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INTERESTING DETERMINANTS AND
INVERSES OF SKEW LOEPLITZ AND

FOEPLITZ MATRICES∗

Qingyan Meng1, Xiaoyu Jiang2,† and Zhaolin Jiang1,†

Abstract In this paper, we show that there is an intimate relationship be-
tween Toeplitz matrix, tridiagonal Toeplitz matrix, the Fibonacci number, the
Lucas number, and the Golden Ratio. We introduce skew Loeplitz and skew
Foeplitz matrices and derive their determinants and inverses by construction.
Specifically, the determiant of n×n skew Loeplitz matrix can be expressed by
the (n+1)st Fibonacci number. The inverse of skew Loeplitz matrix is sparse
and can be expressed by the nth and (n+ 1)st Fibonacci numbers. Similarly,
the determinant of n × n skew Foeplitz matrix also can be expressed by the
(n+1)st Lucas number. The inverse of skew Foeplitz matrix can be expressed
by only seven elements with each element being the explicit expression of the
Lucas or Fibonacci numbers. We also calculate the determinants and inverses
of skew Lankel and skew Fankel matrices.
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Foeplitz matrix, skew Loeplitz matrix.
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1. Introduction
As is well-known, Toeplitz matrix families have important applications in various
disciplines including fractional differential equation [6, 13, 14, 17, 20, 21], integral
equations [19].

The main research objects of this paper are the explicit determinants and in-
verses of two special matrices, which are called skew Loeplitz and Foeplitz matrix,
respectively, and defined as follows.

A skew Loeplitz matrix is a Toeplitz matrix of the form

TL,n,−1 = (ti,j)n×n , (1.1)

where

ti,j =

{
Lj−i+1, 1 ≤ i ≤ j ≤ n,

−L−(i−j+1), 1 ≤ j < i ≤ n,
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and L1, L±2, . . . , L±n are Lucas numbers.
A skew Foeplitz matrix is a Toeplitz matrix of the form

TF,n,−1 = (fi,j)n×n , (1.2)

where

fi,j =

{
Fj−i+1, 1 ≤ i ≤ j ≤ n,

−F−(i−j+1), 1 ≤ j < i ≤ n,

and F1, F±2, . . . , F±n are Fibonacci numbers.
Recently, many scholars showed the explicit determinants and inverses of the

special matrices involving famous numbers. More specifically, Shen et al. [15] pro-
posed circulant matrices involving Fibonacci and Lucas numbers and compute their
explicit determinants and inverses. Moreover, Jiang et al. [9] considered circulant
type matrices with the k-Fibonacci & k-Lucas numbers and presented the explicit
determinants and inverses by construction. Zheng and Shon [24] proposed the
invertibility criterion of the generalized Lucas skew circulant type matrices and
provided their determinants and inverses. Besides, Bozkurt and Tam [2] provided
determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-
Lucas numbers. Following year, they [8] evaluated the determinants and inverses
for Tribonacci skew circulant type matrices. Shen et al. [16] considered generalized
Tribonacci circulant type matrices, including the circulant and left circulant. Deter-
minants and inverses of Ppoeplitz and Ppankel matrices have been obtained in [22].
Explicit expression of determinants and inverse matrices for Foeplitz and Loeplitz
matrices were represented in [11]. Determinant and inverse of a Gaussion Fibonacci
skew-Hermitian Toeplitz matrix was studied by Jiang and Sun in [10]. Determinant
and inverse of skew Peoeplitz matrix was considered by Han and Jiang in [7]. Deter-
minants and inverses of symmetric Poeplitz and Qoeplitz matrix were investigated
in [3]. Determinants and inverses of skew symmetric generalized Loeplitz matri-
ces and Foeplitz matrices were proposed in [4] and [5], respectively. Akbulak and
Bozkurt [1] gave upper and lower bounds for the spectral norms of the Fibonacci
and Lucas Toeplitz matrix.

The Fibonacci numbers {Fn} and Lucas numbers {Ln} are respectively defined
by the following recurrence relations [18]:

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, n ≥ 2;

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1, n ≥ 2.

The rule can be used to extend the sequence backwards. Hence

F−n = (−1)n+1Fn, L−n = (−1)nLn.

The following identities are easy to verify

(i)

n∑
i=1

Fk+ia
i =

aFk+1 + a2Fk − an+1(Fk+n+1 + aFk+n)

1− a− a2
, a ̸= −1±

√
5

2
, (1.3)

(ii)

n∑
i=1

Fk−ia
i =

aFk−1 + a2Fk − an+1(Fk−n−1 + aFk−n)

1 + a− a2
, a ̸= 1±

√
5

2
, (1.4)
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(iii)

n∑
i=1

Lk+ia
i =

aLk+1 + a2Lk − an+1(Lk+n+1 + aLk+n)

1− a− a2
, a ̸= −1±

√
5

2
, (1.5)

(iv)

n∑
i=1

Lk−ia
i =

aLk−1 + a2Lk − an+1(Lk−n−1 + aLk−n)

1 + a− a2
, a ̸= 1±

√
5

2
, (1.6)

where a is a complex number and k is an integer.
This paper is organized as follows. In Section 2, the determinant and inverse

of skew Loeplitz matrix are provided. Section 3 is devoted to calculating the de-
terminant and inverse of skew Foeplitz matrix. In Section 4, the determinants and
inverses of skew Lankel and skew Fankel matrices are given. Finally, we present an
algorithm at Section 5.

2. Determinant and inverse of skew Loeplitz matrix
In this section, we compute the determinant and the inverse of the matrix TL,n,−1

in the following Theorem 2.1 and 2.2 below, respectively.

Theorem 2.1. Let TL,n,−1 be the n×n skew Loeplitz matrix given in (1.1). Then
we have

detTL,n,−1 = 5n−1Fn+1, (2.1)

where Fn+1 is the (n+ 1)st Fibonacci number.

Proof. Obviously, detTL,1,−1 = 1 and detTL,2,−1 = 10 both satisfy the equation
(2.1). In the case n > 2, let An = (aij)n×n and Bn = (bij)n×n, where

aij =


1, j = n+ 1− i, 1 ≤ i ≤ n,

−1, n+ 2− i ≤ j ≤ n+ 3− i, 3 ≤ i ≤ n,

0, else,

(2.2)

and

bij =


1, j = i = 1,

1, j = n+ 2− i, 2 ≤ i ≤ n,

0, else.

(2.3)

Apparently, An and Bn are invertible, and

detAn detBn = (−1)n−1. (2.4)

Multiplying TL,n,−1 by An from the left yields

AnTL,n,−1 =


−L−n −L−(n−1) −L−(n−2) · · · −L−3 −L−2 L1

−L−(n−1) −L−(n−2) −L−(n−3) · · · −L−2 L1 L2

0 5În−2 0


n×n

,

where În is the “reverse unit matrix”, having ones along the secondary diagonal
and zeros elsewhere.
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And multiplying the above matrix by Bn from the right, we obtain

AnTL,n,−1Bn =

E F

G H

=


−L−n L1 −L−2 −L−3 −L−4 · · · −L−(n−2) −L−(n−1)

−L−(n−1) L2 L1 −L−2 −L−3 · · · −L−(n−3) −L−(n−2)

0 0 5 0 · · · · · · · · · 0

0 0 0
. . . . . .

...
...

...
...

. . . . . . . . .
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . 0

0 0 0 · · · · · · · · · 0 5


n×n

. (2.5)

Taking the determinant for both sides of (2.5) and by the identity −3L−n+L−(n−1) =
5Fn+1, we have

det(AnTL,n,−1Bn) = detE detH = (−1)n−15n−1Fn+1. (2.6)

Using the formula detAn detBn = (−1)n−1 and (2.6), we obtain detTL,n,−1 as
(2.1).
Remark 2.1. Theorem 2.1 gives the relationship between the skew Loeplitz matrix
and the Fibonacci number. From the perspective of number theory, the (n + 1)st
Fibonacci number can be represented by the determinant of the n×n skew Loeplitz
matrix.

Theorem 2.2. Let TL,n,−1 be the n× n skew Loeplitz matrix given in (1.1) for a
positive integer n > 2. Then

T−1
L,n,−1 =

1

5



Fn

Fn+1
− 1 0 0 · · · · · · 0 (−1)n+1

Fn+1

1 − 1 − 1 0 · · · · · · · · · 0

0 1 − 1 − 1
. . . ...

... . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . ...

... . . . 1 − 1 − 1 0

0 · · · · · · · · · 0 1 − 1 − 1

1
Fn+1

0 · · · · · · · · · 0 1 Fn

Fn+1


n×n

, (2.7)

where Fi is the ith Fibonacci number, i = n, n+ 1.

Proof. For n > 2, in order to obtain the inverse of TL,n,−1, we write

T−1
L,n,−1 = Bn(AnTL,n,−1Bn)

−1An, (2.8)
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where An, Bn are the same as Theorem 1.

According to the Theorem in [23, p.19], the equation (2.5), Ln−1Ln−k−LnLn−k−1=

(−1)n−kLk and 3Ln−k + Ln−k−1 = 5Fn−k−1 where k is an integer, we have

(AnTL,n,−1Bn)
−1

=



(−1)n+13
5Fn+1

(−1)n+2

5Fn+1

(−1)n+5F3
5Fn+1

(−1)n+6F4
5Fn+1

· · · (−1)2n+2Fn

5Fn+1

Ln−1

5Fn+1

Ln
5Fn+1

Ln−2

25Fn+1

Ln−3

25Fn+1
· · · 1

25Fn+1

0 0 1
5

0 · · · 0

0 0 0 1
5

. . .
...

...
...

...
. . . . . . 0

0 0 0 · · · 0 1
5


n×n

. (2.9)

According to formulas (2.2), (2.8), (2.9) and the relation between the Fibonacci
number and the Lucas number, we can obtain the inverse of TL,n,−1 as (2.7), which
completes the proof.

Remark 2.2. Equation (2.7) can be appreciated in many different ways, and it
is easy to see that top-left and bottom-right corner entries of 5T−1

L,n,−1 get closer
and closer to the Golden Ratio. In fact, skew Loeplitz matrix, tridiagonal Toeplitz
matrix with perturbed corner entries, the Fibonacci number, the Lucas number,
and the Golden Ratio are all connected by Equation (2.7).

3. Determinant and inverse of skew Foeplitz matrix

In this section, we compute the determinant and the inverse of the matrix TF,n,−1

in the following Theorem 3.1 and 3.2 below, respectively.

Theorem 3.1. Let TF,n,−1 be the n × n skew Foeplitz matrix given in (1.2) and
n ≥ 3. We have

detTF,n,−1 =
2n + (−1)n+1Ln+1

5
. (3.1)

Proof. Obviously, detTF,3,−1 = 3 satisfying the equation (3.1). We now com-
pute detTF,n,−1 for n ≥ 3. Multiply TF,n,−1 by An and În from left and right,
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respectively, we obtain

AnTF,n,−1În =



1 µn−1 µn−2 µn−3 · · · µ3 µ2 µ1

1 ηn−1 ηn−2 ηn−3 · · · η3 η2 η1

0 −1 2 0 · · · · · · · · · 0

0 0 −1
. . . . . . ...

...
... 0

. . . . . . . . . ...
...

...
... . . . . . . . . . . . . ...

...
...

... . . . . . . 2 0

0 0 0 · · · · · · 0 −1 2


n×n

, (3.2)

where În is the reverse unit matrix, An is given by (2.2),

µi = (−1)n+1−iFn+1−i, i = 1, 2, . . . , n− 1,

ηi = (−1)n−iFn−i, i = 1, 2, . . . , n− 2, ηn−1 = F1.

By using the Laplace expansion of the determinant of the matrix AnTF,n,−1În
along the first column and Lemma 2 in [12], we get

det(AnTF,n,−1În) = detDn−1( [ηi]
n−1
i=1 , 2, − 1)− detDn−1( [µi]

n−1
i=1 , 2, − 1)

=

n−1∑
i=1

(ηi − µi)2
i−1 =

n−2∑
i=1

(−1)n−iFn+2−i2
i−1, (3.3)

where Dn−1( [ηi]
n−1
i=1 , 2, − 1) and Dn−1( [µi]

n−1
i=1 , 2, − 1) are in the following form

Dn−1( [gi]
n−1
i=1 , 2, − 1) =



gn−1 gn−2 gn−3 · · · g2 g1

−1 2 0 · · · · · · 0

0 −1 2
. . . ...

... . . . . . . . . . . . . ...

... . . . −1 2 0

0 · · · · · · 0 −1 2


n−1×n−1

.

From the equation (1.4), (3.3) and Fn + Fn+2 = Ln+1, we get

det(AnTF,n,−1În) =
2n + (−1)n+1Ln+1

5
. (3.4)

According to (3.4) and detAn = det În = (−1)
n(n−1)

2 , we obtain detTF,n,−1 as
(3.1).
Remark 3.1. Theorem 3.1 gives the relationship between the skew Foeplitz matrix
and the Lucas number. From the perspective of number theory, the (n+1)st Lucas
number can be represented by the determinant of the n× n skew Foeplitz matrix.



Interesting determinants and inverses. . . 2953

Theorem 3.2. Let TF,n,−1 be the n × n invertible skew Foeplitz matrix given in
(1.2) and n ≥ 5. Then T−1

F,n,−1 is of the form

T−1
F,n,−1 =



p3 p2 2n−3p1 · · · 22p1 2p1 p1

p4 p5 p2
. . . . . . . . . 2p1

2p4 p6 p5
. . . . . . . . . 22p1

22p4 2p6
. . . . . . . . . . . . ...

...
... . . . . . . p5 p2 2n−3p1

2n−3p4 2n−4p6 · · · 2p6 p6 p5 p2

p7 2n−3p4 · · · 22p4 2p4 p4 p3


n×n

, (3.5)

where

p1 = − 1

detTF,n,−1
, (3.6)

p2 = − 2n+2 + (−1)nLn+1

2n+2 − (−1)n16Ln+1
, (3.7)

p3 = −2n+1 + (−1)nLn−2

20
p1, (3.8)

p4 = (−1)n+1p1Fn+1, (3.9)

p5 =
2n+1 + (−1)n+17Ln+1

2n+1 + (−1)n+14Ln+1
, (3.10)

p6 = (−1)np1Ln+1, (3.11)

p7 =
(−1)n+1(1 + 2Ln+1)

5 detTF,n,−1 − 3 · 2n−2
, (3.12)

detTF,n,−1 =
2n + (−1)n+1Ln+1

5
. (3.13)

Proof. To obtain the inverse of TF,n,−1, we split the inverse T−1
F,n,−1 as the fol-

lowing form

T−1
F,n,−1 = În(AnTF,n,−1În)

−1An. (3.14)

The matrix AnTF,n,−1În in (3.2) is partitioned as follows

AnTF,n,−1În =

M N

Q Y


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=



F1 −F−2 −F−3 −F−4 · · · −F−(n−2) −F−(n−1) −F−n

F2 F1 −F−2 −F−3 · · · −F−(n−3) −F−(n−2) −F−(n−1)

0 −1 2 0 · · · · · · · · · 0

0 0 −1
. . . . . . ...

...
... 0

. . . . . . . . . ...
...

...
... . . . . . . . . . . . . ...

...
...

... . . . . . . 2 0

0 0 0 · · · · · · 0 −1 2


n×n

. (3.15)

By Lemma 1 in [11], we have

Y −1 = (xi,j)(n−2)×(n−2), (3.16)

where

xi,j =

{
xi−j+1, 1 ≤ j ≤ i ≤ n− 2,

0, else,

in which

xi =
1

2i
, i = 1, 2, . . . , n− 2.

Using the equation (1.4) and Fn−k−1 + Fn−k+1 = Ln−k where k is an integer,
we have

(M −NY −1Q)−1 =

 zw −zu

−z z

 , (3.17)

where

u =
2 + (− 1

2 )
n−2Ln

5
, w =

6− (− 1
2 )

n−2Ln−1

5
, z =

5

4− (− 1
2 )

n−2Ln+1

.

From (3.15), Theorem in [23, p.19], (3.16), (3.17), (7-10) and the relation be-
tween the Fibonacci number and Lucas number, we obtain

(AnTF,n,−1În)
−1 = (yi,j)n×n , (3.18)

where

y1,1 =
6− (− 1

2 )
n−2Ln−1

4− (− 1
2 )

n−2Ln+1

,

y1,2 = −
2 + (− 1

2 )
n−2Ln

4− (− 1
2 )

n−2Ln+1

,

y1,j =
(−1)j+1[2Fj + (− 1

2 )
n−jFn+1 + ( 12 )

n−2Fj−1−n]

4− (− 1
2 )

n−2Ln+1

, j = 3, 4, . . . , n,
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y2,1 = − 5

4− (− 1
2 )

n−2Ln+1

,

y2,2 =
5

4− (− 1
2 )

n−2Ln+1

,

y2,j =
(−1)j [Lj − (− 1

2 )
n+1−jLn+1]

4− (− 1
2 )

n−2Ln+1

, j = 3, 4, . . . , n,

yi,1 = − 5

2i + (−1)n−1( 12 )
n−iLn+1

, i = 3, 4, . . . , n,

yi,2 =
5

2i + (−1)n−1( 12 )
n−iLn+1

, i = 3, 4, . . . , n,

yk,j =


2k+(−1)j2k−j+1Lj

22k−j+1+(−1)n−1( 1
2 )

n−2k+j−1Ln+1
, k ≥ j, k, j = 3, 4, . . . , n,

(−1)j [Lj−(− 1
2 )

n+1−jLn+1]

2k+(−1)n−1( 1
2 )

n−kLn+1
, k < j, k, j = 3, 4, . . . , n.

According to formulas (2.2), (3.14), (3.18) and the relation between the Fi-
bonacci number and Lucas number, we can obtain the inverse of TF,n,−1 as (3.5).

Remark 3.2. We note that T−1
F,n,−1 is a symmetric matrix with respect to sec-

ondary diagonal, i.e., a sub-symmetric matrix. In this situation, we only need to
work out 7 entries and it is easy to compute the inverse of TF,n,−1 by (3.5).

4. Determinants and inverses of skew Lankel and
skew Fankel matrices

In this section, based on the relation between skew Loeplitz and skew Lankel ma-
trices, we calculate the determinant and inverse of skew Lankel matrix. Also, we
get the corresponding results of skew Fankel matrix.

Now, we show the definitions of the matrices HL,n,−1 and HF,n,−1 given as
follows.

A skew Lankel matrix is a Hankel matrix of the form

HL,n,−1 = (hi,j)n×n , (4.1)

where

hi,j =

{
Ln−i−j+2, 2 ≤ i+ j ≤ n+ 1,

−L−(i+j−n), n+ 1 < i+ j ≤ 2n,

and L1, L±2, . . . , L±n are Lucas numbers.
A skew Fankel matrix is a Hankel matrix of the form

HF,n,−1 = (gi,j)n×n , (4.2)

where

gi,j =

{
Fn−i−j+2, 2 ≤ i+ j ≤ n+ 1,

−F−(i+j−n), n+ 1 < i+ j ≤ 2n,
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and F1, F±2, . . . , F±n are Fibonacci numbers.
It is easy to check that

HL,n,−1 = TL,n,−1În, (4.3)
HF,n,−1 = TF,n,−1În, (4.4)

where În is the reverse unit matrix.

Theorem 4.1. Let HL,n,−1 be the n × n invertible skew Lankel matrix given in
(4.1). Then we have

detHL,n,−1 = (−1)
n(n−1)

2 5n−1Fn+1. (4.5)

Proof. From (4.3), it follows that detHL,n,−1 = detTL,n,−1 det În. Then we can
obtain this result by using Theorem 2.1 and det În = (−1)

n(n−1)
2 .

Theorem 4.2. Let HL,n,−1 be the n × n invertible skew Lankel matrix given in
(4.1) for a positive integer n > 2. Then H−1

L,n,−1 is of the form

H−1
L,n,−1 = ÎnT

−1
L,n,−1, (4.6)

where T−1
L,n,−1 is the same as Theorem 2.2.

Proof. We can obtain this conclusion by using (4.3) and Theorem 2.2.

Theorem 4.3. Let HF,n,−1 be the n × n skew Fankel matrix given in (4.2) and
n ≥ 3. We have

detHF,n,−1 =(−1)
n(n+1)

2
[(−2)n − Ln+1]

5
. (4.7)

Proof. It follows from (4.4) that detHF,n,−1 = detTF,n,−1 det În. Then we ob-
tain the desired result by using Theorem 3.1 and det În = (−1)

n(n−1)
2 .

Theorem 4.4. Let HF,n,−1 be the n×n invertible skew Fankel matrix given in (4).
Then H−1

F,n,−1 is of the form

H−1
F,n,−1 = ÎnT

−1
F,n,−1, (4.8)

where T−1
F,n,−1 is the same as in Theorem 3.2.

Proof. We can obtain this conclusion by using (4.4) and Theorem 3.2.

5. An algorithm for the inverses of the matrices
TF,n,−1 and HF,n,−1

In this section, we demonstrate an algorithm for finding the inverses of TF,n,−1 and
HF,n,−1.

An algorithm for finding T−1
F,n,−1 and H−1

F,n,−1 is as follows:
Algorithm: By Theorem 3.2 and Theorem 4.4, we proceed with
Step 1: Compute pi (i = 1, 2, . . . , 7) via the formulas (3.6), (3.7), (3.8), (3.9),

(3.10), (3.11) and (3.12), respectively;
Step 2: By the formula (3.5), we obtain T−1

F,n,−1;
Step 3: By the formula (4.8), we obtain H−1

F,n,−1.
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