
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 6, December 2021, 2959–2980 DOI:10.11948/20210074

TRAVELING WAVES AND THEIR
EVOLUTION FOR THE ZK(N,2N,-N)

EQUATION∗

Feiting Fan1, Yuqian Zhou2 and Xingwu Chen1,†

Abstract In this paper, using the approach of dynamical systems we investi-
gate the traveling waves for the ZK(n,2n,-n) equation including the types and
evolution of traveling waves. The traveling wave problem is converted into
the analysis of phase portraits of the corresponding traveling wave system,
which is 5-parametric and has a singular line in its phase space. The orbits
passing through this singular line in phase portraits are determined by a time
rescaling. After converting the orbits in these phase portraits into traveling
waves, we state all types of traveling waves and give at least one exact travel-
ing wave solution for each type of bounded traveling waves in our main results.
Finally, we discuss the evolution of these traveling waves among themselves
when parameters vary by the bifurcations happening in the phase portraits of
the traveling wave system.
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1. Introduction and main results
Concerning solutions of partial differential equations, one of important topics is
traveling wave solution (see, e.g., [4, 5, 10, 14, 28, 29]), a kind of solutions moving
with constant speeds in some direction.

The well-known integrable nonlinear Korteweg-de Vries (KdV) equation (see [8])

ut + uux + uxxx = 0 (1.1)

is an important model to describe the evolution of the weakly nonlinear steepening
and the weakly dispersive wave that appears in many applications, such as surface
waves in shallow water, acoustic waves, heat pulses in anharmonic crystals, ion-
acoustic wave, and magneto-sonic waves in a magnetized plasma (see, e.g., [7,16,20]).
In equation (1.1), the nonlinear convection term uux causes the steepening of wave
form and the linear dispersion effect term uxxx makes the wave form spread. More-
over, the balance between this weak nonlinear steepening and the linear dispersion
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gives rise to solitons: localized waves without change of its shape and velocity prop-
erties during propagation and after mutual collisions (see [31]).

In 1993, seeking to understand the role of nonlinear dispersion in the formation
of nonlinear structures like liquid drops, Rosenau and Hyman in [19] introduce and
study a family of fully nonlinear KdV equations, denoted by K(n,n):

ut + a(un)x + (un)xxx = 0, n > 1.

They found that for certain n, the delicate interaction between nonlinear convec-
tion (un)x with the genuine nonlinear dispersion (un)xxx generates solitary waves
with exact compact support. That is, these particle-like waves vanish identically
outside a finite core region. Just as the suffix-on is used in modern physics to in-
dicate the particle property (such as phonon, photon, soliton, etc.), they call this
type of solitary wave compacton: solitons with finite wavelengths or solitons free of
exponential tails (see, e.g., [19,21,22]). Different from the soliton collisions in an in-
tegrable system, compactons reemerge with the same coherent shape after colliding
with other compactons. Later in [18] in 1994, Rosenau pointed out that compactons
arise in a wide variety of settings where nonlinear dispersion arises naturally, but
the underlying nonlinear mechanism responsible for the coherence and robustness of
interaction remains very much a mystery. Moreover, unlike the bell-shaped solitary
wave, compacton as a type of “new wave” is a nonanalytic wave. These complex
but interesting discoveries have attracted many scholars to study the compacton
(see, e.g., [21, 22]).

An extensive research work has been done in developing higher dimensional
models, particularly those in the (2+1) dimension, i.e., two spatial and one time. As
a well-known generalization of (1.1), the nonintegrable Zakharov-Kuznetsov (ZK)
equation

ut + auux + b(uxx + uyy)x = 0, (1.2)

was first derived in [32] in 1974 and was used to describe weakly nonlinear ion-
acoustic waves in a strongly magnetized lossless plasma comprising cold ions and
hot isothermal electrons in [15,17]. Various useful techniques have been devoted to
traveling waves of (1.2), such as the extended tanh method in [12, 26], sine-cosine
method in [23], sine-cosine ansatz in [24], solitary wave ansatz method in [2] and
extended hyperbolic function method in [3].

Motivated by the rich treasure of the ZK equation in the literature and the
interest in compacton, we will study a nonlinear dispersive equation, a special type
of the ZK equation, of the form

ut + a0(u
n)x + [b0u

−n(u2n)xx + c0(u
n)yy]x = 0 (1.3)

and
ut + a0(u

n)x + [b0u
2n(u−n)xx + c0(u

n)yy]x = 0, (1.4)

where a0, b0, c0 are three non-zero real numbers and play a major role in change of
the physical structures of their solutions, n is an integer greater than 1 (see [25]).
Equations (1.3), (1.4) are usually called as ZK(n,-n,2n), ZK(n,2n,-n), respectively.
As in [1], the first term is the evolution term, the second term is the nonlinear term
while the third and fourth terms together form the nonlinear dispersion terms.
Compactons solutions and solitary patterns solutions of equations (1.3) and (1.4)
were obtained in [25] by the sine-cosine method and the tanh method. One can
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find results about semi-traveling wave solutions in [9], bright soliton solutions and
the Jacobi elliptic function solutions in [1, 30], and group-invariant solutions in [6].
For n = 2, some results about periodic traveling wave solutions are given in [27] for
equation (1.4). However, we note that the traveling waves of equations (1.3) and
(1.4) with general n have not been discussed completely in the relevant literatures,
especially for their non-smooth traveling waves. Moreover, there is no results about
the evolvement among different traveling waves when parameters vary, which is
helpful for us to understand these traveling waves.

It is the objective of this work to investigate the traveling waves of equation
(1.4) including their types and evolution by the approach of dynamical systems.
Substituting u(x, y, t) = ϕ(x+ ay − ct) = ϕ(ξ) into (1.4) and integrating it, we get

− cϕ+ a0ϕ
n +Aϕn−2(ϕ′)2 +Bϕn−1ϕ′′ = g, (1.5)

where ′ denotes the derivative with respect to ξ, g is an integral constant, A :=
b0n(n + 1) + a2c0n(n − 1), B := a2c0n − b0n and ac ̸= 0. When B = 0, equation
(1.5) is a one-dimensional differential equation of order 1. When B ̸= 0, equation
(1.5) is equivalent to the following planar Hamiltonian system

dϕ

dξ
= y,

dy

dξ
=

−Aϕn−2y2 − a0ϕ
n + cϕ+ g

Bϕn−1
. (1.6)

Since (1.6) is invariant under (A,B, a0, c, g) → (−A,−B,−a0,−c,−g), we need
only to consider c > 0. Moreover, (1.6) is invariant under (ξ, ϕ,A,B, a0, c, g) →
(−ξ,−ϕ,−A,−B,−a0, c,−g) when n is even. Thus, we assume in system (1.6) that
(A,B, a0, c, g) ∈ Ω := {(A,B, a0, c, g) ∈ R5 : a0B ̸= 0, c > 0} when n is odd and
(A,B, a0, c, g) ∈ Ω̂ := {(A,B, a0, c, g) ∈ R5 : B ̸= 0, a0 > 0, c > 0} when n is even.
Clearly, y-axis in the phase space (ϕ, y) is a singular line except the special case
that n− 2 = g = A = 0, which corresponds to system

dϕ

dξ
= y,

dy

dξ
=

−a0ϕ+ c

B
. (1.7)

System (1.7) is linear and easy to get its solutions. In the case that g = 0, system
(1.6) can be written as

dϕ

dξ
= y,

dy

dξ
=

−Ay2 − a0ϕ
2 + cϕ

Bϕ
, A ̸= 0, (1.8)

dϕ

dξ
= y,

dy

dξ
=

−Ay2 − a0ϕ
2 + c

Bϕ
, (1.9)

dϕ

dξ
= y,

dy

dξ
=

−Aϕn−3y2 − a0ϕ
n−1 + c

Bϕn−2
(1.10)

when n = 2, 3,⩾ 4, respectively. In the case that g ̸= 0, system (1.6) can be written
as

dϕ

dξ
= y,

dy

dξ
=

−Ay2 − a0ϕ
2 + cϕ+ g

Bϕ
, (1.11)

dϕ

dξ
= y,

dy

dξ
=

−Aϕn−2y2 − a0ϕ
n + cϕ+ g

Bϕn−1
(1.12)
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when n = 2,⩾ 3, respectively.
We give completed orbit structures in phase space (ϕ, y) for systems (1.8)-(1.12)

in Section 2 by the planar dynamical method. From these phase portraits, we get
the information of traveling wave solution u(x, y, t) = ϕ(x + ay − ct) of equation
(1.4) including wave graphs and some exact expressions.

Theorem 1.1. For traveling wave solution u(x, y, t) = ϕ(x + ay − ct) of equation
(1.4) satisfying a2 ̸= b0/c0 and ac ̸= 0, all wave graphs are given in Figure 1 for
the bounded case and in Figure 2 for the unbounded case.

In Figure 1 we observe that there are 7 classes of bounded traveling waves
(see, e.g., [11,13]), i.e., compacton (Figure 1(1-1)), periodic wave (Figures 1(1-2)-(1-
4)), periodic cusp wave (Figures 1(1-5)-(1-6)), solitary wave (Figures 1(1-7)-(1-10)),
solitary cusp wave (Figures 1(1-11)-(1-12)), two-sided breaking wave (Figures 1(1-
13)-(1-14)) and one-sided breaking kink/anti-kink wave (Figures 1(1-15)-(1-18)). For
these 7 classes of bounded traveling waves, we give their exact expressions.

Theorem 1.2. Equation (1.4) satisfying a2 ̸= b0/c0 and ac ̸= 0 has bounded
traveling wave solutions

ϕ(ξ) =
3c

2a0
cos2

(√
a0
6B

ξ

)
(1.13)

of type compacton,

ϕ(ξ) =
r1r2

r2 − (r2 − r1)sn2
(√

−h1r2
2B ξ, k̂

) (1.14)

of type periodic wave,

ϕ(ξ) =
3c+

√
9c2 + 48a0g

4a0
−

√
9c2 + 48a0g

(
exp

(√
2a0

−3B ξ
)
+ 1
)2

8a0 exp
(√

2a0

−3B ξ
) (1.15)

of type periodic cusp wave,

ϕ(ξ) = r4 −
4(r4 − r3) exp

(√
2h2(r4−r3)

B ξ

)
(
1 + exp

(√
2h2(r4−r3)

B ξ

))2 (1.16)

of type solitary wave,

ϕ(ξ) =
3c

4a0

(
1− exp

(
−
√

2a0
−3B

|ξ|

))
(1.17)
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(1-1) (1-2) (1-3) (1-4)

(1-5) (1-6) (1-7) (1-8)

(1-9) (1-10) (1-11) (1-12)

(1-13) (1-14) (1-15) (1-16)

(1-17) (1-18)

Figure 1. Graphs of bounded traveling waves for equation (1.4).
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(2-1) (2-2) (2-3) (2-4)

(2-5) (2-6) (2-7) (2-8)

(2-9) (2-10)

Figure 2. Graphs of unbounded traveling waves for equation (1.4).

of type solitary cusp wave,

ϕ(χ) =− r5A1 (1 + cn (χ, k))

(B1 −A1) (1 + cn (χ, k))− 2B1
,

ξ(χ) =

√
3B

2a0A1B1

(
r5A1

B1 −A1
χ− r5(A1 +B1)

2(B1 −A1)
Π

(
arccos (cn (χ, k)) ,

α2

α2 − 1
, k

))
−
√

3B

2a0
arctan

(
r5

2
√
A1B1

sd (χ, k)

)
(1.18)

of type two-sided breaking wave,

ϕ(χ) =
c

2a0
· χ2

χ2 + 1
,

ξ(χ) =

√
6B

a0
(χ− arctan(χ))

(1.19)
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of type one-sided breaking kink wave, where ξ = x+ay−ct, all sn(·, k̂), cn(·, k), sd(·, k)
are elliptic integrals of the first kind, Π(·, α2/(α2 − 1), k) is the elliptic integral of
the third kind and 0 < r1 < c/a0 < r2, 0 < r3 <

(
c−

√
c2 + 4a0g

)
/(2a0) <

r4 =
(
c+

√
c2 + 4a0g

)
/(2a0), 0 < r5 < c/(2a0), −a20/(2c) < h1 < 0, h2 =

−
(
3a20c

2 + 8a30g + 3a20c
√
c2 + 4a0g

)
/
(
6c3 + 18a0cg + 6(c2 + 4a0g)

3/2
)
, A1, B1, α,

k̂, k satisfy A2
1 = 3r25 − 3cr5/a0 +3c2/

(
4a20
)
, B2

1 = r25 − 3cr5/(2a0)+ 3c2/(4a20), α =

(A1 −B1)/(A1 +B1), k̂
2 = (r2 − r1)/r2, k

2 = (r25 − (A1 −B1)
2)/(4A1B1).

This paper is organized as follows. In Section 2, we analyze the orbit structures
in phase space (ϕ, y) for systems (1.8)-(1.12) and then give a proof of Theorem 1.1.
In Section 3, for these 7 classes of bounded traveling waves shown in Figure 1 we
obtain their exact expressions and hence finish the proof of Theorem 1.2. Finally,
in Section 4 conclusions are summarized and a remark is given for the evolution
of these traveling waves. Moreover, some simulations are done to illustrate our
theoretical results.

2. Phase portrait analysis and proof of Theorem 1.1
In order to get the information of traveling wave solution u(x, y, t) = ϕ(x+ ay− ct)
of equation (1.4), in this section we analyze the orbit structures in phase space (ϕ, y)
for systems (1.8)-(1.12) and then finish the proof of Theorem 1.1.

Lemma 2.1. (1) System (1.8) has a unique equilibrium, which lies at P1 (c/a0, 0)
and is a center (resp. saddle) if B > 0 (resp. B < 0). The phase portraits are
given in Figure 3;

(2) System (1.9) has no equilibrium when a0 < 0 and exactly two equilibria when
a0 > 0. These two equilibria lie at P2,3

(
±
√
c/a0, 0

)
and are two centers (resp.

two saddles) if B > 0 (resp. B < 0). The phase portraits are given in Figure 4;
(3) System (1.10)n=2m has a unique equilibrium, which lies at P4

(
(c/a0)

1/(2m−1), 0
)

and is a center (resp. saddle) if B > 0 (resp. B < 0). System (1.10)n=2m+1 has
no equilibrium when a0 < 0 and exactly two equilibria when a0 > 0. These two
equilibria lie at P5,6

(
±(c/a0)

1/(2m), 0
)

and are two centers (resp. saddles) if
B > 0 (resp. B < 0). Here m ⩾ 2. The phase portraits of systems (1.10)n=2m

and (1.10)n=2m+1 are given in Figures 5 and 6, respectively.

Proof. In order to analyze systems (1.8), (1.9) and (1.10), which have a singular
line ϕ = 0, we change (1.8) and (1.9) into

dϕ

dζ
= Bϕy,

dy

dζ
= −Ay2 − a0ϕ

2 + cϕ, A ̸= 0, (2.1)

dϕ

dζ
= Bϕy,

dy

dζ
= −Ay2 − a0ϕ

2 + c (2.2)

by dξ = Bϕdζ and change (1.10) into

dϕ

dζ
= Bϕn−2y,

dy

dζ
= −Aϕn−3y2 − a0ϕ

n−1 + c (2.3)
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(3-1) (3-2) (3-3) (3-4)

(3-5) (3-6) (3-7)

Figure 3. Phase portraits of system (1.8).

by dξ = Bϕn−2dζ. Clearly, systems (1.8), (1.9) and (1.10) are equivalent to systems
(2.1), (2.2) and (2.3), respectively, except on the y-axis. Straight computation shows
that system (2.1) has exactly two equilibria, which lie at O(0, 0) and P1 (c/a0, 0).
Moreover, O corresponds to a degenerate coefficient matrix and P1 has characteristic
equation λ2 +Bc2/a0 = 0. Thus, O is a degenerate equilibrium and P1 is a center
(resp. saddle) if B > 0 (resp. B < 0) for system (2.1), which means that the
statement about equilibria for system (1.8) is proven. In order to get the orbit
structures in (ϕ, y), by v = y, w = ϕ−Ay2/c−a0ϕ

2/B, t = cζ, we change (2.1) into

dv

dt
= w,

dw

dt
=

AB

c2
v3
(
1 +

a0A

c2
v2 + · · ·

)
− 2A

c
vw. (2.4)

By [33, P. 132, Theorem 7.2], O of system (2.4) is a saddle if AB < 0. Moreover,
a small neighborhood of O consists of an elliptical sector and a hyperbolic sector if
AB > 0, so does (2.1). Conclusion (1) is proven.

For system (2.2), we have four equilibria when a0 > 0 and A > 0, which
lie at P2,3

(
±
√

c/a0, 0
)

and Q±

(
0,±

√
c/A

)
. Then, P2 and P3 have the same

characteristic equation λ2 + 2Bc = 0 and Q± have characteristic equations λ2 ±(
2
√
Ac−B

√
c/A

)
λ − 2Bc = 0 respectively. By the theory of planar dynamical

systems, P2,3 are two centers and Q± are two saddles when B > 0; P2,3 are two
saddles and Q± are two nodes when B < 0. Conclusion (2) is proven.

It is not hard to find that system (2.3)n=2m has a unique equilibrium, lying at
P4

(
(c/a0)

1/(2m−1), 0
)
, and system (2.3)n=2m+1 has no equilibrium when a0 < 0

and exactly two equilibria when a0 > 0, which lie at P5,6

(
±(c/a0)

1/(2m), 0
)
. By the

characteristic equations of P4, P5, P6, we get that P4,5,6 are centers (resp. saddles)
if B > 0 (resp. B < 0). Conclusion (3) is proven. Finally, by the information of
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(4-1) (4-2) (4-3) (4-4)

(4-5) (4-6) (4-7) (4-8)

(4-9) (4-10)

Figure 4. Phase portraits of system (1.9).
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(5-1) (5-2) (5-3) (5-4)

(5-5)

Figure 5. Phase portraits of (1.10) for even n ⩾ 4.

(6-1) (6-2) (6-3) (6-4)

(6-5) (6-6) (6-7) (6-8)

Figure 6. Phase portraits of (1.10) for odd n ⩾ 5.
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(2.1), (2.2) and (2.3) we get phase portraits of (1.8), (1.9) and (1.10) as shown in
Figures 3-6.

Lemma 2.2. (1) When g < −c2/(4a0), (1.11) has no equilibria;
(2) When g = −c2/(4a0), (1.11) has a unique equilibrium, which is a cusp lying at

P7 (c/(2a0), 0);

(3) When −c2/(4a0)<g, (1.11) has exactly two equilibria P±

((
c±
√
c2+4a0g

)
/(2a0),0

)
.

In the case that −c2/(4a0) < g < 0, P+ is a saddle (resp. center) and P− is a
center (resp. saddle) if B < 0 (resp. B > 0). In the case that g > 0, Both P+

and P− are centers (resp. saddles) if B > 0 (resp. B < 0).
The phase portraits are given in Figure 7.

Proof. In order to analyze system (1.11), which has a singular line ϕ = 0, we
change it into

dϕ

dζ
= Bϕy,

dy

dζ
= −Ay2 − a0ϕ

2 + cϕ+ g, (2.5)

by dξ = Bϕdζ. Clearly, system (1.11) is equivalent to system (2.5) except on the
y−axis.

Consider g < −c2/(4a0). From the expression of system (1.11), there is no
equilibria. For system (2.5), there exist exactly two equilibria if and only if A < 0.
Moreover, these two equilibria lie at Q̂±

(
0,±

√
g/A

)
. It is not hard to judge that

Q̂±

(
0,±

√
g/A

)
are two saddles when B < 0 and two nodes when B > 0. When

A ⩾ 0, system (2.5) has no equilibria.
Consider g = −c2/(4a0). Clearly, there exists a unique equilibrium P7 (c/(2a0), 0)

in system (2.5) when A ⩾ 0. When A < 0, system (2.5) has three equilibria, which
lie at P7 (c/(2a0), 0) and Q̃±

(
0,±

√
−c2/(4a0A)

)
. So, P7 is the unique equilibrium

of system (1.11). Further, P7 is a degenerate equilibrium and Q̃± are two sad-
dles (resp. nodes) if B < 0 (resp. B > 0). In order to judge the type of P7, by
v = ϕ− c/(2a0), w = (2a0/c)ϕy, t = Bc/(2a0)ζ we change (2.5) into

dv

dt
=w,

dw

dt
=−2a20

Bc
v2
(
1+

2a0
c

v

)
+w2

(
2a0
c

1

1+ 2a0

c v
− 2a0A(c+2a0)

Bc2
1(

1+ 2a0

c v
)2
)
.

(2.6)
By [33, P. 132, Theorem 7.3], O of (2.6) is a cusp, so does P7 of (1.11). Conclusion
(2) is proven.

Similarly to the case g = −c2/(4a0), we analyze the cases −c2/(4a0) < g < 0
and g > 0, respectively, and obtain results in conclusion (3). For simplicity, we omit
the proof here.

Lemma 2.3. For system (1.12)n=2m+1(m ⩾ 1),

(1) when either a0 < 0 or a0 > 0, |g| > σ, there exists a unique equilibrium, which
lies at P8(µ1, 0). Moreover, P8 is a center (resp. saddle) if a0B > 0 (resp.
a0B < 0);

(2) when a0 > 0 and g = σ, there are two equilibria, which lie at P9(µ2, 0) and
P10(µ3, 0). Moreover, P9 is a cusp and P10 is a center (resp. saddle) if B > 0
(resp. B < 0);
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(7-1) (7-2) (7-3) (7-4)

(7-5) (7-6) (7-7) (7-8)

(7-9) (7-10) (7-11) (7-12)

(7-13) (7-14) (7-15) (7-16)

(7-17) (7-18) (7-19) (7-20)

Figure 7. Phase portraits of system (1.11).
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(7-21) (7-22) (7-23) (7-24)

Figure 7. (Continued)

(3) when a0 > 0 and g = −σ, there are two equilibria, which lie at P11(µ4, 0) and
P12(µ5, 0). Moreover, P12 is a cusp and P11 is a center (resp. saddle) if B > 0
(resp. B < 0);

(4) when a0 > 0 and 0 < |g| < σ, there are three equilibria, which lie at P13(µ6, 0),
P14(µ7, 0) and P15(µ8, 0) . Moreover, P13 and P15 are two centers (resp. sad-
dles) and P14 is a saddle (resp. center) if B > 0 (resp. B < 0),

where σ := 2mc(c/(a0(2m + 1)))1/(2m)/(2m + 1), all µi(i = 1, . . . , 8) are the real
zeros of −a0µ

2m+1 + cµ + g in different cases and satisfy µ2 < µ3, µ4 < µ5,
µ6 < µ7 < µ8. The phase portraits are given in Figure 8.

Proof. We change system (1.12) into

dϕ

dζ
= Bϕn−1y,

dy

dζ
= −Aϕn−2y2 − a0ϕ

n + cϕ+ g (2.7)

by dξ = Bϕn−1dζ. Clearly, system (1.12) are equivalent to system (2.7) except
on the y-axis. We observe that equilibria of system (2.7)n=2m+1(m ⩾ 1) lie on
ϕ-axis. On the other hand, (µ, 0) is an equilibrium if and only if µ is a zero of
function f1(µ) := −a0µ

2m+1 + cµ + g. Notice that f ′
1(µ) = −a0(2m + 1)µ2m + c,

which has no real zeros when a0 < 0 and exactly two real zeros when a0 > 0 at
µ∗
1 := −(c/(a0(2m+1)))1/(2m) and µ∗

2 := (c/(a0(2m+1)))1/(2m). It is easy to check
that f1(±∞) → ∓∞ and the function f1(µ) is monotonically decreasing in intervals
(−∞, µ∗

1) and (µ∗
2,+∞) while it is monotonically increasing in interval (µ∗

1, µ
∗
2) if

a0 > 0. Similarly, f1(±∞) → ±∞ and f1(µ) is strictly monotonically increasing on
R if a0 < 0.

Consider that either a0 < 0 or a0 > 0, |g| > σ. Since f1(µ) has a unique real zero
and it is nonzero, denoted by µ1, system (2.7) has a unique equilibrium P8(µ1, 0).
Straight computation shows that the characteristic equation corresponding to P8 is
λ2 −Bµ2m

1 f ′
1(µ1) = 0. Since f ′

1(µ1) > 0 when a0 < 0, P8 is a center (resp. saddle)
if B < 0 (resp. B > 0). Since f ′

1(µ1) < 0 when a0 > 0 and |g| > σ, P8 is a center
(resp. saddle) if B > 0 (resp. B < 0). Conclusion (1) is proven. Similarly to the
case a0 > 0, g = σ of Lemma 2.2, we can prove conclusions (2), (3) and (4). So we
omit their proofs.

Lemma 2.4. For system (1.12)n=2m(m ⩾ 2),

(1) when g < −ϱ, there is no equilibria;
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Figure 8. The phase portraits of system (1.12) for n = 2m + 1 ⩾ 3.
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Figure 8. (Continued)
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(2) when g = −ϱ, there exists a unique equilibrium, which is a cusp lying at
P16

(
(c/(2ma0))

1/(2m−1), 0
)
;

(3) when −ϱ < g < 0, there exist exactly two equilibria, which lie at P17(ν1, 0) and
P18(ν2, 0). Moreover, P17 is a saddle (resp. center) and P18 is a center (resp.
saddle) if B > 0 (resp. B < 0);

(4) when g > 0, there exist exactly two equilibria, which lie at P19(ν3, 0) and
P20(ν4, 0). Moreover, P19 and P20 are two centers (resp. two saddles) if B > 0
(resp. B < 0),

where ϱ := (2m − 1)c(c/(2ma0))
1/(2m−1)/(2m), all νi(i = 1, 2, 3, 4) are the real

zeros of −a0ν
2m + cν + g in different cases and satisfy ν1 < ν2, ν3 < ν4. The phase

portraits are given in Figure 9.

Proof. We observe that equilibria of system (2.7)n=2m(m ⩾ 2) lie on the ϕ−axis.
On the other hand, (ν, 0) is an equilibrium if and only if ν is a zero of function
f2(ν) := −a0ν

2m + cν + g. Notice that f ′
2(ν) = −2ma0ϕ

2m−1 + c, which has a
unique real zero ν∗ := (c/(2ma0))

1/(2m−1). One can check that f2(±∞) → −∞ and
f2(ν) is monotonically increasing in (−∞, ν∗) while it is monotonically decreasing
in (ν∗,+∞).

Similarly to the proof of Lemma 2.3, we obtain the number and position of
equilibria of system (2.7)n=2m by analyzing the zeros of f2(ν) in different cases.
And then, the types of these equilibria are gotten via their characteristic equations
and the monotonicity of f2 at its zeros, i.e., the results in conclusion (1)-(4). So,
we omit the proof.

Proof of Theorem 1.1. To prove this theorem, we only need to get wave graphs
by all phase portraits given in Figures 3-9. One can obtain the compacton in
Figure 1(1-1) from the oval orbit in Figure 3(3-1) which is tangent to the singular
straight line ϕ = 0. The periodic waves in Figures 1(1-2)-(1-4) can be concluded
from periodic orbits on both sides of the singular line ϕ = 0 and the periodic orbit
passing through the straight line ϕ = 0 in Figure 4(4-1), respectively. From the
bounded arch orbits between the saddle and the straight line ϕ = 0 in Figure 7(7-
23) and its symmetric picture with respect to this straight line, respectively, periodic
cusp waves are obtained in Figures 1(1-5)-(1-6). Analogously, we get the solitary
waves in Figures 1(1-7)-(1-10) from the homoclinic orbits in Figures 7(7-16), 7(7-
21), 8(8-21) and 8(8-28), respectively. Solitary cusp waves in Figures 1(1-11)-(1-12)
are concluded from the straight line orbits between the saddle and the straight
line ϕ = 0 in Figure 7(7-22) and its symmetric picture with respect to ϕ = 0,
respectively. From unbounded arch orbits in Figure 4(4-1), respectively, two-sided
breaking waves in Figure 1(1-13)-(1-14) are got. Finally, we obtain the one-sided
breaking kink/anti-kink waves in Figures 1(1-15)-(1-18) from the four arch orbits
connecting saddles and closing the straight line ϕ = 0 in Figure 4(4-4), respectively.
Thus, each wave graph in Figure 1 corresponds to some certain orbit in these phase
portraits given in Figures 3-9. Similarly, for each unbounded wave graph in Figure 2
we can also find a corresponding orbit in these phase portraits given in Figures 3-9.
So far, we finish the existence of these wave graphs given in Figures 1 and 2.

On the other hand, we get all wave graphs from orbits in these phase portraits
given in Figures 3-9 and find no other wave graphs except those given in Figures 1
and 2. The proof is finished.
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Figure 9. The phase portraits of system (1.12) for n = 2m ⩾ 4.
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3. Proof of Theorem 1.2
Using results of phase portrait analysis given in last section, in this section we give
expression for bounded traveling wave solutions of equation (1.4). Clearly, system
(1.6) has a first integral

H(ϕ, y) = Bϕ(2A/B)−(n−2)
(
1

2
ϕn−2y2+

a0
2(A+B)

ϕn− c

2A−(n−3)B
ϕ− g

2A−(n−2)B

)
(3.1)

when A ̸= −B, (n−2)B/2, (n−3)B/2. When n = 2, first integral (3.1) is rewritten
as

H(ϕ, y) = Bϕ2A/B

(
1

2
y2 +

a0
2(A+B)

ϕ2 − c

2A+B
ϕ− g

2A

)
. (3.2)

Proof of Theorem 1.2. Taking A = B/2 > 0 and g = 0, by (3.2) we get that the
oval orbit in Figure 3(3-1) which is tangent to the singular straight line ϕ = 0 is
determined by y2 = 2a0 (3c/(2a0)− ϕ)ϕ/(3B). This oval orbit is called a degenerate
homoclinic orbit as in [13]. Then, it follows from the first equation in (1.8) we obtain
expression (1.13) for a compacton solution.

Taking A = −3B/2 < 0 and g = 0, by (3.2) we get that the family of periodic
orbits in Figure 3(3-4) is determined by y2 = −2h1(ϕ − r1)(r2 − ϕ)ϕ/B, 0 < r1 <
c/a0 < r2,−a20/(2c) < h1 < 0. It follows from the first equation in (1.8) we obtain
expression (1.14) for a periodic wave solution.

Taking A = B/2 < 0 and −3c2/(16a0) < g < 0, by (3.2) we get that the
bounded arch orbit between the saddle and the straight line ϕ = 0 in Figure 7(7-23)
is determined by y2 = −2a0ϕ

2/(3B)+ cϕ/B+2g/B. Then, it follows from the first
equation in (1.11) we obtain expression (1.15) for a periodic cusp wave solution.

Taking A = −3B/2 > 0 and −c2/(4a0) < g < 0, by (3.2) we get that the homo-
clinic orbit in Figure 7(7-24) is determined by y2 = 2h2(ϕ−r3)(r4−ϕ)2/B, 0 < r3 <(
c−

√
c2 + 4a0g

)
/(2a0) < r4 =

(
c+

√
c2 + 4a0g

)
/(2a0), h2 =−

(
4a30g+3a30cr4

)
/(

3c3 + 9a0cg + 3(c2 + a0g)
3/2
)
. It follows from the first equation in (1.11) we obtain

(1.16) for a solitary traveling wave solution.
Taking A = B/2 < 0 and g = −3c2/(16a0), by (3.2) we get that these straight

line orbits between the saddle and the straight line ϕ = 0 in Figure 7(7-22) is
determined by y = ±

√
2a0/(−3B) (ϕ− 3c/(4a0)). Then, it follows from the first

equation in (1.11) we obtain expression (1.17) for a solitary cusp wave solutions of
valley type (valleyon solutions).

Taking A = B/2 > 0 and g = −c2/(4a0), by (3.2) we get that the unbounded
arch orbits in Figure 7(7-6) which lie in the region sandwiched by the singular line
ϕ = 0 and two stable and unstable manifolds of the cusp P7 is determined by

y2 =
2a0(r5 − ϕ)

(
ϕ2 +

(
r5 − 3c

2a0

)
ϕ+

(
r25 − 3c

2a0
r5 +

3c2

4a2
0

))
3Bϕ

,

0 < r5 < c/(2a0). Then, it follows from the first equation in (1.11) we obtain
the expression (1.18) for a bounded two-sided breaking wave solution. In addition,
we also get that the arch orbit connecting the cusp P7 and closing the singular
straight line ϕ = 0 in one direction on the above of ϕ-axis is determined by y2 =
2a0 (c/(2a0)− ϕ)

3
/(3Bϕ) and y > 0. Then, we obtain expression (1.19) for a one-

sided breaking kink wave solution.
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4. Conclusions and simulations
Using the approach of dynamical systems, in this paper we study traveling so-
lutions for the ZK(n,2n,-n) equation (1.4) with 6 parameters a0, b0, c0, a, c, g. In
Theorem 1.1, for (1.4) with a2 ̸= b0/c0 and ac ̸= 0 we get 7 classes of bounded trav-
eling waves including compacton, periodic wave, periodic cusp wave, solitary wave,
solitary cusp wave, two-sided breaking wave and one-sided breaking kink/anti-kink
wave. Moreover, there is no other bounded traveling waves. In Theorem 1.2, we
give 7 expressions for these seven classes of bounded traveling wave solutions.

We observe that the phase portraits in Figures 3-9 have different topological
structures, which means that bifurcations happen for planar differential systems
when parameters vary. Accordingly, these traveling waves appear, disappear or
evolve into each other when parameters vary.

Remark 4.1. For n = 2, B = 1, g = 0, referring to Figures 3(3-1)-(3-4), we find
that equation (1.4) with a2 ̸= b0/c0 and ac ̸= 0 has a compacton and a family of
periodic waves when A > −1/2 but there is only a family of periodic waves when
A ⩽ −1/2. That is, a compacton appears when A changes from −1/2 into a greater
number.

For n = 4, B = 1, g = 0, referring to Figures 5(5-1)-(5-2), we find that equation
(1.4) with a2 ̸= b0/c0 and ac ̸= 0 has a family of periodic waves and a family of
two-sided breaking waves when A = 1/2. The family of two-sided breaking waves
still exists but some periodic waves become another family of two-sided breaking
waves when A changes from 1/2 into a greater number.

For n = 2, A = B = −1,−c2/(4a0) < g < 0, referring to Figures 7(7-21)-(7-23),
we find that equation (1.4) with a2 ̸= b0/c0 and ac ̸= 0 has a solitary cusp wave
when g = −2c2/(9a0), and this solitary cusp wave becomes a solitary wave (resp.
a periodic cusp wave) when g changes from −2c2/(9a0) into a less number (resp.
greater number). Moreover, there appear a family of two-sided breaking waves,
a one-sided breaking kink wave and a one-sided breaking anti-kink wave when g
changes from −2c2/(9a0) into a greater number.

By fixing parameters in different parameter bifurcation sets and taking proper
initial values, we simulate 18 types of bounded traveling waves and 10 types of
unbounded traveling waves of system (1.5) in Figures 1 and 2, respectively.

Fixing n = 2, A = 1/2, B = a0 = c = 1, g = 0, we get the simulation of
compacton as shown in Figure 1(1-1) if we take the initial values ϕ(0) = 1.5 and
ϕ

′
(0) = 0, the simulation of periodic wave as shown in Figure 1(1-2) if we take

the initial values ϕ(0) = 0.6 and ϕ
′
(0) = 0, and the simulations of two-sided

breaking waves as shown in Figures 1(1-13)-(1-14) if we take the initial values
ϕ(0) = 2, ϕ

′
(0) = 0 and ϕ(0) = −0.8, ϕ

′
(0) = 0, respectively.

Fixing n = 3, A = B = a0 = 1, c = 3, g = 0, we get the simulation of periodic
wave as shown in Figure 1(1-3) if we take the initial values ϕ(0) = −2 and ϕ

′
(0) = 0,

and the simulations of periodic cusp waves as shown in Figures 1(1-5)-(1-6) if we
take the initial values ϕ(0) = ±2.449489742 and ϕ

′
(0) = 0.

Fixing n = 3, A = 1/2, B = a0 = −1, c = 3, g = 0, we get the simulation of
periodic wave as shown in Figures 1(1-4) taking the initial values ϕ(0) = 1 and
ϕ

′
(0) = 0.

Fixing n = 2, A = −1/2, B = a0 = −1, c = 2, g = 1/2, we get the simulation
of solitary wave as shown in Figure 1(1-7) taking the initial values ϕ(0) = −1 −
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√
2, ϕ

′
(0) = 0.

Fixing n = 2, A = −3/2, B = 1, a0 = −1, c = 4, g = 3, we get the simula-
tion of solitary wave as shown in Figure 1(1-8) taking the initial values ϕ(0) =
−3/4, ϕ

′
(0) = 0.

Fixing n = 2, A = 1/2, B = a0 = 1, c = 2, g = −1/2, we get the simulation
of solitary wave as shown in Figure 1(1-9) taking the initial values ϕ(0) = 1 +√
2, ϕ

′
(0) = 0.

Fixing n = 2, A = 3/2, B = −1, a0 = 1, c = 4, g = −3, we get the simulation of
solitary wave as shown in Figure 1(1-10) taking the initial values ϕ(0) = 3/4, ϕ

′
(0) =

0.
Fixing n = 2, A = −1/2, B = −1, a0 = 1, c = 2, g = −3/4, we get the simulation

of solitary cusp wave as shown in Figure 1(1-11) taking the initial values ϕ(0) =
0.00001, ϕ

′
(0) = 0.

Fixing n = 2, A = 1/2, B = 1, a0 = −1, c = 2, g = 3/4, we get the simulation
of solitary cusp wave as shown in Figure 1(1-12) taking the initial values ϕ(0) =
−0.00001, ϕ

′
(0) = 0.

Fixing n = 3, A = B = −1, c = 3, g = 0, we get the simulations of one-sided
breaking kink waves as shown in Figures 1(1-15)-(1-16) if we take the initial values
ϕ(0) = 1, ϕ

′
(0) =

√
2 and ϕ(0) = −1, ϕ

′
(0) = −

√
2, and the simulations of one-sided

breaking anti-kink waves as shown in Figures 1(1-17)-(1-18) if we take the initial
values ϕ(0) = 1, ϕ

′
(0) = −

√
2 and ϕ(0) = −1, ϕ

′
(0) =

√
2.
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