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BIFURCATION AND EXACT TRAVELING
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NONLINEAR DISPERSIVE MK(M,N)
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Abstract This paper investigated the generalized nonlinear dispersive mK(m,n)
equation by the planar dynamical systems method, the bifurcations of the sys-
tem with different parameter region of this equation are presented. Moreover,
we find different kinds of exact explicit solutions like peak type solutions,
periodic wave solutions and valley type solutions.
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1. Introduction
In the formation of patterns in liquid drops, nonlinear dispersive played an impor-
tant role, Rosenau and Hyman [19] proposed the K(m,n) equation:

ut + (um)x + (un)xxx = 0,m > 0, 1 < n ≤ 3. (1.1)

Wazwaz [21] introduced and studied the exact solutions of several generalized form
of the mK(n,n) equation, the so-called mK(m,n) equation in one-, two-, and three-
dimensional spatial spaces.

Recently, Yan [22] extended these equations to more general forms by making
index of u in each term different and obtained compacton solutons, solitary wave so-
lutions and periodic wave solutions. He et al. [10] considered the mK(n,n) equation
by the method of planar dynamical systems and derived exact explicit solutions.
Lai, He and Qing [12] studied the equation in a higher spaces and obtained explicit
traveling wave solution in terms of sin, cos, sec and csc profiles.

In this paper, we apply bifurcation method [1–3, 6–9, 18] to study the following
generalized nonlinear dispersive mK(m,n) equations:

un−1ut + a(um)x + (un)xxx = 0, (1.2)
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in which a,m,n are constants and m ≥ 1, n ≥ 1. The bifurcation method is exten-
sively used by researchers [4, 5, 11,13–17,21,23].

Introducing the traveling wave transformation ξ = x− ct, let u(x, t) = u(ξ) and
substituting it into Eq.(1.2), it follows that

−cun−1u′ + a(um)′ + (un)′′′ = 0, (1.3)

in which c ̸= 0 is a constant and the prime represents d

dξ
. Integrating Eq.(1.3) once,

we obtain

g − c

n
un + aum + n(n− 1)un−2u′2 + nun−1u′′ = 0, (1.4)

in which g is an integral constant.
Introducing y = u′, then Eq.(1.4) is rewritten by the following planar system

du

dξ
= y,

dy

dξ
= −

n(n− 1)un−2y2 + aum − c
nu

n + g

nun−1
,

(1.5)

which has the first integral of

H(u, y) = n2u2n−2y2 +
2an

m+ n
um+n − c

n
u2n + 2gun = h. (1.6)

Since all traveling wave solutions of (1.2) are determined by the phase orbits de-
fined by the vector fields of system (1.5), we will analyze the bifurcations conditions
and phase portraits of (1.5).

The rest of the paper is organized as follows. In Section 2, we seek for the
equilibrium points of (1.5). In Section 3, we discuss the bifurcation of phase portraits
of system (1.5) and obtain its traveling wave solutions. The paper is ended with
the conclusion.

2. The analysis for generalized nonlinear dispersive
mK(m,n) equation

Notice that the line l : u = 0 is a singular line, which made smooth system (1.5)
have non-smooth traveling wave solutions. Therefore, we let dξ = nun−1dτ , then
the system 

du

dτ
= nun−1y,

dy

dτ
= −n(n− 1)un−2y2 − aum +

c

n
un − g,

(2.1)

has the same phase portraits with system (1.5) except on the singular line u = 0.
For studying the singular points of system (2.1), let f(u) = c

nu
n − aum − g,

f ′(u) = cun−1 − amum−1. We can find out zero points of f(u) easily. Suppose that
m > n(m < n has the similar results with this situation).
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(I) g = 0. When m − n = 2k + 1 is odd, f ′(u) has one zero point ũ0, ũ0 =
2k+1

√
c

ma . When m − n = 2k is even and ac > 0, f ′(u) has two zero points ũ1, ũ2,
ũ1 = 2k

√
c

ma , ũ2 = − 2k
√

c
ma . As a result, we get conclusions as follows.

(i) When m − n = 2k + 1 is odd and a > 0, f(ũ0) > 0(a < 0, f(ũ0) < 0), f(u)
has two singular points O(0, 0) and A1(u1, 0), u1 = 2k+1

√
c
na .

(ii) When m − n = 2k is even and ac > 0, f(ũ1) > 0, f(ũ2) < 0(f(ũ1) <
0, f(ũ2) > 0), f(u) has three singular points O(0, 0), A2(u2, 0), A3(u3, 0), where
u2 = 2k

√
c
na , u3 = − 2k

√
c
na .

(II) g ̸= 0. Support that a > 0(a < 0 has the similar result). When m − n =
2k+1 is odd, we have f ′(ũ0) = 0, f(ũ0) = c( 1

m − 1
n )(

c
ma )

n
m−n − g, where the curve

L(1):g = c( 1n − 1
m )( c

ma )
n

m−n . devide the (c,g)-parametric plane into six regions.
When m−n = 2k+2 is even and ac > 0, the curve L(2):g = c( 1n − 1

m )( c
ma )

n
m−n and

L(3):g = c( 1n + 1
m )( c

ma )
n

m−n devide the (c,g)-parameter plane into three regions.(see
Fig.1)

(a) (b)

Figure 1. The bifurcation set of system(1.2).(a)m − n = 2k + 1 is odd;(b)m − n = 2k + 2 is even

Letting (ui, yi) be any equilibrium point of system (2.1), the coefficient matrix
of linearized system (2.1) can be presented

M(ui, yi) =

 n(n− 1)un−2
i yi nun−1

i

−n(n− 1)(n− 2)un−3
i y2i + f ′(ui) −2n(n− 1)un−2

i yi


we can obtain that

J(ui, 0) =

∣∣∣∣∣∣ 0 nun−1
i

f ′(ui) 0

∣∣∣∣∣∣ = −nun−1
i f ′(ui). (2.2)

Substitute an equilibrium point of system (2.1) into (2.2) by the theory of planar
dynamical system [13], if J < 0, the equilibrium point is a saddle point; if J > 0,
the equilibrium point is a center point;If J = 0 and the index of equilibrium point
is 0, then it is a cusp.

Thus, we can know that when g = 0, (i) if m−n = 2k+1 and c > 0, equilibrium
point O(0, 0) is a saddle point, A1(u1, 0) is a center point; if m − n = 2k + 1 and
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c < 0, equilibrium point A1(u1, 0) is a saddle point. (ii) if m − n = 2k + 2 and
a > 0, c > 0, equilibrium point O(0, 0) is a saddle point, A2(u2, 0) and A3(u3, 0) are
two center points; if m − n = 2k + 2 and a < 0, c < 0, equilibrium point A2(u2, 0)
and A3(u3, 0) are two saddle points.

3. Bifurcation sets and exact solutions of system
(2.1)

In this section, we study the bifurcation set and exact solutions of the planar Hamil-
tonian system(2.1).

Theorem 3.1. When g = 0, we have,
(i) When m− n = 2k + 1 and a > 0, c > 0, system (2.1) has a periodic family orbit
and a homoclinic orbit, then Eq.(1.2) has a periodic wave solution and a peak type
solitary wave solution. When a < 0, c > 0, system (2.1) has a family periodic orbit
and a homoclinic orbit, then Eq.(1.2) has a periodic wave solution and a valley type
solitary wave solution. The solitary wave solution has the expression

u(ξ) =
5c

8a
sech2

(√ c

32
ξ
)
. (3.1)

(ii) when m − n = 2k + 1 and a > 0, c < 0, system (2.1) has a homoclinic orbit,
then Eq.(1.2) has a valley type solitary wave solution. When a < 0, c < 0, system
(2.1) has a homoclinic orbit, then Eq.(1.2) a peak type solitary wave solution. The
solution is given by

u(ξ) =
5c

8a
sec2

(√−c

32
ξ
)
. (3.2)

(iii) when m − n = 2k + 2 and a > 0, c > 0, system (2.1) has two family periodic
orbits and two homoclinic orbit, then Eq.(1.2) has two periodic wave solutions and
a solitary wave solution. The expression of the solitary wave solution is

u(ξ) = ±
√

3c

4a
sech

(√ c

32
ξ
)
. (3.3)

Proof. (i) When m−n = 2k+1 and a > 0, c > 0 or a < 0, c > 0 (see Figure 2(a)
and Figure 2(b)), corresponding to the homoclinic orbit defined by H(u, y) = 0, we
can obtain

y2 = −a

5
u3 +

c

8
u2. (3.4)

By (3.4) and du

dξ
= y, the solitary wave solution (3.1) is derived.

(ii) Similarly, when m− n = 2k+ 1 and a > 0, c < 0 or a < 0, c < 0 (see Figure
2(c) and Figure 2(d)), corresponding to H(u, y) = 0, we can obtain

y2 = −a

5
u3 +

c

8
u2. (3.5)

In terms of (3.5) and du

dξ
= y, the solitary wave solution (3.2) is obtained.
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(a) (b)

(c) (d)

Figure 2. The phase portraits of system (2.5) with m − n = 2k + 1. (a) a > 0, c > 0; (b) a < 0, c > 0;
(c) a > 0, c < 0; (d) a < 0, c < 0

(iii) In this situation, the phase portraits are performed in Figure 3(a), corre-
sponding to homoclinic orbit which is defined by H(u, y) = 0, we can obtain

y2 = − a

24
u4 +

c

32
u2. (3.6)

Substituting (3.6) into du

dξ
= y, we derive the solitary wave solution (3.3).

Theorem 3.2. When g ̸= 0, we have
(i) when (c, g) ∈ A3, system (2.1) has three family periodic orbits. Thus, Eq.(1.2)
has three periodic wave solutions. A periodic wave solution has the form

u(ξ) = u1 − (u1 − u2)sn
2
(1
2

√
a

5
(u1 − u3)ξ,

√
u1 − u2

u1 − u3

)
, (3.7)
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(a) (b)

(c) (d)

Figure 3. The phase portraits of system (2.5) with m − n = 2k. (a) a > 0, c > 0;(b) a < 0, c > 0; (c)
a > 0, c < 0; (d) a < 0, c < 0

in which u1, u2 and u3 are three real roots of equation c
nu

n − aum − g = 0 and
u1 > u2 > 0 > u3.

(ii) when (c, g) ∈ B1, system (2.1) has two family periodic orbits. Then, Eq.(1.2)
has two periodic wave solutions. A periodic wave solution has the form

u(ξ) = u2sn
(
u1

√
2a

3
ξ,

u2

u1

)
, (3.8)

in which u1 and u2 are two real roots of equation c
nu

n−aum−g = 0 and u1 > u2 > 0.

Proof. (i) When (c, g) ∈ A3 (see Figure 4(c)), corresponding to H(u, y) = 0, we
have

y2 = −a

5
u3 +

c

8
u2 +

g

4

=
a

5
(u1 − u)(u− u2)(u− u3). (3.9)
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(a) (b) (c)

(d) (e) (f)

Figure 4. The phase portraits of system (2.5) with m−n = 2k+1. (a) (c, g) ∈ A(1); (b) (c, g) ∈ A(2);
(c) (c, g) ∈ A(3); (d) (c, g) ∈ A(4); (e) (c, g) ∈ A(5); (f) (c, g) ∈ A(6)

(a) (b) (c)

Figure 5. The phase portraits of system (2.5) with m − n = 2k + 2. (a) (c, g) ∈B(1); (b) (c, g) ∈B(2);
(c) (c, g) ∈B(3)

Substituting Eq.(3.9) into du

dξ
= y, we can obtain

du√
(u1 − u)(u− u2)(u− u3)

= ±
√

a

5
dξ, (3.10)

integrating along the periodic orbit, we can obtain the periodic wave solution (3.7).
(ii) When (c, g) ∈ B1 (see Figure5(a)), corresponding to H(u, y) = − 14

3 , we
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have

y2 = −2c

3
u4 +

c

8
u2 − g

2

= −2c

3
(u2

1 − u2)(u2
2 − u2). (3.11)

By Eq.(3.11) and du

dξ
= y, we obtain

du√
(u2

1 − u2)(u2
2 − u2)

= ±
√

−2c

3
dξ, (3.12)

integrating along the periodic orbit, we can obtain the periodic wave solution (3.8).

(a) (b) (c)

(d) (e) (f)

Figure 6. (a) solution(3.1) when a > 0; (b) solution (3.1) when a < 0; (c) solution (3.2) when a > 0;
(d) solution (3.2) when a < 0; (e) solution (3.3) when u(ξ) > 0; (f) solution (3.3) when u(ξ) < 0

According to the above analysis, we have the conclusion as follows:
(1) If m − n = 2k + 1 and c > 0, Eq.(1.2) has a family periodic wave solution

and a solitary wave solution. As a > 0 (see Figure 2(a)), the solitary wave solution
is peak type; as a < 0 (see Figure 2(b)), the solitary solution is valley type.

(2) If m− n = 2k + 1 and c < 0, Eq.(1.2) has a solitary wave solution. If a > 0
(see Figure 2(c)), it is a valley type solitary wave solution; when a < 0 (see Figure2
(d)), it is a peak type solution.

(3) If m − n = 2k and a > 0, c > 0 (see Figure 3(a)), Eq.(1.2) has two family
periodic wave solutions, a peak type and a valley type solitary wave solution.

(4) If m − n = 2k and a < 0, c < 0 (see Figure 3(d)), Eq.(1.2) has a peak type
and a valley type solitary wave solution.
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(5) If (c, g) ∈ A3 (see Figure 4(c)), Eq.(1.2) has three periodic wave solutions.
(6) If (c, g) ∈ B1 (see Figure 5(a)), Eq.(1.2) has two family periodic wave solu-

tions.
(7) If (c, g) ∈ B2 (see Figure 5(b)), Eq.(1.2) has two compacton solutions.

4. Conclusion
In this paper, we use the bifurcation method to study exact traveling wave solutions
of generalized nonlinear dispersive mK(m,n) equation. We derive exact solitary wave
solutions, periodic wave solutions and compactons solutions. The bifurcation and
phase portraits under different parameters are also given, furthermore, we can get
the types of solutions easily.
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