In the following equation (3.10), there are

L
(−)
36 (2238) = (b1, b2, c5, . . . , c12), L

(−)
36 (213461) = (b1, c5, . . . , c8, f3),

L
(−)
36 (62) = (f2, f3), L

(−)
36 (21138) = (b1, . . . , b11, c5, . . . , c12),

L
(−)
36 (2103461) = (b1, b3, . . . , b11, c5, . . . , c8, f3), L

(−)
36 (2962) = (b3, . . . , b11, f2, f3),

L
(−)
36 (2439) = (b1, . . . , b4, c5, . . . , c12, c), L

(−)
36 (233561) = (b1, b3, b4, c5, . . . , c8, c, f3),

L
(−)
36 (223861) = (b1, b2, c5, . . . , c12, f), L

(−)
36 (223162) = (b3, b4, c, f2, f3),

L
(−)
36 (213462) = (b1, c5, . . . , c8, f, f3), L

(−)
36 (3941) = (c5, . . . , c12, c, 09 ⊕ (4)),

L
(−)
36 (38121) = (c5, . . . , c12, l), L

(−)
36 (63) = (f, f2, f3).
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A particular form of 36-run arrays having above properties is

(L36(2
11312), c, f, f1 − f3, l)

=(b1, . . . , b11, c1, . . . , c12, c, f, f1 − f3, l)

=



0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 1 1 2 2 1 1 2 2 0 0 1 0 0 0

1 1 1 0 0 0 1 0 1 0 1 1 1 2 2 2 2 1 1 2 2 1 1 0 0 4 1 1 1

0 1 0 1 1 1 1 0 0 0 1 2 2 1 1 1 1 2 2 2 2 1 1 0 1 2 0 1 2

1 0 1 1 1 0 1 0 0 1 0 2 2 1 1 2 2 1 1 1 1 2 2 0 1 3 1 0 3

0 0 0 1 0 0 1 1 1 1 1 1 2 1 2 2 0 2 0 0 1 0 1 1 2 1 2 4 4

1 1 0 0 1 0 0 1 0 1 1 1 2 1 2 0 2 0 2 1 0 1 0 1 2 2 3 5 5

0 1 1 0 0 1 1 1 0 1 0 2 1 2 1 2 0 2 0 1 0 1 0 1 3 4 2 5 6

1 0 1 1 0 1 0 1 0 0 1 2 1 2 1 0 2 0 2 0 1 0 1 1 3 3 3 4 7

0 0 1 0 1 1 0 0 1 1 1 1 2 2 1 0 1 1 0 2 0 0 2 2 4 3 4 2 8

1 1 0 1 0 1 0 0 1 1 0 1 2 2 1 1 0 0 1 0 2 2 0 2 4 2 5 3 9

0 1 1 1 1 0 0 1 1 0 0 2 1 1 2 0 1 1 0 0 2 2 0 2 5 4 4 3 10

1 0 0 0 1 1 1 1 1 0 0 2 1 1 2 1 0 0 1 2 0 0 2 2 5 1 5 2 11

0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 2 2 2 0

1 1 1 0 0 0 1 0 1 0 1 2 2 0 0 0 0 2 2 0 0 2 2 0 0 5 3 3 1

0 1 0 1 1 1 1 0 0 0 1 0 0 2 2 2 2 0 0 0 0 2 2 0 1 0 2 3 2

1 0 1 1 1 0 1 0 0 1 0 0 0 2 2 0 0 2 2 2 2 0 0 0 1 4 3 2 3

0 0 0 1 0 0 1 1 1 1 1 2 0 2 0 0 1 0 1 1 2 1 2 1 2 2 4 0 4

1 1 0 0 1 0 0 1 0 1 1 2 0 2 0 1 0 1 0 2 1 2 1 1 2 0 5 1 5

0 1 1 0 0 1 1 1 0 1 0 0 2 0 2 0 1 0 1 2 1 2 1 1 3 5 4 1 6

1 0 1 1 0 1 0 1 0 0 1 0 2 0 2 1 0 1 0 1 2 1 2 1 3 4 5 0 7

0 0 1 0 1 1 0 0 1 1 1 2 0 0 2 1 2 2 1 0 1 1 0 2 4 4 0 4 8

1 1 0 1 0 1 0 0 1 1 0 2 0 0 2 2 1 1 2 1 0 0 1 2 4 0 1 5 9

0 1 1 1 1 0 0 1 1 0 0 0 2 2 0 1 2 2 1 1 0 0 1 2 5 5 0 5 10

1 0 0 0 1 1 1 1 1 0 0 0 2 2 0 2 1 1 2 0 1 1 0 2 5 2 1 4 11

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 4 4 0

1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 3 5 5 1

0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 4 5 2

1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 5 5 4 3

0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 2 1 2 2 0 2 0 1 2 0 0 2 4

1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 2 1 2 1 0 2 0 2 1 2 1 1 3 5

0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 2 1 2 0 2 0 2 1 3 3 0 3 6

1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 2 1 2 1 2 0 2 0 1 3 5 1 2 7

0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 2 0 0 2 1 2 2 1 2 4 5 2 0 8

1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 2 2 0 2 1 1 2 2 4 1 3 1 9

0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 2 0 0 2 2 1 1 2 2 5 3 2 1 10

1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 2 2 0 1 2 2 1 2 5 0 3 0 11



, (3.10)
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which is obtained by using a method of so called generalized Hadamard product
(Zhang etc [44] ).

4. Constructions of OA’s of Run Sizes 72 and 100
4.1. Construction of OA L72(2

193864)

Step 1. Orthogonally decompose the projection matrix τ72. From (3.1), there is

τ72 = P24 ⊗ τ24 + τ3 ⊗ I6 ⊗ P4 + τ3 ⊗ I6 ⊗ τ4. (4.1)

By Lemma 3.1 and array subtraction, there is

τ4 =

2∑
i=0

Qi · (τ2 ⊗ P2) ·QT
i , (4.2)

and

τ3 ⊗ I6 =

2∑
i=0

Mi · (τ3 ⊗ τ3 ⊗ P2) ·MT
i , (4.3)

where Q0 = I4,M0 = I18 and Q1, Q2,M1,M2 are defined in Lemma 3.1.
By (4.1),(4.2) and (4.3), an orthogonal decomposition of projection matrix τ72

can be obtained as follows:

τ72 = P3⊗ τ24+

2∑
i=0

(Mi⊗Qi) · (τ3⊗ τ3⊗P8+ τ3⊗ I6⊗ τ2⊗P2) · (Mi⊗Qi)
T . (4.4)

Now orthogonally decompose the sum of the first two items of (4.4):

A =: P3 ⊗ τ24 + τ3 ⊗ τ3 ⊗ P8 + τ3 ⊗ I6 ⊗ τ2 ⊗ P2.

Since τ24 = I12 ⊗ τ2 + τ12 ⊗ P2 and

P3 ⊗ τ12 + τ3 ⊗ τ3 ⊗ P4 + τ3 ⊗ I6 ⊗ τ2 = τ36 − (τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2)⊗ P2,

the following projection matrix can be obtained

A = P3 ⊗ I12 ⊗ τ2 + (τ36 − (τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2))⊗ P2.

On the other hand, by Theorem 3.4 and Corollary 3.4, an orthogonal decomposition
of projection matrix P3 ⊗ I12 ⊗ τ2 can be obtained as follows:

P3 ⊗ I12 ⊗ τ2 =

2∑
i=1

(Mi ⊗Qi) · (P9 ⊗ I2 ⊗ τ2 ⊗P2) · (Mi ⊗Qi)
T +P3 ⊗m(L

(−)
24 (28)),

where the OA L
(−)
24 (28) is the atom of L24 in Corollary 3.4. Thus from (4.4) the

following projection matrix decomposition can be obtained

τ72 =P3 ⊗m(L
(−)
24 (28)) + (τ36 − (τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2)⊗ P2)⊗ P2

+

2∑
i=1

(Mi ⊗Qi) · (P9 ⊗ I2 ⊗ τ2 ⊗ P2 + τ3 ⊗ τ3 ⊗ P8 + τ3 ⊗ I6 ⊗ τ2 ⊗ P2)
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· (Mi ⊗Qi)
T . (4.5)

The above decompositions are orthogonal because of the orthogonality in each step.
Step 2. Now the following OAs can be found L1

72(2
8), L2

72(· · · ), and L3
72(· · · )

such that

m(L1
72(2

8)) ≤ P3 ⊗m(L
(−)
24 (28)),

m(L2
72(· · · )) ≤ (τ36 − (τ18 − P3 ⊗ τ6 − τ3 ⊗ τ3 ⊗ P2)⊗ P2)⊗ P2,

and
m(L3

72(· · · )) ≤ (P9 ⊗ I2 ⊗ τ2 + τ3 ⊗ τ3 ⊗ P8 + τ3 ⊗ I6 ⊗ τ2)⊗ P2.

By Theorems 2.1 and 3.4, only need to take

L1
72(2

8) = 03 ⊕ L
(−)
24 (28),

where L
(−)
24 (28) has been given in Corollary 3.4.

Similarly, by Theorems 2.1 and 3.6, only need to take

L2
72(· · · ) = L

(−)
36 (· · · )⊕ 02,

where L(−)
36 (· · · )′s have been given in Theorem 3.6( there exist eleven OAs L(−)

36 (· · · )).
Also similarly, by Theorems 2.1 and 3.5, only need to take

L3
72(· · · ) = L

(−)
36 (· · · )⊕ 02,

where L(−)
36 (· · · )′s have been given in Theorem 3.5( there exist three OAs L(−)

36 (· · · )).
Step 3. By Theorems 3.5 and 3.6, the new OA is lay out.

L72(2
183465) =[03 ⊕ L

(−)
24 (28), L

(−)
36 (2103461)⊕ 02,

(M1 ⊗Q1)(L
(−)
36 (62)⊕ 02), (M2 ⊗Q2)(L

(−)
36 (62)⊕ 02)], (4.6)

where both L
(−)
36 (62) and L

(−)
36 (2103461) are given in Theorems 3.5 and 3.6, the

permutation matrices Q1, Q2,M1,M2 are the same as those in Step 1 or those in
Lemma 3.1. The OA L72(2

183465) is not new which has been included in Hedayat
etc [14] or Kuhfeld [18] yet.

Furthermore, in (4.6) replacing L
(−)
36 (62) and L

(−)
36 (2103461) by the three atoms

in Theorem 3.5 and the eleven atoms in Theorem 3.6 respectively, the 11×3×3 = 99
OAs can be obtained, in which many arrays (Table 1) are new which are not included
in Hedayat etc [14] or Kuhfeld [18] yet.

4.2. Construction of OA L100(2
5153)

By the definition of OA, without loss of generality, assume that

L4(2
3) = (Q1((2)⊕ 02), . . . , Q3((2)⊕ 02)),

and
L25(5

6) = (T1(05 ⊕ (5)), . . . , T6(05 ⊕ (5))),

where Qi(i = 1, 2) are defined in Lemma 3.1 and T1 = I25, T2 = diag(I5, N5, . . . , N
4
5 ),

T3 := T2 · T2 = T 2
2 , T4 = T 3

2 , T5 = T 4
2 , T6 = K(5, 5).
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Since L25(5
6) and L4(2

3) are saturated OAs, from the definition of matrix images
and by Theorem 2.1 and 2.2, there are

τ25 =

6∑
i=1

Ti(P5 ⊗ τ5)T
T
i ,

and

τ4 =

3∑
i=1

Qi(τ2 ⊗ P2)Q
T
i .

From (3.1), there is

τ100 = τ25 ⊗ I4 + P25 ⊗ τ4 = [

6∑
i=1

Ti(P5 ⊗ τ5)T
T
i ]⊗ I4 + P25 ⊗ [

3∑
i=1

Qi(τ2 ⊗ P2)Q
T
i ].

Using the matrix properties I4 = QiI4Q
T
i ,P25 = TjP25T

T
j ,(ABC) ⊗ (DEF ) =

(A⊗D)(B ⊗ E)(C ⊗ F ) and I4 = P4 + τ5, there is

τ100 =

3∑
i=1

(Ti ⊗Qi)(P5 ⊗ (τ5 ⊗ I4 + P5 ⊗ τ2 ⊗ P2)(Ti ⊗Qi)
T

+

6∑
i=4

(Ti ⊗ I4)(P5 ⊗ τ5 ⊗ P4)(Ti ⊗ I4)
T

+

6∑
i=4

(Ti ⊗ I4)(P5 ⊗ τ5 ⊗ τ4)(Ti ⊗ I4)
T . (4.7)

The above decompositions are orthogonal because of the orthogonality in each step.
Now it is wanted to find an OA whose matrix image is less than or equal to

τ5 ⊗ I4 + P5 ⊗ τ2 ⊗ P2. From (3.1) it is seen that

τ5 ⊗ I4 + P5 ⊗ τ2 ⊗ P2 = τ20 − P5 ⊗ I2 ⊗ τ2.

By Theorem 3.3, there exist three atoms in (3.5) of L20 corresponding to 05 ⊕
[02 ⊕ (2), (2) ⊕ (2)]. On the other words, the matrix images of the three atoms
L
(−)
20 (217),L(−)

20 (2651) and L
(−)
20 (101) are less than or equal to τ5 ⊗ I4 +P5 ⊗ τ2 ⊗P2.

By (4.7) and Theorem 2.1, 2.2 and Corollary 2.1, an OA L100(2
5153) can be

obtained as follows:

L100(2
5153) =[(T1 ⊗Q1)(05 ⊕ L

(−)
20 (217)), (T2 ⊗Q2)(05 ⊕ L

(−)
20 (217)),

(T3 ⊗Q3)(05 ⊕ L
(−)
20 (217)), (T4 ⊗ I4)(05 ⊕ (5)⊕ 04),

(T5 ⊗ I4)(05 ⊕ (5)⊕ 04), (T6 ⊗ I4)(05 ⊕ (5)⊕ 04)]. (4.8)

Furthermore, replacing the atom L
(−)
20 (217) in (4.8) by the atoms L(−)

20 (2651) and
L
(−)
20 (101) in Theorem 3.3, the 3×3×3 = 27 asymmetrical OAs can be constructed

in which many arrays (Table 1) are new which are not included in Hedayat etc [14]
or Kuhfeld [18] yet.
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Table 1. Orthogonal arrays Obtained in Section 4

L100(2
5153)(new) L72(2

23324) L72(2
123964)

L100(2
4054)(new) L72(2

2232061)(new) L72(2
113214161)

L100(2
3453101)(new) L72(2

2131662)(new) L72(2
1132061121)(new)

L100(2
2955)(new) L72(2

2031263)(new) L72(2
1131264)(new)

L100(2
2354101)(new) L72(2

193864)(new) L72(2
113565)

L100(2
1856)(new) L72(2

183465) L72(2
103174162)(new)

L100(2
1753102)(new) L72(2

1766) L72(2
1031662121)(new)

L100(2
1255101)(new) L72(2

16325) L72(2
103865)(new)

L100(2
654102)(new) L72(2

1532161)(new) L72(2
103166)

L100(5
3103) L72(2

1432461) L72(2
93134163)(new)

L72(2
1431762)(new) L72(2

931263121)(new)

L72(2
1332062)(new) L72(2

93466)

L72(2
1331363)(new) L72(2

8394164)

L72(2
1232541) L72(2

83864121)

L72(2
12324121) L72(2

867)

L72(2
1231663)(new)

References
[1] S. Addelman, Orthogonal main effect plans for asymmetrical experiments, Tech-

nometrics, 1962, 4, 21–46.
[2] S. Addelman, Symmetrical and asymmetrical fractional factorial plans, Tech-

nometrics, 1962, 4, 47–58.
[3] S. Addelman and O. Kempthome, Orthogonal main-effect plans, Aeronautical

Research Laboratory Technical Report, 1961, 79.
[4] S. Addelman and O. Kempthome, Some main-effect plans and OAs of strength



Orthogonal arrays obtained by array subtraction 2837

two, Ann. Math. Statist., 1961, 32, 1167–1176.
[5] V. Agrawal and A. Dey, A note on orthogonal main effect plans for asymmet-

rical factorials, Sankhya. Ser. B., 1982, 44, 278–282.
[6] K. A. Bush, Orthogonal arrays, Ph. D. dessertation. Univ. North Carolina.,

Chapel Hill, 1950.
[7] R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann.

Math. Statist., 1952, 23, 508–524.
[8] G. Chen, L. Ji and J. Lei, The existence of mixed OAs with four and five factors

of strength two, Journal of Combinatorial Designs, 2014, 22(8), 323–342.
[9] X. Chen, J. Lin, X. Chen and X. Wang, Matrix Image Method for Rank-

ing Nonregular Fractional Factorial Designs, Acta Mathematicae Applicatae
Sinica, 2018, 34(1), 742–751.

[10] X. Chen, B. Guo, M. Liu and X. Wang, Robustness of orthogonal-array based
composite designs to missing data, Journal of Statistical Planning and Infer-
ence, 2018, 194, 15–24.

[11] C. Cheng, Some orthogonal main-effect plans for asymmetrical factorials, Tech-
nometrics, 1989, 31, 475–477.

[12] C. J. Colbourn, D. R. Stinson and S. Veitch, Constructions of optimal orthogo-
nal arrays with repeated rows, Discrete Mathematics, 2019, 342(9), 2455–2466.

[13] A. Dey and G. U. S. Ramakrishma, A note on orthogonal main effect plans,
Technometics, 1977, 19, 511–512.

[14] A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and
Applications, Springer-Verlag, New York, 1999.

[15] H. Huang, Construction of component orthogonal arrays with any number of
components, Journal of Statistical Planning and Inference, 2021, 213, 72–79.

[16] A. S. Hedayat, K. Pu and J. Stufken, On the construction of asymmetrical
OAs, Ann. Statist., 1992, 20, 2142–2152.

[17] L. Jiang and J. Yin, An approach of constructing mixed-level orthogonal arrays
of strength ≥ 3, Science China Mathematics, 2013, 56(6), 1109–1115.

[18] W. F. Kuhfeld, Orthogonal arrays, http://support.sas.com/techsup/technote/
ts723.html, 2015.

[19] C. Luo, Y. Zhang and S. He, Asymmetrical OAs with run size 100, Communi-
cations in Statistics Theory and Methods, 2015, 44(6), 1222–1240.

[20] J. Leng and D. Han, Orthogonal projection decomposition of matrices and
construction of fusion frames, Advances in Computational Mathematics. 2013,
38(2), 369–381.

[21] C. Luo, Y. Zhang and X. Chen, Orthogonal arrays obtained by generalized
Kronecker product, Journal of Applied Analysis and Computation, 2017, 7(2),
728–744.

[22] C. Luo, Theory of generalized difference matrices and construction of OAs,
Chinese Science Press, 2015.

[23] S. Pang, X. Lin and J. Wang, Construction of Asymmetric Orthogonal Arrays
of Strength t from Orthogonal Partition of Small Orthogonal Arrays, IEICE



2838 C. Luo, M. Yang, X. Ma, Y. Zhang & S. He

Transactions on Fundamentals of Electronics Communications and Computer
Sciences, 2018, E101A(8), 1267–1272.

[24] S. Pang, W. Xu, G. Chen, et al, Construction of Symmetric and Asymmetric
Orthogonal Arrays of Strength t from Orthogonal Partition, Indian Journal of
Pure and Applied Mathematics, 2018, 49(4), 663–669.

[25] S. Pang, J. Wang, D. Lin, and M. Liu, Construction of Mixed Or-
thogonal Arrays with High Strength, accepted to the Annals of Statis-
tics, https://imstat.org/journals-and-publications/annals-of-statistics/annals-
of-statistics-future-papers/, 2021.

[26] S. Pang and Y. Zhang, Multiplication of OAs, Acta Mathematica Scientia,
2007, 27A(3), 568–576.

[27] C. Rao, Factorial experiments derivable from combinational arrangements of
arrays, Journal of the Royal Statal Society, 1947, 9(1), 128–239.

[28] C. Rao, Some combinatorial problem of arrays and applications to design of
experiments, In a Survey of Combinatorial Theory.(J. N. Srivastava et al ed.),
North-Holland. Amsterdam, 1973, 349–359.

[29] F. H. Ryoh, Orthogonal array from Baer Subplanes, Utilitas Mathematica,
1993, 43, 65–70.

[30] S. Shrikhande, Generalized Hadamard matrices and OAs strength two, Cana-
dian Journal of mathematics, 1964, 16, 736–740.

[31] C. Y. Suen, Some mixed orthogonal arrays obtained by orthogonal projection
matrices, Journal of Statistical Planning and Inference, 2007, 137(5), 1704–
1710.

[32] C. Y. Suen and W. F. Kuhfeld, On the construction of mixed orthogonal arrays
of strength two, Journal of Statistical Planning and Inference, 2005, 133, 555–
560.

[33] G. Taguchi, System of experimental design, White Plains: UNIPUB, 1987,
1(2).

[34] C. Wu, R. Zhang and R. Wang, Construction of asymmetrical orthogonal array
of the type OA(sk, sm(sr1)

n1 · · · (srt )nt)., Statistica Sinica, 1992, 1, 203–219.
[35] C. Wu, Construction of 2m4n design via group scheme, Ann. Statist., 1989, 17,

1880–1885.
[36] K. Yamada and N. Miyamoto, A construction and decomposition of orthogonal

arrays with non-prime-power numbers of symbols on the complement of a Baer
subplane, Designs, Codes and Cryptography, 2015, 14, 1–12.

[37] Y. Zhang, Y. Lu and S. Pang, Orthogonal arrays obtained by orthogonal de-
composition of projection matrices, Statistica Sinica, 1999, 9, 595–604.

[38] Y. Zhang, Asymmetrical orthogonal design by multi-matrix methods, Journal
of the Chinese Statistical Association, 1991, 29, 197–218.

[39] Y. Zhang, Orthogonal array and matrices, Journal of Mathematical Research
And Exposition, 1992, 3, 438–440.

[40] Y. Zhang, Theory of multilateral matrix, Chinese Statistic Press, 1993.
[41] Y. Zhang, Orthogonal arrays obtained by repeating-column difference matrices,

Discrete Mathematics, 2007, 307(4), 246–261.



Orthogonal arrays obtained by array subtraction 2839

[42] Y. Zhang, W. Li, S. Mao and Z. Zheng, Orthogonal arrays obtained by general-
ized difference matrices with g levels, SCIENCE CHINA Mathematics (Science
in China Series A: Mathematics), 2011, 54(1), 133–143.

[43] Y. Zhang, L. Duan, Y. Lu and Z. Zheng, Construction of Generalized Hadamard
Matrix D(rm(r+1), rm(r+1); p)., Journal of Statistical Planning and Inference,
2002, 104, 239–258.

[44] Y. Zhang, S. Pang and Y. Wang, Orthogonal arrays obtained by generalized
Hadamard produc, Discrete Mathematics, 2001, 238, 153–170.


	Introduction
	Basic Concepts and Main Theorems
	 General Methods for Constructing OA's by Array Subtraction 
	Constructions of OA's of Run Sizes 72 and 100
	 Construction of OA L72 (219 38 64)
	Construction of OA L100 (251 53)


