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Abstract This paper is devoted to the study of the L∞-bound of solutions
to a double-phase problem with concave-convex nonlinearities by applying the
De Giorgi’s iteration method and the localization method. Employing this
and a variant of Ekeland’s variational principle, we provide the existence of at
least two distinct nontrivial solutions belonging to L∞-space when the convex
term does not satisfy the Ambrosetti-Rabinowitz condition in general. In
addition, our problem has a sequence of multiple small energy solutions whose
L∞-norms converge to zero. To achieve this result, we utilize the modified
functional method and the dual fountain theorem as the main tools.
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1. Introduction
The study of differential equations and variational problems involving double phase
operator has been paid to a great deal of attention in the recent decades; see
[4, 7, 10–12, 23, 26, 30]. Such operator can be corroborated as a model for many
physical phenomena which arise in the research of elasticity, strongly anisotropic
materials and Lavrentiev’s phenomenon; see [39–42] for more details. In particular,
Zhikov examined the behavior of strongly anisotropic materials and found that their
hardening properties varied sharply with the point. This phenomenon is described
the following functional ∫

Ω

(|∇v|p + a(x)|∇v|q) dx, (1.1)

where the function a(·) was used as an aid to regulating the mixture between two
different materials, with power hardening of rates p and q, respectively. The func-
tional (1.1) belongs to the class of the integral functionals with nonstandard growth
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condition. Recently, Colombo and Mingione [11] have established the regularity the-
ory for minimizers of (1.1) and obtained sharp results for q > p and a(·) > 0. More,
recently some noteworthy local regularity results for minimizers of two phase func-
tionals have been produced by Mingione and coworkers in [4, 11,12]. The study on
unbalanced double phase Dirichlet problems with variable growth was considered by
the recent works of Cencelj-Radulescu-Repovs [7]. Also, Colasuonno-Squassina [10]
dealt with eigenvalue problems for Dirichlet double phase operators. A remark-
able inquiry of some of the recent works on two phase equations, can be found in
Radulescu [30].

This paper is concerned with the following double-phase problem by the case of
a combined effect of concave-convex nonlinearities:{

−div
(
|∇v|p−2∇v + a(x)|∇v|q−2∇v

)
= λ%(x)|v|γ−2v + µh(x, v) in Ω,

v = 0 on ∂Ω,
(1.2)

where Ω is a smooth bounded domain in RN , N ≥ 2, 1 < γ < p < q < N ,
q/p < 1 + 1/N , % ∈ L∞(Ω) is nonnegative function, λ and µ are positive real
parameters, a : Ω → [0,+∞) belongs to L1 (Ω) and h : Ω × R → R satisfies a
Caratheódory condition.

From a pure mathematical point of view, many researchers have extensively
studied about nonlinear elliptic equations involving the concave-convex nonlinear-
ities (see [5, 6, 8, 14, 19, 21, 31, 37, 38]) since the celebrated paper [1] of Ambrosetti,
Brezis and Cerami for the Laplacian problem:

−△v = λ|v|q−2v + |v|h−2v in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

where 1 < q < 2 < h < 2∗ :=

{
2N
N−2 if N > 2,

+∞ if N = 1, 2.

In particular, the multiplicity result of solutions to the concave-convex-type el-
liptic problems driven by a nonlocal integro-differential operator has been proposed
in [8]; see also [5, 25, 38] and [19] for p(x)-Laplacian equations. For quasilinear
elliptic equations involving nonhomogeneous operators which subject to Dirichlet
boundary conditions, the authors in [6] obtained the existence and multiplicity of
solutions by making use of the well-known Nehari manifold method as the main tool.
Very recently, Kim et al. [20] have studied the following concave-convex problems
of Schrödinger type−div(ϕ′(|∇v|2)∇v) + V (x)|v|α−2v = λρ(x)|v|r−2v + h(x, v),

v(x) → 0, as |x| → ∞,
in RN ,

where N ≥ 2, 1 < p < q < N , 1 < α ≤ p∗q′/p′, α < q, 1 < r < min{p, α}, ϕ(t)
behaves like tq/2 for small t and tp/2 for large t, and p′ and q′ are the conjugate expo-
nents of p and q, respectively. They proved the existence of two distinct nontrivial
solutions when the convex term h fulfils the condition of Ambrosetti-Rabinowitz
type in [2], that is, there exists a constant θ > 0 such that θ > q and

0 < θH(x, t) ≤ h(x, t)t, for all t ∈ R \ {0} and x ∈ RN , (1.3)
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where H(x, t) =
∫ t

0
h(x, s) ds. Also they established this existence result when (1.3)

was superseded by the condition originally introduced by Oanh and Phuong [29],
namely, there exist ν > α and M > 0 such that

h(x, t)t− νH(x, t) ≥ −% |t|α − β(x) for all x ∈ RN and |t| ≥ M,

where % ≥ 0 and β ∈ L1(RN ) ∩ L∞(RN ) with β(x) ≥ 0.
In this regard, the first aim is to establish the existence result that (1.2) admits

at least two distinct nontrivial solutions belonging to L∞-space when the condition
on h does not satisfy the Ambrosetti-Rabinowitz condition in general. The second
aim is to investigate the existence of small energy solutions for problem (1.2) whose
L∞-norms converge to zero, depends only on the local behavior and conditions on
h(x, t), and only a sufficiently small t is required. In order to achieve these main
results, we firstly show the uniform boundedness for weak solutions to problem (1.2).
However, as far as we know, there are no results about L∞-bound for weak solutions
to the double-phase problem involving concave-convex nonlinearities. To overcome
this difficulty, we employ the De Giorgi’s iteration method and a truncated energy
technique, originally given in [34], as the primary tools for obtaining this result.
In particular this double phase operator has more complex nonlinearities than the
p-Laplacian and the fractional p-Laplacian, so more elaborate analysis has to be
carefully carried out. Next, with the help of this, taking into account the mountain
pass theorem and a variant of Ekeland’s variational principle, we obtain our first
existence result. Finally we get the existence of a sequence of infinitely many small
energy solutions whose converge to 0 in L∞-norm. This is originally motivated by
Wang [35] that nonlinear boundary value problems{

−∆v = λ |v|q−1
v + h(x, v) in Ω,

v = 0 on RN\Ω

have a sequence of solutions, where 0 < q < 1 and h is regarded as a perturbation
term. He made use of the modified functional method and global variational for-
mulation in [18] as the main tools, in order to establish this existence result that is
a local phenomenon and is forced by the sublinear term. However, we design our
consequence in a different approach from the previous works [9, 17, 24, 28, 32, 35].
More precisely, in contrast to aforementioned papers which establish the existence
of such a sequence of solutions belonging to the L∞ space, we point out that we
take the dual fountain theorem instead of global variational formulation into ac-
count. As we know, these results that apply the dual fountain theorem to derive
the existence of small energy solutions to elliptic equations of variational type do
not ensure the boundedness of solutions; see [13,33] and the references therein. On
the other hand, our arguments together with the modified functional method and
the dual fountain theorem allow us to obtain the existence of multiple small-energy
solutions converging to zero in L∞ space.

As seen above, the main purpose of the present paper is to ensure the existence
and uniform boundedness of nontrivial solutions for double-phase problem (1.2)
with the nonlinear term of concave-convex type, by virtue of variational tools such
as the mountain pass theorem (see [2]), a variant of Ekeland’s variational principle
(see [3]) and the dual fountain theorem (see [36]). To the best of our knowledge, the
present paper is the first attempt to study the existence and regularity type results
for the concave-convex-type double phase problems.
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This paper’s outline is the following: we firstly present some necessary pre-
liminary knowledge of function spaces. Next we give the variational framework
associated with problem (1.2) and then we establish the results about L∞-bound
for weak solutions to the double-phase problem involving concave-convex nonlinear-
ities by applying the De Giorgi’s iteration method and a truncated energy technique.
Finally, under suitable conditions on the convex term h, we carry out various ex-
istence results of nontrivial solutions by utilizing as the major tools the variational
principle.

2. Preliminaries
In order to consider problem (1.2), we need some elementary facts on the space
W 1,H (Ω) which is called Musielak-Orlicz-Sobolev space. For this reason, we will
recall some properties involving the Musielak-Orlicz spaces, which can be found
in [10,16] and references therein.

Denote by N (Ω) the set of all generalized N -functions. For 1 < p < q and
0 ≤ a(·) ∈ L1 (Ω), we define

H(x, t) := tp + a(x)tq, ∀(x, t) ∈ Ω× [0,+∞).

It is clear that H ∈ N (Ω) is locally integrable and

H(x, 2t) ≤ 2qH(x, t), ∀(x, t) ∈ Ω× [0,+∞),

which is called condition (△2).
The Musielak-Orlicz space LH (Ω) is defined by

LH (Ω) :=

{
v : Ω → R measurable :

∫
Ω

H (x, |v|) dx < +∞
}
,

endowed with the Luxemburg norm

||v||H := inf

{
λ > 0 :

∫
Ω

H
(
x,
∣∣∣ v
λ

∣∣∣) dx ≤ 1

}
.

The Musielak-Orlicz-Sobolev space W 1,H (Ω) is defined by

W 1,H (Ω) := {v ∈ LH (Ω) : |∇v| ∈ LH (Ω)},

and it is equipped with the norm

||v||1,H := ||v||H + ||∇v||H.

Here we write ||∇v||H = || |∇v| ||H for convenience in writing. We denote by W 1,H
0 (Ω)

the completion of C∞
0 (Ω) in W 1,H (Ω).

Lemma 2.1 (Proposition 2.1, [26]). Set

ρH(v) =

∫
Ω

(|v|p + a(x)|v|q) dx.

For v ∈ LH (Ω), we have
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(i) for v ̸= 0, ||v||H = λ iff ρH( vλ ) = 1;

(ii) ||v||H < 1(= 1;> 1) iff ρH(v) < 1(= 1;> 1);

(iii) if ||v||H > 1, then ||v||pH ≤ ρH(v) ≤ ||v||qH;

(iv) if ||v||H < 1, then ||v||qH ≤ ρH(v) ≤ ||v||pH;

In the following, the notation X ↪→ Y means that the space X is continuously
imbedded into the space Y , while X ↪→↪→ Y means that X is compactly imbedded
into Y .

Lemma 2.2 ( [10]). Let us put p∗ = Np/(N − p), if p < N , p∗ := +∞ otherwise.
Then the followings hold.

(i) The spaces W 1,H (Ω) and W 1,H
0 (Ω) are separable reflexible Banach space.

(ii) If p ̸= N , then

W 1,H
0 (Ω) ↪→ Lr (Ω) for all r ∈ [1, p∗].

If p = N , then

W 1,H
0 (Ω) ↪→ Lr (Ω) for all r ∈ [1,+∞].

(iii) If p ≤ N , then

W 1,H
0 (Ω) ↪→↪→ Lr (Ω) for all r ∈ [1, p∗).

If p > N , then
W 1,H

0 (Ω) ↪→↪→ L∞ (Ω) .

(iv) [Poincaré inequality] There exists a constant C > 0 such that

||v||H ≤ C||∇v||H

for any v ∈ W 1,H
0 (Ω).

3. Variational setting and the main results
In view of Lemma 2.2 (iv), we know that ||∇v||H and ||v||1,H are equivalent norms
on W 1,H

0 (Ω). Hence we equip the space W 1,H
0 (Ω) with the equivalent norm ||∇v||H.

Throughout this paper, let X := W 1,H
0 (Ω) with the norm

||v||X = inf

{
λ > 0 :

∫
Ω

H
(
x,

∣∣∣∣∇v

λ

∣∣∣∣) dx ≤ 1

}
.

Let us define the functional Φ : X → R by

Φ(v) =

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx.

Then it is standard to check that Φ ∈ C1(X,R), and double-phase operator

−div(|∇v|p−2∇v + a(x)|∇v|q−2∇v)
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is the derivative operator of Φ in the weak sense. We denote Φ′ : X → X∗ with

⟨Φ′(v), u⟩ =
∫
Ω

(|∇v|p−2∇v · ∇u+ a(x)|∇v|q−2∇v · ∇u) dx.

for all u, v ∈ X. Here X∗ denotes the dual space of X and ⟨·, ·⟩ denotes the pairing
between X and X∗.

Lemma 3.1 (Proposition 3.1, [26]). The double phase operator Φ′ : X → X∗ has
the following properties:

(i) Φ′ is a continuous, bounded and strictly monotone operator;
(ii) Φ′ is a mapping of type (S+), i.e. if vn ⇀ v in X and

lim sup
n→∞

⟨Φ′ (vn)− Φ′(v), vn − v⟩ ≤ 0,

then vn → v in X;

(iii) Φ′ is a homeomorphism.

Definition 3.1. We say that v ∈ X is a weak solution of problem (1.2) if∫
Ω

(
|∇v|p−2 ∇v · ∇u+ a(x) |∇v|q−2 ∇v · ∇u

)
dx

=λ

∫
Ω

%(x) |v|γ−2
vu dx+ µ

∫
Ω

h(x, v)u dx,

for any u ∈ X.

We assume that

(h1) h : Ω× R → R is a Carathéodory function;
(h2) there exists a nonnegative function σ ∈ L∞ (Ω) such that

|h(x, t)| ≤ σ(x)|t|r−1,

for all (x, t) ∈ Ω×R and q < r < p∗, where p∗ = Np
N−p is the critical exponent;

(h3) lim|t|→∞
H(x,t)
|t|q = ∞ uniformly for almost all x ∈ Ω, where H(x, t) =

∫ t

0
h(x, s) ds.

Let the functional Ψ1,Ψ2 and Ψ : X → R be defined by

Ψ1(v) =
1

γ

∫
Ω

%(x) |v|γ dx, Ψ2(v) =

∫
Ω

H(x, v) dx and Ψ(v) = λΨ1(v) + µΨ2(v).

Then, it is easy to check that Ψ ∈ C1 (X,R) and its Fréchet derivative is

⟨Ψ′(v), u⟩ = λ

∫
Ω

%(x) |v|γ−2
vu dx+ µ

∫
Ω

h(x, v)u dx

for any v, u ∈ X. Subsequently, the functional ϕ : X → R is defined by

ϕ(v) = Φ(v)−Ψ(v).
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Then it follows that the functional ϕ ∈ C1 (X,R) and its Fréchet derivative is

⟨ϕ′(v), u⟩ =
∫
Ω

(
|∇v|p−2 ∇v · ∇u+ a(x) |∇v|q−2 ∇v · ∇u

)
dx

− λ

∫
Ω

%(x) |v|γ−2
vu dx− µ

∫
Ω

h(x, v)u dx

for any v, u ∈ X.
First of all we present the L∞-bound of solutions to the problem (1.2). To do

this, we need the following important Lemma which is given in the paper [34, Lemma
2.2].

Lemma 3.2. Let {Zn}∞n=1 be a sequence of positive numbers, satisfying the recur-
sion inequality

Zn+1 ≤ cbnZ1+δ
n , n = 0, 1, 2, · · ·

for some b > 1, c > 0 and δ > 0. If Z0 ≤ min{1, c(−1)/δb(−1)/δ2} then Zn ≤ 1 for
some n ∈ N ∪ {0}. Moreover,

Zn ≤ min

{
1, c(−1)/δb(−1)/δ2b(−n)/δ

}
for any n ≥ n0, where n0 is the smallest n ∈ N ∪ {0} satisfying Zn ≤ 1. In
particular, Zn → 0 as n → ∞.

Invoking Lemma 3.2, we prove the following consequence, which is a regularity
type result via De Giorgi technique and the localization method.

Proposition 3.1. Assume that (h1) and (h2) hold. If v is a weak solution of the
problem (1.2), then v ∈ L∞(Ω) and there exist positive constants C, η independent
of v such that

||v||L∞(Ω) ≤ C||v||ηLr(Ω).

Proof. Let Ak = {x ∈ Ω : v(x) > k}, Ãk = {x ∈ Ω : −v(x) > k} for k > 0. Note
that |Ak| and |Ãk| are finite for any k ∈ N, where | · | denotes the Lebesgue measure
on Ω. Taking a test function u = (v − k)+ ∈ X, we obtain from Definition 3.1 that∫
Ω

(
|∇v|p−2

+ a(x) |∇v|q−2
)
∇v ·∇u dx = λ

∫
Ω

%(x) |v|γ−2
vu dx+µ

∫
Ω

h(x, v)u dx.

Equivalently, ∫
Ak

(
|∇v|p−2

+ a(x) |∇v|q−2
)
|∇v|2 dx

=λ

∫
Ak

%(x) |v|γ−2
v(v − k) dx+ µ

∫
Ak

h(x, v)(v − k) dx.

Hence, since v ≥ v − k > 0 on Ak, by assumption (h2), we note that∫
Ak

(|∇v|p + a(x) |∇v|q) dx

= λ

∫
Ak

%(x) |v|γ−2
v(v − k) dx+ µ

∫
Ak

h (x, v) (v − k) dx



2928 W. J. Joe, S. J. Kim, Y.-H. Kim & M. W. Oh

≤ λ||%||L∞(Ω)

∫
Ak

|v|γ−2
v(v − k) dx+ µ

∫
Ak

σ(x)|v|r−1(v − k) dx

≤ λ||%||L∞(Ω)

∫
Ak

|v|γ dx+ µ||σ||L∞(Ω)

∫
Ak

|v|r dx

≤
(
1 + kγ−r

) (
λ||%||L∞(Ω) + µ||σ||L∞(Ω)

) ∫
Ak

vrdx. (3.1)

Put kn := k∗(2− 1/2n), n = 0, 1, 2, · · · , with k∗ > 0 specified later and

Zn :=

∫
Akn

(v − kn)
r dx.

Since k∗ ≤ kn ≤ kn+1 ≤ 2k∗ for all n ∈ N, we have∫
Akn

(v − kn)
r dx ≥

∫
Akn+1

vr
(
1− kn

kn+1

)r

dx ≥
∫
Akn+1

vr

2r(n+2)
dx

and therefore
Zn ≥

∫
Akn+1

vr

2r(n+2)
dx.

Thus ∫
Akn+1

vr dx ≤ dn+2
1 Zn, (3.2)

where d1 = 2r > 1. For the Lebesgue measure of Akn+1
, we deduce that

∣∣Akn+1

∣∣ ≤ ∫
Akn+1

(
v − kn

kn+1 − kn

)r

dx ≤
∫
Akn

(
2n+1

k∗

)r

(v − kn)
r dx.

So one has
|Akn+1

| ≤ dn+1
1

kr∗
Zn. (3.3)

Note that 1+ kγ−r
∗ ≤ 2(1+ k−r

∗ ). Then it follows from relations (3.1)–(3.3) that we
obtain ∫

Akn+1

(|∇v|p + a(x) |∇v|q) dx

≤
(
1 + kγ−r

n+1

) (
λ||%||L∞(Ω) + µ||σ||L∞(Ω)

) ∫
Akn+1

vrdx

≤
(
1 + kγ−r

∗
) (

λ||%||L∞(Ω) + µ||σ||L∞(Ω)

)
dn+2
1 Zn + |Akn+1

|

≤
(
1 + kγ−r

∗
) (

λ||%||L∞(Ω) + µ||σ||L∞(Ω)

)
dn+2
1 Zn +

dn+1
1

kr∗
Zn

≤ dn1Zn

[
2
(
1 + k−r

∗
) (

λ||%||L∞(Ω) + µ||σ||L∞(Ω)

)
d21 + d1k

−r
∗
]

≤ dn1Zn

[
2
(
1 + k−r

∗
) (

λ||%||L∞(Ω) + µ||σ||L∞(Ω)

)
d21 + d1k

−r
∗ + 2d1 + d1k

−r
∗
]

≤ 2
(
1 + k−r

∗
) [(

λ||%||L∞(Ω) + µ||σ||L∞(Ω)

)
d21 + d1

]
dn1Zn

= d2d
n
1Zn, (3.4)



On double phase problems 2929

where C̃ := λ||%||L∞(Ω) + µ||σ||L∞(Ω) and d2 := 2(1 + k−r
∗ )

(
C̃d21 + d1

)
. Define

r̃ :=

{
r+p∗

2 if p∗ < ∞,

r + 1 if p∗ = ∞.

Using the Hölder inequality and Lemma 2.2, we get∫
Akn+1

(v − kn+1)
r
+ dx ≤

(∫
Ω

{
(v − kn+1)

r
+

} r̃
r dx

) r
r̃ ∣∣Akn+1

∣∣ r̃−r
r̃

= ∥(v − kn+1)+∥
r
Lr̃(Ω)

∣∣Akn+1

∣∣1− r
r̃

≤ Cr
imb∥(v − kn+1)+∥

r
X

∣∣Akn+1

∣∣1− r
r̃ , (3.5)

where Cimb is a imbedding constant of X ↪→ Lr̃(Ω). By Lemma 2.1 and (3.4), we
get

∥(v − kn+1)+∥
τ
X ≤

∫
Ω

(∣∣∇ (v − kn+1)+
∣∣p + a(x)

∣∣∇ (v − kn+1)+
∣∣q) dx

=

∫
Akn+1

(|∇v|p + a(x) |∇v|q) dx

≤ d2d
n
1Zn (3.6)

where τ is either p or q. We deduce from (3.3), (3.5), (3.6) and Lemma 2.2 that

Zn+1 =

∫
Akn+1

(v − kn+1)
r
dx

≤ Cr
imb∥(v − kn+1)+∥

r
X

∣∣Akn+1

∣∣1− r
r̃

≤ Cr
imb (d2d

n
1Zn)

r
τ
∣∣Akn+1

∣∣1− r
r̃

≤ Cr
imb

[
2(1 + k−r

∗ )
(
C̃d21 + d1

)
dn1Zn

] r
τ

(
dn+1
1

kr∗
Zn

)1− r
r̃

= Cr
imb

(
2
(
C̃d21 + d1

)) r
τ (

1 + k−r
∗
) r

τ d
n r

τ +(n+1)(1− r
r̃ )

1 k
−r(1− r

r̃ )
∗ Z

r
τ +1− r

r̃
n

≤ C0C
r
imb

(
2
(
C̃d21 + d1

)) r
τ

d
1− r

r̃
1

(
1 + k

−r r
τ

∗

)
k
−r(1− r

r̃ )
∗ d

n(1− r
r̃+

r
τ )

1 Z1− r
r̃+

r
τ

n

for a positive constant C0. In other words,

Zn+1 ≤ d3

(
k
−r(1− r

r̃ )
∗ + k

−r(1− r
r̃+

r
τ )

∗

)
d
n(1+δ)
1 Z1+δ

n , n ∈ N ∪ {0} ,

where d3 = C0C
r
imb(2(C̃d21 + d1))

r
τ d

1− r
r̃

1 and δ = r
τ − r

r̃ . This implies

Zn+1 ≤ d3
(
k−α1
∗ + k−α2

∗
)
bnZ1+δ

n (3.7)

where
0 < α1 := r

(
1− r

r̃

)
< α2 := r

(
1− r

r̃
+

r

τ

)
and b := d1+δ

1 .
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Applying Lemma 3.2 with (3.7), we obtain that

Zn =

∫
Ω

(v − kn)
r
+ dx → 0 as n → ∞, (3.8)

provided that
Z0 ≤ min

{
1, d

− 1
δ

3

(
k−α1
∗ + k−α2

∗
)− 1

δ b−
1
δ2

}
.

We note that for k∗ large enough, it is Z0 ≤ 1 since |Ak∗ | → 0 as k∗ → ∞. Moreover,
observe that

Z0 =

∫
Ak∗

(v − k∗)
r dx ≤

∫
Ω

vr+ dx. (3.9)

Meanwhile, ∫
Ω

vr+ dx ≤ d
− 1

δ
3

(
k−α1
∗ + k−α2

∗
)− 1

δ b−
1
δ2

is equivalent to

k−α1
∗ + k−α2

∗ ≤ d−1
3 b−

1
δ

(∫
Ω

vr+ dx

)−δ

. (3.10)

Moreover, 
2k−α1

∗ ≤ d−1
3 b−

1
δ

(∫
Ω

vr+ dx

)−δ

,

2k−α2
∗ ≤ d−1

3 b−
1
δ

(∫
Ω

vr+ dx

)−δ

is equivalent to 
k∗ ≥ (2d3)

1
α1 b

1
δα1

(∫
Ω

vr+ dx

) δ
α1

,

k∗ ≥ (2d3)
1

α2 b
1

δα2

(∫
Ω

vr+ dx

) δ
α2

.

Hence, by choosing

k∗ = max

{
(2d3)

1
α1 b

1
δα1

(∫
Ω

vr+ dx

) δ
α1

, (2d3)
1

α2 b
1

δα2

(∫
Ω

vr+ dx

) δ
α2

}
,

we obtain the inequality (3.10). Combining this and (3.9), we deduce the relation
(3.8). Since kn ↑ 2k∗, the relation (3.8) and the Lebesgue dominated convergence
theorem infer that ∫

Ω

(v − 2k∗)
r
+ dx = 0.

Therefore, (v − 2k∗)+ = 0 almost everywhere in Ω and hence ess supΩ v ≤ 2k∗. By
replacing v with −v and Ak with Ãk, we have analogously that v is bounded from
below. Therefore

||v||L∞(Ω) ≤ Cmax

{(∫
Ω

|v|r dx

) δ
α1

,

(∫
Ω

|v|r dx

) δ
α2

}
,
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where C is a positive constant independent of v. This completes the proof.

Next we give the following useful lemmas which play a crucial role in establishing
the existence of at least two distinct nontrivial solutions to the problem (1.2).

Lemma 3.3. Let (h1)–(h3) hold and let µ be fixed. Furthermore, we assume

(h4) H(x, t) ≥ 0 for all (x, t) ∈ RN × R+.

Then the functional ϕ satisfies the followings:

(1) There exists a positive constant λ∗ such that for any λ ∈ (0, λ∗) we can choose
R > 0 and 0 < β < 1 such that ϕ(v) ≥ R > 0 for all v ∈ X with ||v||X = β;

(2) There exists w ∈ C∞
c (Ω) with w > 0 such that ϕ(tw) → −∞ as t → +∞;

(3) There exists ω ∈ C∞
c (Ω) with ω > 0 such that ϕ(tω) < 0 as t → 0 + .

Proof. Let us prove the condition (1). By Lemma 2.2, there exists a positive
constant C1 such that ||v||Lτ (Ω) ≤ C1||v||X for any τ with 1 < τ < p∗. Assume that
||v||X < 1. Then it follows from (h2) and Lemma 2.1 that

ϕ(v) =

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx− λ

γ

∫
Ω

%(x) |v|γ dx− µ

∫
Ω

H(x, v) dx

≥ 1

q

∫
Ω

(|∇v|p + a(x)|∇v|q) dx− λ

γ
||%||L∞(Ω)||v||γLγ(Ω) −

µ||σ||L∞(Ω)

r
||v||rLr(Ω)

≥ 1

q
||v||qX − λ

γ
||%||L∞(Ω)C

γ
1 ||v||

γ
X −

µ||σ||L∞(Ω)

r
Cr

1 ||v||rX

=

(
1

q
− λ

γ
C2||v||γ−q

X − µ

r
C3||v||r−q

X

)
||v||qX (3.11)

for positive constants C2, C3. Let us define the function gλ : (0,∞) → R by

gλ(s) =
λ

γ
C2s

γ−q +
µ

r
C3s

r−q.

Then it is clear that gλ has a local minimum at the point s0 =
(

λrC2(q−γ)
µγC3(r−q)

) 1
r−γ and

so
lim

λ→0+
gλ(s0) = 0.

Thus there is λ∗ > 0 such that for each λ ∈ (0, λ∗), there exist R > 0 and β > 0
small enough such that ϕ(v) ≥ R > 0 for any v ∈ X with ||v||X = β.

Next we show the condition (2). For any M0 > 0, it follows from (h2) and (h3)
that there exists a constant CM0

> 0 such that

H(x, t) ≥ M0 |t|q − CM0
(3.12)

for all (x, t) ∈ Ω× R. Take w ∈ C∞
c (Ω) with w > 0. It follows from (3.12) that

ϕ(sw) =

∫
Ω

(
1

p
|∇sw|p + a(x)

q
|∇sw|q

)
dx

− λ

γ

∫
Ω

%(x) |sw|γ dx− µ

∫
Ω

H(x, sw) dx
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≤ sq
∫
Ω

(
1

p
|∇w|p + a(x)

q
|∇w|q

)
dx− λsγ

γ

∫
Ω

%(x) |w|γ dx

− µM0s
q

∫
Ω

|w|q dx+ µCM0 |Ω|

≤ sq
(∫

Ω

(
1

p
|∇w|p + a(x)

q
|∇w|q

)
dx− µM0

∫
Ω

|w|q dx

)
− λsγ

γ

∫
Ω

%(x) |w|γ dx+ µCM0 |Ω|

for sufficiently large s ≥ 1. We see that ϕ(sw) → −∞ as s → ∞.
Finally we remain to prove the condition (3). Choose ω ∈ C∞

c (Ω) such that
ω > 0. Let λ be fixed. For s > 0 small enough, we obtain from (h4) that

ϕ(sω) =

∫
Ω

(
1

p
|∇sω|p + a(x)

q
|∇sω|q

)
dx− λ

γ

∫
Ω

%(x) |sω|γ dx− µ

∫
Ω

H(x, sω) dx

≤ sp
∫
Ω

(
1

p
|∇ω|p + a(x)

q
|∇ω|q

)
dx− λsγ

γ

∫
Ω

%(x) |ω|γ dx.

Since p > γ, we see that ϕ(sω) < 0 as s → 0+.

Lemma 3.4. Assume that (h1)–(h2) hold. Then Ψ and Ψ′ are weakly strongly
continuous on X for any λ, µ > 0.

Proof. Let {yn} be a sequence in X such that yn ⇀ y in X as n → ∞. Since
{yn} is bounded in X, Lemma 2.2 guarantees that there exists a subsequence {ynk

}
such that

ynk
→ y a.e. in Ω and ynk

→ y in Lr(Ω) (3.13)
as k → ∞. First we prove that Ψ is weakly strongly continuous in X. By the
convergence principle, there exists a function f ∈ Lr(Ω) such that |ynk

| ≤ f for all
k ∈ N. Therefore, it follows from (h2) and the Young inequality that

λ

γ

∫
Ω

%(x) |ynk
|γ dx+ µ

∫
Ω

|H(x, ynk
)| dx

≤ λ

γ

∫
Ω

|%(x)| |ynk
|γ dx+

µ

r

∫
Ω

σ(x)|ynk
|r dx

≤ λ

γ

∫
Ω

(
r − γ

r
|%(x)|

r
r−γ +

γ

r
|ynk

|r
)

dx+
µ||σ||L∞(Ω)

r

∫
Ω

|ynk
|r dx

≤ C4

[∫
Ω

(
|%(x)|

r
r−γ + |f |r

)
dx+

∫
Ω

|f |r dx
]

for some positive constant C4, and so the integral at the left-hand side is dominated
by an integrable function. Since h is the Carathéodory function by (h1), it follows
from (3.13) that

%(x)

γ
|ynk

|γ → %(x)

γ
|y|γ and H(x, ynk

) → H(x, y)

as k → ∞ for almost all x ∈ Ω. Therefore, Lebesgue’s dominated convergence
theorem tells us that

λ

γ

∫
Ω

%(x)|ynk
|γ dx+ µ

∫
Ω

H(x, ynk
) dx → λ

γ

∫
Ω

%(x)|y|γ dx+ µ

∫
Ω

H(x, y) dx
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as k → ∞, that is, Ψ(ynk
) → Ψ(y) as k → ∞. Thus Ψ is weakly strongly continuous

in X.
Next, we show that Ψ′ is weakly strongly continuous in X∗. First of all, we note

that ∫
Ω

∣∣%(x)|ynk
|γ−2ynk

− %(x)|y|γ−2y
∣∣γ′

dx

= C5

∫
Ω

|%(x)|
1

γ−1 |%(x)| (|ynk
|γ + |y|γ) dx

≤ C6

∫
Ω

|%(x)| (|ynk
|γ + |y|γ) dx

≤ C6

∫
Ω

2(r − γ)

r
|%(x)|

r
r−γ +

γ

r
|ynk

|r + γ

r
|y|r dx (3.14)

for some positive constants C5, C6. Due to (h2), we obtain∫
Ω

|h(x, ynk
)− h(x, y)|r

′
dx ≤ C7

∫
Ω

|h(x, ynk
)|r

′
+ |h(x, y)|r

′
dx

≤ C8

∫
Ω

|ynk
|r + |y|r dx (3.15)

for some positive constants C7, C8. Invoking (3.13)–(3.15) and the convergence
principle, one has ∣∣∣%(x) |ynk

|γ−2 − %(x) |y|γ−2
∣∣∣γ′

≤ k1(x)

and
|h(x, ynk

)− h(x, y)|r
′
≤ k2(x)

for almost all x ∈ Ω and for some k1, k2 ∈ L1(Ω), and so %(x)|ynk
|γ−2ynk

→
%(x)|y|γ−2y and h(x, ynk

) → h(x, y) as k → ∞ for almost all x ∈ Ω. This together
with Lebesgue convergence theorem yields that

||Ψ′(ynk
)−Ψ′(y)||X∗

= sup
||u||X≤1

|⟨Ψ′(ynk
)−Ψ′(y), u⟩|

= sup
||u||X≤1

∣∣∣∣λ∫
Ω

(%(x)|ynk
|γ−2ynk

−%(x)|y|γ−2y)u dx+µ

∫
Ω

(h(x, ynk
)−h(x, y))u dx

∣∣∣∣
≤ C9

(
λ||%(x)|ynk

|γ−2ynk
− %(x)|y|γ−2y||Lγ′ (Ω) + µ||h(x, ynk

)− h(x, y)||Lr′ (Ω)

)
→ 0

as k → ∞ for some positive constant C9. Consequently, we derive that Ψ′(ynk
) →

Ψ′(y) in X as k → ∞. This completes the proof.

Definition 3.2. We say that ϕ satisfies the Cerami condition ((C)-condition for
short) in X, if any (C)-sequence {zn}⊂X, i.e. {ϕ(zn)} is bounded and ||φ′(zn)||X∗(1+

||zn||X) → 0 as n → ∞, has a convergent subsequence in X.

Lemma 3.5. It is assumed that (h1)–(h3) hold. In addition,

(h5) There exist ν > q, K > 0 and ζ ≥ 0 such that

h(x, t)t− νH(x, t) ≥ −ζ |t|p − η(x)

for all (x, t) ∈ Ω× R with |t| ≥ K and for some η ∈ L1(Ω) with η(x) ≥ 0.
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(h6) H(x, t) = o(|t|p) as t → 0 for x ∈ Ω uniformly.

Then, the functional ϕ satisfies the (C)-condition for any λ, µ > 0.

Proof. Let {zn} be a (C)-sequence in X, that is,

sup
n∈N

|ϕ(zn)| ≤ K1 and ⟨ϕ′(zn), zn⟩ = o(1) → 0, (3.16)

as n → ∞, where K1 is a positive constant. Suppose that {zn} is a bounded
sequence satisfying (3.16). Then {zn} has a weakly convergent subsequence in X.
Without loss of generality, we suppose that

zn ⇀ z in X as n → ∞.

By Lemma 3.4, Ψ′ is weakly strongly continuous, and so Ψ′(zn) → Ψ′(z) in X∗ as
n → ∞. In addition, using (3.16), we know that

⟨ϕ′(zn), zn − z⟩ → 0 and ⟨ϕ′(z), zn − z⟩ → 0

as n → ∞, and thus
⟨ϕ′(zn)− ϕ′(z), zn − z⟩ = o(1).

From this, we have

⟨Φ′(zn)− Φ′(z), zn − z⟩ = ⟨Ψ′(zn)−Ψ′(z), zn − z⟩+ ⟨ϕ′(zn)− ϕ′(z), zn − z⟩ → 0.

Since X is reflexive and Φ′ is a mappaing of type (S+) by Lemma 3.1, we infer that

zn → z in X as n → ∞.

Hence it needs only be proved that {zn} is bounded in X. To this end, arguing
by contradiction, it is assumed that ||zn||X > 1 and ||zn||X → ∞ as n → ∞, and
a sequence {yn} is defined by yn = zn/||zn||X . Then, up to a subsequence, still
denoted by {yn}, we obtain yn ⇀ y0 in X as n → ∞, and by Lemma 2.2,

yn → y0 a.e. in Ω, and yn → y0 in Lp(Ω) as n → ∞. (3.17)

According to (h2) and (h6), one has∫
|zn|≤K

H (x, zn)−
1

ν
h (x, zn) zn dx ≤ (1 + ν−1)

(
||σ||L∞(Ω)K

r +Kp
)
|Ω| =: K0.

Combining this with (h5) and Lemmas 2.1 and 2.2 one has

K1 + o(1)

≥ ϕ(zn)−
1

ν
⟨ϕ′(zn), zn⟩

=

∫
Ω

(
1

p
− 1

ν

)
|∇zn|p +

(
1

q
− 1

ν

)
a(x) |∇zn|q dx

− λ

(
1

γ
− 1

ν

)∫
Ω

%(x) |zn|γ dx+µ

∫
Ω

(
1

ν
h (x, zn) zn−H (x, zn)

)
dx

≥
∫
Ω

(
1

p
− 1

ν

)
|∇zn|p +

(
1

q
− 1

ν

)
a(x) |∇zn|q dx
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− λ

(
1

γ
− 1

ν

)∫
Ω

%(x) |zn|γ dx+µ

∫
|zn|>K

(
1

ν
h (x, zn) zn−H (x, zn)

)
dx−µK0

≥
(
1

q
− 1

ν

)∫
Ω

|∇zn|p + a(x) |∇zn|q dx

− λ

(
1

γ
− 1

ν

)
||%||

L
p

p−γ (Ω)
||zn||γLp(Ω)−

µ

ν

∫
Ω

(ζ |zn|p+η(x)) dx−µK0

≥
(
1

q
− 1

ν

)
||zn||pX − λC10

(
1

γ
− 1

ν

)
||%||

L
p

p−γ (Ω)
||zn||γX

− µζ

ν
||zn||pLp(Ω) −

µ

ν
||η||L1(Ω) − µK0

for some constant C10, so that

1 ≤ µζ

ν
(

1
q − 1

ν

) lim sup
n→∞

||yn||pLp(Ω) =
µζ

ν
(

1
q − 1

ν

) ||y0||pLp(Ω). (3.18)

Hence, it follows from (3.18) that y0 ̸= 0. However we will show that this is absurd.
By Lemmas 2.1 and 2.2, we have

ϕ(zn) =

∫
Ω

(
1

p
|∇zn|p +

a(x)

q
|∇zn|q

)
dx− λ

γ

∫
Ω

%(x) |zn|γ dx− µ

∫
Ω

H (x, zn) dx

≥ 1

q
||zn||pX − λC10

γ
||%||

L
p

p−γ (Ω)
||zn||γX − µ

∫
Ω

H (x, zn) dx.

Since |ϕ(zn)| ≤ K1 for all n ∈ N and ||zn||X → ∞ as n → ∞, we assert that

µ

∫
Ω

H(x, zn) dx ≥ 1

q
||zn||pX − C10

λ

γ
||%||

L
p

p−γ (Ω)
||zn||γX − ϕ(zn) → ∞ (3.19)

as n → ∞. Note that

ϕ(zn) =

∫
Ω

(
1

p
|∇zn|p +

a(x)

q
|∇zn|q

)
dx− λ

γ

∫
Ω

%(x) |zn|γ dx− µ

∫
Ω

H(x, zn) dx

≤
∫
Ω

(
1

p
|∇zn|p +

a(x)

q
|∇zn|q

)
dx− µ

∫
Ω

H(x, zn) dx.

And so,∫
Ω

(
1

p
|∇zn|p +

a(x)

q
|∇zn|q

)
dx ≥ ϕ(zn) + µ

∫
Ω

H(x, zn) dx. (3.20)

Taking assumption (h3) into account, there is t0 > 1 such that H(x, t) > |t|q for all
x ∈ Ω and |t| > t0. Owing to (h2), we can choose K̂ > 0 such that |H(x, t)| ≤ K̂ for
all (x, t) ∈ Ω × [−t0, t0]. Therefore we can choose K2 ∈ R such that H(x, t) ≥ K2

for all (x, t) ∈ Ω× R, and thus

H(x, zn)−K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

≥ 0 (3.21)
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for all x ∈ Ω and n ∈ N. Set Ω1 = {x ∈ Ω : y0(x) ̸= 0}. By convergence (3.17), we
know that |zn(x)| = |yn(x)| ||zn||X → ∞ as n → ∞ for all x ∈ Ω1. Thus, it follows
from assumption (h3) that, for all x ∈ Ω1,

lim
n→∞

H(x, zn)−K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

≥ lim
n→∞

H(x, zn)

max {||zn||qX , ||zn||pX}

= lim
n→∞

H(x, zn)

||zn||qX

= lim
n→∞

H(x, zn)

|zn|q
|yn(x)|q = ∞. (3.22)

Hence, we have that |Ω1| = 0. In fact, if |Ω1| ̸= 0, using relations (3.19)–(3.22) and
the Fatou lemma, we deduce that

1

µ
= lim inf

n→∞

∫
Ω
H(x, zn) dx

µ
∫
Ω
H(x, zn) dx+ ϕ(zn)

≥ lim inf
n→∞

∫
Ω

 H(x, zn)∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

≥ lim inf
n→∞

∫
Ω1

 H(x, zn)∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

− lim sup
n→∞

∫
Ω1

 K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

= lim inf
n→∞

∫
Ω1

 H(x, zn)−K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

≥
∫
Ω1

lim inf
n→∞

H(x, zn)−K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

=

∫
Ω1

lim inf
n→∞

H(x, zn)∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx

−
∫
Ω1

lim sup
n→∞

K2∫
Ω

(
1
p |∇zn|p + a(x)

q |∇zn|q
)
dx

 dx = ∞, (3.23)

which is impossible. Thus, y0(x) = 0 for almost all x ∈ Ω. Therefore, we conclude
a contradiction. Thus, {zn} is bounded in X. This completes the proof.

The following lemma is the variational principle of Ekeland’s type in [3, 22],
initially developed by C.-K. Zhong [43].

Lemma 3.6 (Corollary 2.2, [3], Corollary 2.10, [22]). Let E be a Banach space and
x0 be a fixed point of E. Suppose that h : E → R∪{+∞} is a lower semi-continuous
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function, not identically +∞, bounded from below. Then, for every ε > 0 and y ∈ E
such that

h(y) < inf
E

h+ ε,

and every λ > 0, there exists some point z ∈ E such that

h(z) ≤ h(y), ||z − x0||E ≤ (1 + ||y||E)(eλ − 1),

and
h(x) ≥ h(z)− ε

λ(1 + ||z||E)
||x− z||E for all x ∈ E.

With the help of Lemmas 3.3, 3.5 and 3.6, we are in a position to derive our
first major result.

Theorem 3.1. Let (h1)–(h6) hold and let µ > 0 be fixed. Then there exists a
positive constant λ∗ such that for any λ ∈ (0, λ∗), problem (1.2) admits at least two
nontrivial different solutions in X which belong to L∞(Ω).

Proof. Thanks to Lemmas 3.3 and 3.5, there exists a positive number λ∗ such
that for all λ ∈ (0, λ∗), the functional ϕ satisfies the mountain pass geometry and
(C)-condition. By employing the mountain pass theorem, we infer that there exists
a critical point v0 ∈ X of ϕ with ϕ(v0) = ` > 0 = ϕ(0). Hence v0 is a nontrivial
weak solution of the problem (1.2). Taking into account Lemma 3.3, there are R > 0
and 0 < β < 1 such that ϕ(v) ≥ R > 0 for all v ∈ X with ||v||X = β. Let us denote
` := infv∈Bβ

ϕ(v) where Bβ := {v ∈ X : ||v||X < β} with a boundary ∂Bβ . Then by
(3.11) and Lemma 3.3 (3), we have −∞ < ` < 0. Putting 0 < ε < infv∈∂Bβ

ϕ(v)−`,
by Lemma 3.6, we can choose vϵ ∈ Bβ such that{

ϕ(vϵ) ≤ `+ ε

ϕ(vϵ) < ϕ(v) + ϵ
1+||vϵ||X ||v − vϵ||X , for all v ∈ Bβ v ̸= vϵ.

(3.24)

This implies that vϵ ∈ Bβ since ϕ(vϵ) ≤ `+ ε < infv∈∂Bβ
ϕ(v). From these facts we

have that vϵ is a local minimum of ϕ̂(v) = ϕ(v)+ ϵ
1+||vϵ||X ||v− vϵ||X . Now by taking

v = vϵ + tw for w ∈ B1 and sufficiently small t > 0, from (3.24), we deduce

0 ≤ ϕ̂(vϵ + tw)− ϕ̂(vϵ)

t
=

ϕ(vϵ + tw)− ϕ(vϵ)

t
+

ε

1 + ||vϵ||X
||w||X .

Therefore, letting t → 0+, we get

⟨ϕ′(vϵ), w⟩+
ε

1 + ||vϵ||X
||w||X ≥ 0.

Replacing w by −w in the argument above, we have

−⟨ϕ′(vϵ), w⟩+
ε

1 + ||vϵ||X
||w||X ≥ 0.

Thus, one has
(1 + ||vϵ||X) |⟨ϕ′

λ(vϵ), w⟩| ≤ ε||w||X
for any w ∈ B1. Hence we know

(1 + ||vϵ||X)||ϕ′(vϵ)||X∗ ≤ ε. (3.25)
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Using (3.24) and (3.25), we can choose a sequence {vn} ⊂ Bβ such that{
ϕ(vn) → ` as n → ∞
(1 + ||vn||X)||ϕ′(vn)||X∗ → 0 as n → ∞.

(3.26)

Thus, {vn} is a bounded Cerami sequence in the reflexive Banach space X. Ac-
cording to Lemma 3.5, {vn} has a subsequence {vnk

} such that vnk
→ v1 in X as

k → ∞. This together with (3.26) yields that ϕ(v1) = ` and ϕ′(v1) = 0. Hence v1
is a nontrivial solution of the given problem with ϕ(v1) < 0 which is different from
v0. This completes the proof.

Finally, according to the similar argument in [32, 35] with the cut-off method
(Lemma 3.8), we establish the existence of a sequence of infinitely many weak so-
lutions for problem (1.2) whose converges to 0 in L∞-space. However, in contrast
to [32, 35], we take the dual fountain theorem instead of global variational formu-
lation into consideration. To do this, we need the following additional assumptions
of h:

(h7) There exists a constant s0 > 0 such that h(x, t) is odd in Ω × (−s0, s0) for t
and pH(x, t)− h(x, t)t > 0 for all x ∈ Ω and for 0 < |t| < s0;

(h8) lim|t|→0
h(x,t)

|t|p−2t
= +∞ uniformly for all x ∈ Ω.

Let us introduce the following lemmas which are useful in proving our second
result.

Lemma 3.7. Assume that (h1) and (h2) hold. If furthermore

pH(x, t)− h(x, t)t > 0 for all x ∈ Ω and for t ̸= 0, (3.27)

then
ϕ(v) = ⟨ϕ′(v), v⟩ = 0 if and only if v = 0.

Proof. Let ϕ(v) = ⟨ϕ′(v), v⟩ = 0. Then we see that

0 = −p ϕ(v)

= −p

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx+

pλ

γ

∫
Ω

%(x) |v|γ dx+ pµ

∫
Ω

H(x, v) dx

≥ −
∫
Ω

(|∇v|p + a(x)|∇v|q) dx+ λ

∫
Ω

%(x) |v|γ dx+ pµ

∫
Ω

H(x, v) dx, (3.28)

and

⟨ϕ′(v), v⟩ =
∫
Ω

(|∇v|p + a(x)|∇v|q) dx− λ

∫
Ω

%(x)|v|γ dx− µ

∫
Ω

h(x, v)v dx = 0.

(3.29)
It follows from relations (3.28) and (3.29) that∫

Ω

(pH(x, v)− h(x, v)v) dx ≤ 0.

Consequently, assumption (3.27) implies that v = 0. The converse is clear from
definition of ϕ.
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Remark 3.1. Fix s1 ∈ (0, s0
2 ) and let us define a cut-off function χ ∈ C1(R,R)

satisfying χ(t) = 1 for |t| ≤ s1, χ(t) = 0 for |t| ≥ 2s1, |χ′(t)| ≤ 2/s1, and χ′(t)t ≤ 0.
So, we set

H̃(x, t) = χ(t)H(x, t) + (1− χ(t))ξ|t|p and h̃(x, t) =
∂

∂t
H̃(x, t), (3.30)

where ξ is a positive constant.

Lemma 3.8. Assume that (h1), (h2), (h7) and (h8) hold. Then there exist s2 ∈
(0, s1

2 ) and h̃ ∈ C1(Ω× R,R) such that h̃(x, t) is odd for t, H̃(x, t) ≥ 0 and

H̃(x, t) = 0 iff t ≡ 0 or |t| ≥ 2s2,

where H̃(x, t) := pH̃(x, t)− h̃(x, t)t.

Proof. It is immediate to see that

pH̃(x, t)− h̃(x, t)t = χ(t)H(x, t)− χ′(t)tH(x, t) + χ′(t)tξ|t|p,

where H (x, t) := pH(x, t) − h(x, t)t. For 0 ≤ |t| ≤ s2 and |t| ≥ 2s2 the conclusion
follows. By (h7) and (h8), we choose a sufficiently small s2 > 0 such that H(x, t) ≥
ξ|t|p for s2 ≤ |t| ≤ 2s2. Due to the assumption that χ′(t)t ≤ 0 we get the conclusion.

Let X be a reflexive and separable Banach space. Then there are {en} ⊆ X and
{f∗

n} ⊆ X∗ such that

X = span{en : n = 1, 2, · · · }, X∗ = span{f∗
n : n = 1, 2, · · · },

and

⟨f∗
i , ej⟩ =


1 if i = j,

0 if i ̸= j.

Let us denote Xk = span{ek}, Yk =
⊕k

m=1 Xm, and Zk =
⊕∞

m=k Xm for k ∈ N
(see [15]).

Definition 3.3. Let X be a real separable and reflexive Banach space and I ∈
C1(X,R). For every c ∈ R, we say that I satisfies the (PS)∗c -condition (with respect
to Yn) if any sequence {un}n∈N ⊂ X for which un ∈ Yn, for any n ∈ N,

I(un) → c and ||(I|Yn
)′(un)||X∗ → 0 as n → ∞,

contains a subsequence converging to a critical point of I.

Proposition 3.2 ((Dual Fountain Theorem)Theorem 3.18, [36]). Assume that X
is a Banach space, I ∈ C1(X,R) is an even functional. If there exists k0 > 0 such
that, for each k ≥ k0, there are ρk > δk > 0 such that

(D1) inf{I(u) : u ∈ Zk, ||u||X = ρk} ≥ 0.
(D2) bk := max{I(u) : u ∈ Yk, ||u||X = δk} < 0.

(D3) dk := inf{I(u) : u ∈ Zk, ||u||X ≤ ρk} → 0 as k → ∞.
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(D4) I satisfies the (PS)∗c-condition for every c ∈ [dk0
, 0),

then I has a sequence of negative critical values converging to 0.

With the help of Lemmas 3.7, 3.8 and Proposition 3.2, we are in a position to
derive our second major result.

Theorem 3.2. Suppose that (h1), (h2), (h7) and (h8) hold and we fix

λ ∈
(
0, γ/

(
q||%||L∞(Ω)C

γ
1,imb

))
where C1,imb is the imbedding constant for the imbedding X ↪→ Lγ(Ω). Then there
exists an interval Γ such that problem (1.2) has a sequence of nontrivial solutions
{vn} in X whose ϕ(vn) → 0 and ||vn||L∞(Ω) → 0 as n → ∞ for every µ ∈ Γ.

Proof. Consider the modified energy functional ϕ̃ : X → R given by

ϕ̃(v) := Φ(v)− Ψ̃(v),

where
Ψ̃(v) =

λ

γ

∫
Ω

%(x)|v|γ dx+ µ

∫
Ω

H̃(x, v) dx.

Then it is clear by Lemma 3.8 that ϕ̃ ∈ C1(X,R) is an even functional. Now we
will show that conditions (D1)–(D4) of Proposition 3.2 are satisfied.

(D1): Let us denote

θt,k = sup

{∫
Ω

|v|t dx : v ∈ Zk, ||v||X ≤ 1

}
for t > 1

and
ϑk = max{θr,k, θp,k, θγ,k}. (3.31)

Then, it is easy to verify that θr,k → 0, θp,k → 0 and θγ,k → 0 as k → ∞(see [27]).
From Lemmas 2.1 and 2.2, it follows that

ϕ̃(v) = Φ(v)− Ψ̃(v)

=

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx− λ

γ

∫
Ω

%(x)|v|γ dx− µ

∫
Ω

H̃(x, v) dx

≥ 1

q

∫
Ω

(|∇v|p + a(x)|∇v|q) dx− λ

γ
||%||L∞(Ω)

∫
Ω

|v|γ dx

− µ

∫
Ω

(H(x, v) + ξ|v|p) dx

≥ 1

q
min {||∇v||pH, ||∇v||qH} − λ

γ
||%||L∞(Ω)||v||γLγ(Ω)

−
µ||σ||L∞(Ω)

r

∫
Ω

|v|rdx− µξ

∫
Ω

|v|pdx

≥ 1

q
min {||∇v||pH, ||∇v||qH} − λ

γ
||%||L∞(Ω)||v||γLγ(Ω)

−
µ||σ||L∞(Ω)

r
ϑk||v||rX − µξϑk||v||pX .
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Let us choose ρk = (ξ1ϑk)
1

p−2r and let v ∈ Zk with ||v||X = ρk > 1 for sufficiently
large k where ξ1 = r−1||σ||L∞(Ω) + ξ. If we set

µ ∈ Γ1 :=

(
0,

1

q
− λ

γ
||%||L∞(Ω)C

γ
1,imb

)
,

then there exists k0 ∈ N such that

ϕ̃(v) ≥ 1

q
||v||pX − λ

γ
||%||L∞(Ω)||v||γLγ(Ω) −

µ||σ||L∞(Ω)

r
ϑk||v||rX − µξϑk||v||pX

≥ 1

q
||v||pX − λ

γ
||%||L∞(Ω)C

γ
1,imb||v||

p
X − µξ1ϑk||v||2rX

≥
(
1

q
− λ

γ
||%||L∞(Ω)C

γ
1,imb

)
(ξ1ϑk)

p
p−2r − µξ1ϑk (ξ1ϑk)

2r
p−2r

=

(
1

q
− λ

γ
||%||L∞(Ω)C

γ
1,imb − µ

)
(ξ1ϑk)

p
p−2r ≥ 0

for all k ∈ N with k ≥ k0, by being

lim
k→∞

(
1

q
− λ

γ
||%||L∞(Ω)C

γ
1,imb − µ

)
(ξ1ϑk)

p
p−2r = ∞.

Then one has
inf{ϕ̃(v) : v ∈ Zk, ||v||X = ρk} ≥ 0.

(D2): Observe that || · ||L∞(Ω), || · ||Lp(Ω) and || · ||X are equivalent on Yk. Then
there are positive constants ς1,k and ς2,k such that

ς1,k||v||L∞(Ω) ≤ ||v||X ≤ ς2,k||v||Lp(Ω) (3.32)

for any v ∈ Yk. From (h7) and (h8), for any K > 0 there exists s3 ∈ (0, s2) such
that

H(x, t) ≥
Kςp2,k
p

|t|p

for almost all x ∈ Ω and all |t| ≤ s3. Choose δk := min{ 1
2 , s3ς1,k} for all k ∈ N. Then

we know that ||v||L∞(Ω) ≤ s3 for v ∈ Yk with ||v||X = δk, and so H̃(x, v) = H(x, v).
Hence we derive by (3.32) that

ϕ̃(v) =

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx− λ

γ

∫
Ω

%(x)|v|γ dx− µ

∫
Ω

H̃(x, v) dx

≤ 1

p

∫
Ω

(|∇v|p + a(x) |∇v|q) dx− µ

∫
Ω

Kςp2,k
p

|v|p dx

≤ 1

p
||∇v||pH −

µKςp2,k
p

||v||pLp(Ω)

≤ 1

p
||v||pX − µK

p
||v||pX

=
1− µK

p
δpk
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for any v ∈ Yk with ||v||X = δk. If we choose K large enough such that 1 < µK, we
obtain that

bk = max{ϕ̃(v) : v ∈ Yk, ||v||X = δk} < 0.

If necessary, we can change k0 to a larger value, so that ρk > δk > 0 for all k ≥ k0.
(D3): Because Yk∩Zk ̸= φ and 0 < δk < ρk, we have dk ≤ bk < 0 for all k ≥ k0.

For any v ∈ Zk with ||v||X = 1 and 0 < t < ρk, we have

ϕ̃(tv) =

∫
Ω

(
1

p
|∇tv|p + a(x)

q
|∇tv|q

)
dx− λ

γ

∫
Ω

%(x)|tv|γ dx− µ

∫
Ω

H̃(x, tv) dx

≥ −λ

γ

∫
Ω

%(x)|tv|γ dx− µ

∫
Ω

(H(x, tv) + ξ|tv|p) dx

≥ −λ

γ
||%||L∞(Ω)

∫
Ω

|tv|γ dx−
µ||σ||L∞(Ω)

r

∫
Ω

|tv|rdx− µ

∫
Ω

ξ|tv|pdx

≥ −λ

γ
||%||L∞(Ω)ρ

γ
k

∫
Ω

|v|γ dx−
µ||σ||L∞(Ω)

r
ρrk

∫
Ω

|v|rdx− µρpk

∫
Ω

ξ|v|pdx

≥ −λ

γ
||%||L∞(Ω)ρ

γ
kϑk −

µ||σ||L∞(Ω)

r
ρrkϑk − µξρpkϑk,

where ϑk is given in (3.31). Hence, we achieve

dk ≥ −λ

γ
||%||L∞(Ω)ρ

γ
kϑk −

µ||σ||L∞(Ω)

r
ρrkϑk − µξρpkϑk

≥ −λ

γ
||%||L∞(Ω)ξ

γ
p−2r

1 ϑ
γ+p−2r
p−2r

k −
µ||σ||L∞(Ω)

r
ξ

r
p−2r

1 ϑ
p−r
p−2r

k − µξξ
p

p−2r

1 ϑ
2p−2r
p−2r

k .

Because γ+ p < 2r, p < r and ϑk → 0 as k → ∞, we conclude that limk→∞ dk = 0.

(D4): Let v ∈ X with ||v||X ≥ 1. By (h2), (3.30) and the definition of χ, we
deduce that there exist positive constants C11, C12 such that

H̃(x, t) ≤ C11 + ξ|t|p and h̃(x, t) ≤ C12(1 + |t|p−1) (3.33)

for almost all x ∈ Ω and all t ∈ R. Using Lemmas 2.1, 2.2 and (3.33), we arrive at

ϕ̃(v) =

∫
Ω

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx− λ

γ

∫
Ω

%(x)|v|γ dx− µ

∫
Ω

H̃(x, v) dx

≥ 1

q

∫
Ω

(|∇v|p+a(x)|∇v|q) dx− λ

γ
||%||L∞(Ω)

∫
Ω

|v|γ dx−µ

∫
Ω

(C11+ξ|v|p) dx

≥ 1

q
||∇v||pH − λ

γ
||%||L∞(Ω)

∫
Ω

|v|γ dx− C11µ|Ω| − µξ

∫
Ω

|v|pdx

≥ 1

q
||v||pX − λ

γ
||%||L∞(Ω)C

γ
1,imb||v||

γ
X − C11µ|Ω| − µξCp

2,imb||v||
p
X

≥
(
1

q
− µξCp

2,imb

)
||v||pX − λ

γ
||%||L∞(Ω)C

γ
1,imb||v||

γ
X − C11µ|Ω|,

where C2,imb is an imbedding constant of X ↪→ Lp(Ω). Therefore we deduce that
for any

µ ∈ Γ2 :=

(
0,

1

qξCp
2,imb

)
,
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the functional ϕ̃ is coercive, that is, ϕ̃(v) → ∞ as ||v||X → ∞ and thus is bounded
from below on X.

Now we show that Ψ̃′ is weakly strongly continuous on X for any λ > 0. Let
{vn} be a sequence in X such that vn ⇀ v in X as n → ∞. Since {vn} is bounded
in X, Lemma 2.2 guarantees that there exists a subsequence {vnk

} such that

vnk
(x) → v(x) a.e. in Ω and vnk

→ v in Lp(Ω) as k → ∞. (3.34)

First of all, by the Young inequality, we infer that∫
Ω

∣∣∣%(x) |vnk
|γ−2

vnk
− %(x)|v|γ−2v

∣∣∣γ′

dx

≤ C13

∫
Ω

|%(x)|
1

γ−1 |%(x)| (|vnk
|γ + |v|γ) dx

≤ C14

∫
Ω

|%(x)| (|vnk
|γ + |v|γ) dx

≤ C15

∫
Ω

(
2(p− γ)

p
|%(x)|

p
p−γ +

γ

p
|vnk

|p + γ

p
|v|p
)

dx (3.35)

for some positive constants C13, C14 and C15. In this manner, due to (3.33), we
obtain∫

Ω

∣∣∣h̃(x, vnk
)− h̃(x, v)

∣∣∣p′

dx ≤ C16

∫
Ω

∣∣∣h̃(x, vnk
)
∣∣∣p′

+
∣∣∣h̃(x, v)∣∣∣p′

dx

≤ C17

∫
Ω

(
1 + |vnk

|p−1
)p′

+
(
1 + |v|p−1

)p′

dx

≤ C18

∫
Ω

|vnk
|p + |v|pdx (3.36)

for some positive constants C16, C17 and C18. Invoking (3.34)-(3.36), and the con-
vergence principle, one has∣∣∣%(x) |vnk

|γ−2
vnk

− %(x)|v|γ−2v
∣∣∣γ′

≤ k1(x) and
∣∣∣h̃ (x, vnk

)− h̃(x, v)
∣∣∣p′

≤ k2(x)

for almost all x ∈ Ω and for some k1, k2 ∈ L1(Ω), and also %(x) |vnk
|γ−2

vnk
→

%(x) |v|γ−2
v and h̃ (x, vnk

) → h̃(x, v) as k → ∞ for almost all x ∈ Ω. This together
with the Lebesgue dominated convergence theorem yields that

||Ψ̃′ (vnk
)− Ψ̃′(v)||X∗

= sup
||u||X≤1

∣∣∣〈Ψ̃′ (vnk
)− Ψ̃′(v), u

〉∣∣∣
= sup

||u||X≤1

∣∣∣∣λ ∫
Ω

(
%(x) |vnk

|γ−2
vnk

− %(x) |v|γ−2
v
)
u dx

+µ

∫
Ω

(
h̃ (x, vnk

)− h̃(x, v)
)
u dx

∣∣∣∣
≤ C19

(
λ||%(x) |vnk

|γ−2
vnk

− %(x)|v|γ−2v||Lγ′ (Ω) + ||h̃ (x, vnk
)− h̃(x, v)||Lp′ (Ω)

)
→ 0

as k → ∞ and for some positive constant C19. Therefore, we derive that Ψ̃′ (vnk
) →

Ψ̃′(v) in X∗ as k → ∞.
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Consequently, by setting Γ := Γ1 ∩ Γ2, all conditions of Proposition 3.2 are
fulfilled, and hence for µ ∈ Γ we have a sequence cn < 0 for ϕ̃ satisfying cn → 0
when n goes to ∞. Then for any vn ∈ X satisfying ϕ̃(vn) = cn and ϕ̃′(vn) =
0, the sequence {vn} is a (PS)-sequence of ϕ̃(v) and {vn} admits a convergent
subsequence. Thus, up to a subsequence, still denoted by {vn}, one has vn → v in
X as n → ∞. Lemmas 3.7 and 3.8 imply that 0 is the only critical point with 0
energy and the subsequence {vn} has to converge to 0 in X; so ||vn||Lt(Ω) → 0 as
n → ∞ for any t with 1 ≤ t < p∗. According to Proposition 3.1, any weak solution
u of our problem belongs to the space L∞(Ω) and there exist positive constants C, η
independent of u such that

||u||L∞(Ω) ≤ C||u||ηLr(Ω).

From this fact, we know ||vn||L∞(Ω) → 0 and thus by Lemma 3.8 again, we have
||vn||L∞(Ω) ≤ s3 for large n. Thus {vn} with large enough n is a sequence of weak
solutions of the problem (1.2). The proof is complete.
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