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APPROXIMATE CONTROLLABILITY OF
SOBOLEV TYPE FRACTIONAL EVOLUTION

EQUATIONS OF ORDER α ∈ (1, 2) VIA
RESOLVENT OPERATORS∗

He Yang

Abstract In this paper, the existence and approximate controllability of mild
solutions for α ∈ (1, 2)-order fractional evolution equations of Sobolev type are
investigated in abstract spaces. Firstly, we introduce a new concept of mild
solution of the concerned problem. Then by using fixed point theorems and
the theory of resolvent operator, some existence results are obtained. At last,
the approximate controllability of the α ∈ (1, 2)-order fractional evolution
equation is proved without assuming the approximate controllability of cor-
responding linear problem. An example is presented in the last section to
illustrate the obtained abstract results.
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1. Introduction
Let H be a Hilbert space endowed with the norm ∥ · ∥. In the present work, we
investigate the approximate controllability of Sobolev type fractional control system
with nonlocal conditions of the formCDα

t (Ex)(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J := [0, b],

Ex(0) = x0 − g(x), (Ex)′(0) = y0 − h(x),
(1.1)

where 1 < α < 2, A : D(A) ⊂ H → H is a densely defined and closed linear
operator in H and E : D(E) ⊂ H → H is a closed linear operator, the control u is
given in L2(J, U), U is a Hilbert space, B is a bounded linear operator from U to
H, f, g and h are appropriate functions to be specified later.

In recent years, fractional differential equations have been regarded as one of
the most powerful tools in modeling many phenomena in various fields, such as
chemistry, biology, physics, control theory, etc. See [1] for more details.
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Controllability of fractional systems is becoming more active both in control
theory and mathematics. A large number of researches focused on the controlla-
bility of α ∈ (0, 1)-order fractional evolution equations, see the papers [5, 6, 12, 14].
However, the researches on the fractional evolution equations of order 1 < α < 2
are seldom. In 2013, Li et al. [9] proved the exact controllability of α ∈ (1, 2]-order
Caputo fractional differential systemCDα

t x(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J,

x(0) + g(x) = x0, x′(0) = y0,
(1.2)

where A is the infinitesimal generator of a strongly continuous α-order cosine family
{Cα(t)}t≥0 in a Banach space X. By utilizing Sadovskii’s fixed point theorem and
vector-valued operator theory, the authors in [9] proved the exact controllability of
control system (1.2). In 2017, Lian et al. [11] studied the existence and approximate
controllability of fractional evolution equation of order α ∈ (1, 2)CDα

t x(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J,

x(0) + g(x) = x0, x′(0) + h(x) = y0,
(1.3)

where A generates a strongly continuous α-order cosine family {Cα(t)}t≥0 in a
Hilbert space X. By using Schauder’s fixed point theorem and approximate tech-
nique, They showed the existence and approximate controllability of fractional con-
trol system (1.3).

Sobolev type differential equations are applied to model many physical phe-
nomena, hence they have received great attention in recent years. The fundamental
theory of Sobolev type fractional differential equations of order α ∈ (0, 1) has been
established. Benchaabane et al. [2] established a set of sufficient conditions for the
existence and uniqueness of mild solutions to a class of nonlinear fractional Sobolev
type stochastic differential equations in Hilbert spaces. Li et al. [10] studied the
existence of mild solutions for fractional integro-differential equations of Sobolev
type with nonlocal condition in a separable Banach space. In 2013, Fec̆kan et al. [7]
concerned with the exact controllability of α ∈ (0, 1)-order fractional functional
evolution equation of Sobolev type in Banach space XCDα

t (Ex)(t) +Ax(t) = f(t, xt) +Bu(t), t ∈ J,

x(t) = ϑ(t), t ∈ [−τ, 0],
(1.4)

where ϑ ∈ C([−τ, 0], D(E)), A and E satisfy the following assumptions:

(A1) A and E are linear operators, and A is closed.
(A2) D(E) ⊂ D(A) and E is bijective.
(A3) Linear operator E−1 is compact.

In this case, the linear operator −AE−1 is bounded and generates a uniformly
continuous semigroup {T (t)}t≥0, T (t) := e−AE

−1 . By using Schauder’s fixed point
theorem, they proved the exact controllability of fractional functional evolution
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equation (1.4). In 2017, Chang et al. [3] treated the approximate controllability of
α ∈ (1, 2)-order fractional differential system of Sobolev type in Banach space XCDα

t (Ex)(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J,

(Ex)(0) = Ex0, (Ex)′(0) = Ey0,
(1.5)

where the pair (A,E) generates an (α, β)-resolvent family {CEα,β(t)}t≥0 for suitable
constants α, β > 0 (which is first introduced by Ponce in [13]). Later, Chang et al. [4]
extended the fractional differential system (1.5) to the stochastic case. By setting
up minimizing sequences twice, they established the optimal state-control pair of
the limited Lagrange optimal systems governed by the α ∈ (1, 2)-order fractional
stochastic differential equation. Very recently, In our work [16], we investigated the
nonlocal controllability of fractional control system (1.1) when g and h are Lipschitz
continuous. However, to the best of our knowledge that there is no work reported
on the approximately controllable of Sobolev type fractional evolution system (1.1)
of order α ∈ (1, 2).

In this paper, with the definition of fractional resolvent family (see Definition
2.1) generated by the pair (A,E)(which is first introduced by Ponce in [13]), we
remove the assumptions (A2), (A3) of [7] on operators A and E, and present the
concept of mild solution of (1.1) by using Laplace Transform. Secondly, we investi-
gate the existence of mild solutions of the fractional control system (1.1) when the
nonlocal function g is Lipschitz continuous, or completely continuous, or continuous.
At last, some approximate controllability results are proved without assuming the
approximate controllability of corresponding linear system. It is worth to empha-
size that throughout this paper we do not assume any compactness on the nonlocal
function h. An example is given in the last section to illustrate the application of
the abstract results.

2. Preliminaries
Let H be a Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥. Then the
H-valued continuous functions set C(J,H) is a Banach space with the norm ∥x∥C =
sup
t∈J

∥x(t)∥. Let Lp(J,H)(1 ≤ p < +∞) be the H-valued p-order Bochner integrable

functions set, which is a Banach space with the norm ∥f∥Lp = (
∫ b
0
∥f(t)∥pdt)

1
p . We

denote by B(X,Y ) the Banach space of all bounded linear operators from X to Y ,
B(X) := B(X,X) for short.

For α > 0, let n := ⌈α⌉ denote the smallest integer greater than or equal to α. If
u ∈ Cn(J,H) and the integral

∫ t
0
(t− s)n−α−1u(n)(s)ds exists in the Bochner sense,

then we adopt the definition of Caputo fractional derivative as the following:

CDα
t u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds, t > 0, α ∈ (n− 1, n).

For more details of the fractional calculus, we refer to [1].
From (1.23) of [1], Laplace Transform of Caputo fractional derivatives is given

by

ĈDα
t u(λ) = λαû(λ)−

n−1∑
k=0

u(k)(0)λα−1−k (2.1)



2984 H. Yang

where α > 0 and n = ⌈α⌉.
Define a set ΦE(A) by ΦE(A) := {λ ∈ C | (λE − A) : D(A) ∩ D(E) → H is

invertible and (λE −A)−1 ∈ B(H,D(A) ∩D(E))}.
Let R(λE,A) := (λE − A)−1. Then R(λαE,A) := (λαE − A)−1. A strongly

continuous family {T (t)}t≥0 ⊂ B(H) is said to be exponentially bounded if there
are constants N ≥ 1 and ω ≥ 0 such that

∥T (t)∥ ≤ Neωt, t ≥ 0.

Definition 2.1. Let A and E be two closed linear operators in H, whose domains
are D(A) and D(E) satisfying D(A) ∩D(E) ̸= {0}. For α, β > 0, if there exist a
constant ω ≥ 0 and a strongly continuous function CEα,β : [0,∞) → B(H) such that
CEα,β(t) is exponentially bounded, {λα : Reλ > ω} ⊂ ΦE(A), and for all x ∈ H,

λα−βR(λαE,A)x =

∫ ∞

0

e−λtCEα,β(t)xdt, Reλ > ω, (2.2)

then we call {CEα,β(t)}t≥0 the (α, β)-resolvent family generated by the pair (A,E).

For 1 < β ≤ 2 and α > 0, it follows from [4,13] that

CEα,β(t) =
1

Γ(β − 1)

∫ t

0

(t− s)β−2CEα,1(s)ds, t > 0. (2.3)

Definition 2.2. The (α, β)-resolvent family {CEα,β(t)}t≥0 is said to be compact, if
CEα,β(t) is a compact operator for t > 0.

Now, we derive the appropriate definition of mild solutions of (1.1). Let {CE
α,1(t)}t≥0

be the (α, 1)-resolvent family generated by the pair (A,E). Then {CEα,1(t)}t≥0 is
exponentially bounded. Define

SEα,1(t) :=

∫ t

0

CEα,1(s)ds, t ≥ 0 (2.4)

and
PEα,1(t) :=

1

Γ(α− 1)

∫ t

0

(t− s)α−2CEα,1(s)ds, t ≥ 0. (2.5)

Then by (2.2), we have

λα−1R(λαE,A)x =

∫ ∞

0

e−λtCEα,1(t)xdt, Reλ > ω, x ∈ H. (2.6)

In view of (2.3), (2.4) and (2.6), we get

λα−2R(λαE,A)x =

∫ ∞

0

e−λtSEα,1(t)xdt, Reλ > ω, x ∈ H. (2.7)

From (2.5), we have∫ ∞

0

e−λtPEα,1(t)xdt =
1

Γ(α− 1)

∫ ∞

0

e−λt
∫ t

0

(t− s)α−2CEα,1(s)xdsdt

=
1

Γ(α− 1)

∫ ∞

0

∫ ∞

s

e−λt(t− s)α−2CEα,1(s)xdtds
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=
1

Γ(α− 1)

∫ ∞

0

CEα,1(s)

∫ ∞

0

e−λ(θ+s)θα−2xdθds

=
1

λα−1

∫ ∞

0

e−λsCEα,1(s)xds.

Combining this fact with (2.6), we obtain that

R(λαE,A)x =

∫ ∞

0

e−λtPEα,1(t)xdt, Reλ > ω, x ∈ H. (2.8)

Applying Laplace Transform to (1.1), it follows from (2.1) that

̂CDα
t (Ex)(λ) = λαEx̂(λ)− λα−1Ex(0)− λα−2(Ex)′(0)

= Ax̂(λ) + F̂ (λ) +Bû(λ).

By virtue of (2.6)-(2.8), we deduce that

x̂(λ) =λα−1R(λαE,A)Ex(0)+λα−2R(λαE,A)(Ex)′(0)

+R(λαE,A)[F̂ (λ)+Bû(λ)]

=

∫ ∞

0

e−λtCEα,1(t)Ex(0)dt+

∫ ∞

0

e−λtSEα,1(t)(Ex)
′(0)dt

+

∫ ∞

0

e−λtPEα,1(t)[F̂ (λ) +Bû(λ)]dt

=

∫ ∞

0

e−λtCEα,1(t)Ex(0)dt+

∫ ∞

0

e−λtSEα,1(t)(Ex)
′(0)dt

+

∫ ∞

0

e−λtPEα,1(t)
[ ∫ ∞

0

e−λsf(s, x(s))ds
]
dt+

∫ ∞

0

e−λtPEα,1(t)Bû(λ)dt

=

∫ ∞

0

e−λtCEα,1(t)Ex(0)dt+

∫ ∞

0

e−λtSEα,1(t)(Ex)
′(0)dt

+

∫ ∞

0

∫ ∞

s

e−λθPEα,1(θ − s)f(s, x(s))dθds+

∫ ∞

0

e−λtPEα,1(t)Bû(λ)dt

=

∫ ∞

0

e−λtCEα,1(t)Ex(0)dt+

∫ ∞

0

e−λtSEα,1(t)(Ex)
′(0)dt

+

∫ ∞

0

e−λt
∫ t

0

PEα,1(t− s)f(s, x(s))dsdt

+

∫ ∞

0

e−λt
∫ t

0

PEα,1(t− s)Bu(s)dsdt.

Hence, the inverse of Laplace Transform yields

x(t)=CEα,1(t)[x0−g(x)]+SEα,1(t)[y0−h(x)]+
∫ t

0

PEα,1(t−s)[f(s, x(s))+Bu(s)]ds, t∈J.

(2.9)
Based on the above discussion, we now give the definition of mild solution of

(1.1) below.

Definition 2.3. A function x ∈ C(J,H) is called the mild solution of (1.1) if it
satisfies the integral equation (2.9).
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In the remaining of this work, we make the following assumption on the pair
(A,E).

(HAE) The pair (A,E) generates an (α, 1)-resolvent family {CEα,1(t)}t≥0, which
is compact and norm continuous for all t > 0. Put

M := sup
t∈J

∥CEα,1(t)∥ < +∞.

Remark 2.1. By Proposition 16 of [13], let 1 < α < 2 and {CEα,1(t)}t≥0 be the
(α, 1)-resolvent family generated by the pair (A,E). If {CEα,1(t)}t≥0 is continuous in
the uniform operator topology for all t > 0, then {CEα,1(t)}t≥0 is a compact operator
for all t > 0 if and only if (µE −A)−1 is a compact operator for all µ > ω

1
α .

Lemma 2.1 (Lemma 1, [16]). Let the assumption (HAE) hold. Then for any t ∈ J
and x ∈ H, we have

∥SEα,1(t)x∥ ≤Mb∥x∥, ∥PEα,1(t)x∥ ≤ Mbα−1

Γ(α)
∥x∥.

The Lemmas 3.4 and 3.5 of [6] imply the following result.

Lemma 2.2. Let the assumption (HAE) hold. Then

(i) lim
ξ→0+

∥CEα,1(t+ ξ)− CEα,1(ξ)C
E
α,1(t)∥ = 0, ∀t > 0;

(ii) lim
ξ→0+

∥CEα,1(t)− CEα,1(ξ)C
E
α,1(t− ξ)∥ = 0, ∀t > 0.

Lemma 2.3. Let the assumption (HAE) hold. Then SEα,1(t) and PEα,1(t) are compact
operators for t ≥ 0.

Proof. By using Lemma 2.2 and a similar approach employed in the proof of
Lemma 2.10 of [11], we can derive the conclusion of this lemma. So we omit the
detail here.

Lemma 2.4 (Lemma 2, [16]). Let the assumption (HAE) hold. The operators
SEα,1(t) and PEα,1(t) are equi-continuous for t ∈ J .

Next, we introduce the definition of approximate controllability which is used
in this paper.

Definition 2.4. The control system (1.1) is said to be approximately controllable
on J if there exists a control u ∈ L2(J, U) such that Rb(f) = H, where Rb(f) =
{x(b;u) : x is the mild solution of (1.1) on J for some u ∈ L2(J, U)}.

Consider the fractional linear control system corresponding to (1.1) of the formCDα
t (Ex)(t) = Ax(t) +Bu(t), t ∈ J,

Ex(0) = x0, (Ex)′(0) = y0,
(2.10)

where 1 < α < 2 and x0, y0 ∈ H.
For the sake of simplicity, we denote

Ψb0 :=

∫ b

0

PEα,1(b− s)BB∗(PEα,1)
∗(b− s)ds,
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R(δ,Ψb0) := (δI +Ψb0)
−1,

where B∗ and (PEα,1)
∗(t) are the adjoint operators of B and PEα,1(t), respectively.

For the controllability of linear system (2.10), we give the following lemma.

Lemma 2.5 (Theorem 2.3, [12]). The following statements are equivalent:

(i) The linear control system (2.10) is approximately controllable;
(ii) The operator Ψb0 is positive, i.e. ⟨x∗,Ψb0x∗⟩ > 0 for all nonzero x∗ ∈ H∗;

(iii) For any x ∈ H, ∥δR(δ,Ψb0)x∥ → 0 as δ → 0+ in the strong topology.

Remark 2.2. From (iii) of Lemma 2.5, without loss of generality, we suppose that
∥R(δ,Ψb0)∥ ≤ 1

δ for all δ > 0.

Let us define a bounded linear operator Gb : L2(J,H) → H by

Gbσ =

∫ b

0

PEα,1(b− s)σ(s)ds, σ ∈ L2(J,H).

We suppose the following:
(HB) For every σ ∈ L2(J,H), there is a function ξ ∈ K(B) such that

Gbσ = Gbξ,

where K(B) means the range of B and K(B) is its closure.
(HC) For each x ∈ H, one has

CEα,1(t)x ∈ D(A), SEα,1(t)x ∈ D(A), t > 0.

By the definition of PEα,1(t), we have

d(PEα,1(t))
2

dt
x = 2PEα,1(t)

dPEα,1(t)

dt
x, t > 0.

Lemma 2.6. Let the assumptions (HB) and (HC) hold. Then the linear control
system (2.10) is approximately controllable on J .

Proof. The idea comes from [8,15]. Since the approximate controllability of sys-
tem (2.10) is equivalent to Rb(0) = H, it is sufficient to prove D(A) ⊂ Rb(0) due to
D(A) = H, i.e., for any ϵ > 0 and ρ ∈ D(A), there is a control function u ∈ L2(J, U)
such that

∥ρ− CEα,1(b)x0 − SEα,1(b)y0 −GbBu∥ < ϵ.

For any given ρ ∈ D(A), we see that there is a function σ ∈ L2(J,H) such that
Gbσ = ρ− CEα,1(b)x0 − SEα,1(b)y0, for example,

σ(t)=
[ 1

bPEα,1(b−t)
−PEα,1(b−t)+2t

dPEα,1(b− t)

dt

][
ρ−CEα,1(b)x0−SEα,1(b)y0

]
, t∈J.

In view of (HB), for this σ ∈ L2(J,H), there is a function ξ ∈ K(B) such that

Gbσ = Gbξ.
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Since ξ ∈ K(B), for any ϵ > 0, there is a control function u ∈ L2(J, U) such that

∥ξ −Bu∥ < Γ(α)

Mbα−
1
2

ϵ.

Consequently, for any ϵ > 0 and ρ ∈ D(A), there is a control function u ∈ L2(J, U)
satisfying

∥ρ− CEα,1(b)x0 − SEα,1(b)y0 −GbBu∥
=∥Gbσ −GbBu∥
=∥Gbξ −GbBu∥

=∥
∫ b

0

PEα,1(b− s)[ξ(s)−Bu(s)]ds∥

≤Mbα−
1
2

Γ(α)
∥η −Bu∥L2

<ϵ.

This completes the proof.
To end of this section, we present a fixed point theorem, on which the proofs of

main results are based.

Lemma 2.7 (Sadovskii’s Fixed Point Theorem). Let Q be a condensing operator
on Banach space X, i.e. Q is continuous and takes bounded sets into bounded sets,
and γ(Q(D)) < γ(D) for every bounded set D of X with γ(D) > 0. If Q(S) ⊂ S
for a convex closed and bounded subset S of X, then Q has at least one fixed point
in S (where γ(·) denotes the Kuratowski measure of non-compactness).

3. Existence of mild solutions
3.1. The case g is Lipschitz continuous
In order to prove the existence of mild solutions of (1.1), we first make the following
assumptions:

(H1) f : J ×H → H satisfies the Carathéodory condition, i.e., for each x ∈ H,
the function f(·, x) : J → H is strongly measurable; for each t ∈ J , the function
f(t, ·) : H → H is continuous.

(H2) For every r > 0, there is a function φr ∈ L1(J,R+) satisfying lim
r→∞

∥φr∥L1

r =

σ1 < +∞ such that
sup

∥x∥≤r
∥f(t, x)∥ ≤ φr(t), t ∈ J.

(H3) g : C(J,H) → H and there exists a constant Lg > 0 such that

∥g(x)− g(y)∥ ≤ Lg∥x− y∥C

for all x, y ∈ C(J,H).
(H4) h : C(J,H) → H is continuous and there exists a nondecreasing function

ψ : R+ → R+ satisfying lim
r→∞

ψ(r)
r = σ2 < +∞ such that

∥h(x)∥ ≤ ψ(∥x∥C)
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for all x ∈ C(J,H).
(H5) B : U → H is a linear bounded operator, and put MB := ∥B∥.
For each r > 0, set Br := {x ∈ C(J,H) : ∥x(t)∥ ≤ r, t ∈ J}. Then Br is

clearly a closed, bounded, convex subset of C(J,H). For every δ > 0, xb ∈ H and
x ∈ C(J,H), we define the control ux in the following way:

ux(t) = B∗(PEα,1)
∗(b− t)R(δ,Ψb0)p(x), (3.1)

where

p(x) = xb − CEα,1(b)[x0 − g(x)]− SEα,1(b)[y0 − h(x)]−
∫ b

0

PEα,1(b− s)f(s, x(s))ds.

Then x(·) = x(·;ux(·)) ∈ C(J,H) defined by (2.9) is the mild solution of (1.1)
corresponding to the control ux.

Lemma 3.1. Let the assumptions (HAE) and (H2) − (H5) hold. Then for each
x ∈ Br, we have

∥ux(t)∥ ≤ MMBb
α−1∥R(δ,Ψb0)∥
Γ(α)

∥p(x)∥, (3.2)

where

∥p(x)∥ ≤ ∥xb∥+M(∥x0∥+Lgr+∥g(0)∥)+Mb(∥y0∥+ψ(r))+
Mbα−1

Γ(α)
∥φr∥L1 . (3.3)

Proof. By applying the assumptions (HAE) and (H2) − (H5) and using Lemma
2.1, we can show the inequalities (3.2) and (3.3) directly. So, we omit the detail
here.

Based on our assumptions, we define two operators Q1, Q2 : C(J,H) → C(J,H)
by

(Q1x)(t) = CEα,1(t)[x0 − g(x)], t ∈ J (3.4)

and

(Q2x)(t) = SEα,1(t)[y0−h(x)]+
∫ t

0

PEα,1(t−s)[f(s, x(s))+Bux(s)]ds, t ∈ J. (3.5)

Next, we will utilize Lemma 2.7 to show the existence of fixed points of the operator
Q := Q1 +Q2 : C(J,H) → C(J,H) in Br. To do this, we first prove some lemmas.

Lemma 3.2. Let the assumptions (HAE) and (H2)− (H5) hold. Then there exists
a constant r > 0 such that Q(Br) ⊂ Br provided that

(1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)(MLg +Mbσ2 +
Mbα−1

Γ(α)
σ1) < 1. (3.6)

Proof. If this is not true, then for each r > 0, there exists x ∈ Br such that
∥(Qx)(t)∥ > r for all t ∈ J . By means of (HAE) and (H2)− (H5) and Lemmas 2.1
and 3.1, we have

r <∥(Qx)(t)∥
≤M(∥x0∥+ Lgr + ∥g(0)∥) +Mb(∥y0∥+ ψ(r))
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+
Mbα−1

Γ(α)

∫ t

0

φr(s)ds+
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

∥p(x)∥

≤M
2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

∥xb∥+ (1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)

×
[
M(∥x0∥+ Lgr + ∥g(0)∥)

+Mb(∥y0∥+ ψ(r)) +
Mbα−1

Γ(α)
∥φr∥L1

]
.

Dividing in both sides by r and taking the lower limit as r → ∞, we get

1 ≤ (1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)(MLg +Mbσ2 +
Mbα−1

Γ(α)
σ1).

Thus, in view of (3.6), there is a constant r > 0 such that Q(Br) ⊂ Br.

Lemma 3.3. Let the assumptions (HAE) and (H1)−(H5) hold. Then Q2 : Br → Br
is a continuous operator.

Proof. Let {xn}n≥1 ⊂ Br with xn → x as n → ∞ in Br. The continuity of f, g
and h yield

f(t, xn(t)) → f(t, x(t)), t ∈ J,

g(xn) → g(x)

and
h(xn) → h(x)

as n→ ∞. Moreover, by Lebesgue’s dominated convergence theorem, we have

p(xn) → p(x)

and
uxn

(t) → ux(t), t ∈ J

as n→ ∞. By Lebesgue’s dominated convergence theorem again, we get

(Q2xn)(t) → (Q2x)(t), t ∈ J

as n→ ∞. Therefore, Q2 : Br → Br is a continuous operator.

Lemma 3.4. Let the assumptions (HAE) and (H2) − (H5) hold. Then Q2(Br) is
equi-continuous in C(J,H).

Proof. For 0 ≤ t1 < t2 ≤ b and x ∈ Br, we have

∥(Q2x)(t2)− (Q2x)(t1)∥
≤∥SEα,1(t2)− SEα,1(t1)∥

(
∥y0∥+ ∥h(x)∥

)
+ ∥

∫ t1

0

(
PEα,1(t2 − s)− PEα,1(t1 − s)

)(
f(s, x(s)) +Bux(s)

)
ds∥

+ ∥
∫ t2

t1

PEα,1(t2 − s)
(
f(s, x(s)) +Bux(s)

)
ds∥

≤∥SEα,1(t2)− SEα,1(t1)∥
(
∥y0∥+ ψ(r)

)
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+

∫ t1

0

∥PEα,1(t2 − s)− PEα,1(t1 − s)∥∥f(s, x(s)) +Bux(s)∥ds

+
Mbα−1

Γ(α)

( ∫ t2

t1

φr(s)ds+MB∥ux∥L2(t2 − t1)
1
2

)
.

The facts of the equi-continuity of SEα,1(t) and PEα,1(t) on J imply

∥(Q2x)(t2)− (Q2x)(t1)∥ → 0

as t2 − t1 → 0+. Hence we conclude the equi-continuity of Q2(Br) in C(J,H).

Lemma 3.5. Let the assumptions (HAE) and (H2) − (H5) hold. Then the set
Ω(t) := {(Q2x)(t) : x ∈ Br} is relatively compact on J .

Proof. Set
Ω1(t) :=

{
SEα,1(t)[y0 + h(x)] : x ∈ Br

}
, t ∈ J

and

Ω2(t) :=

{∫ t

0

PEα,1(t− s)[f(s, x(s) +Bux(s))]ds : x ∈ Br

}
, t ∈ J.

Then Ω(t) = Ω1(t)+Ω2(t) for each t ∈ J . In order to prove the relative compactness
of Ω(t) for t ∈ J , we show that the sets Ω1(t) and Ω2(t) are relatively compact for
t ∈ J , respectively. For every x ∈ Br, since ∥y0 + h(x)∥ ≤ ∥y0∥ + ψ(r), by the
compactness of SEα,1(t) for t ≥ 0, we easily see that the set Ω1(t) is relatively
compact for t ∈ J . It remains to prove that the set Ω2(t) is relatively compact on
J . For t = 0, the set Ω2(0) is obviously relatively compact. For 0 < t ≤ b, let
0 < ε < t. Define

Ωε2(t) =

{∫ t−ε

0

PEα,1(t− s)[f(s, x(s) +Bux(s))]ds : x ∈ Br

}
.

Owing to the compactness of PEα,1(t) for every t ≥ 0(see the Lemma 2.3), the set

Qε := {PEα,1(t− s)[f(s, x(s) +Bux(s))] : x ∈ Br, s ∈ (0, t− ε)}

is relatively compact for ε ∈ (0, t). Then conv(Qε) is a compact set and Ωε2(t) ⊂
(t− ε)conv(Qε). Thus, the set Ωε2(t) is relatively compact in H for every ε ∈ (0, t).
Moreover, we have∥∥∫ t

0

PEα,1(t− s)[f(s, x(s)+Bux(s))]ds−
∫ t−ε

0

PEα,1(t− s)[f(s, x(s)+Bux(s))]ds
∥∥

≤Mbα−1

Γ(α)

[ ∫ t

t−ε
φr(s)ds+MBε

1
2 ∥ux∥L2

]
→0

as ε → 0+, which implies the relative compactness of the set Ω2(t) for t > 0.
Therefore, the set Ω(t) is relatively compact in H for t ∈ J .

Theorem 3.1. Suppose that the assumptions (HAE) and (H1)− (H5) are satisfied.
In addition the condition (3.6) holds. Then the fractional control system (1.1) admits
one mild solution on J .
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Proof. For every α ∈ (1, 2) and xb ∈ H, we define the operator Q : C(J,H) →
C(J,H) by Q = Q1+Q2, where Q1 and Q2 are given in (3.4) and (3.5), respectively.
It is clear that the mild solution of control system (1.1) is equivalent to the fixed
point of Q on J . By Lemma 3.2, Q(Br) ⊂ Br for some r > 0. For each x, y ∈ Br,
the assumptions (HAE) and (H3) lead to

∥Q1x−Q1y∥C =sup
t∈J

∥(Q1x)(t)− (Q1y)(t)∥

=sup
t∈J

∥CEα,1(t)[g(x)− g(y)]∥

≤MLg∥x− y∥C .

The inequality (3.6) yields MLg < 1. So, Q1 : Br → Br is a contractive operator.
By means of Lemmas 3.3, 3.4 and 3.5, Q2 : Br → Br is a completely continuous
operator according to Ascoli-Arzela theorem. Thus, in view of properties of the
measure of non-compactness, we conclude that γ(Q1(Br)) ≤ MLgγ(Br) < γ(Br)
and γ(Q2(Br)) = 0. Therefore, γ(Q(Br)) = γ(Q1(Br))+γ(Q2(Br)) < γ(Br), which
means that Q : Br → Br is a condensing operator. By Lemma 2.7, the operator Q
has at least one fixed point on J , which is the mild solution of (1.1).

If the functions f and h satisfy the following growth conditions:
(H2)

′ There exist two functions a1, a2 ∈ L1(J,R+) such that

f(t, x) ≤ a1(t)x+ a2(t), ∀t ∈ J, x ∈ H.

(H4)
′ h : C(J,H) → H is continuous and there exist two constants c1, c2 > 0

such that
∥h(x)∥ ≤ c1∥x∥C + c2, ∀x ∈ C(J,H)

then (H2) and (H4) are satisfied by choosing φr(t) = a1(t)r + a2(t), t ∈ J and
ψ(θ) = c1θ + c2, θ ∈ R+ with σ1 = ∥a1∥L1 and σ2 = c1, respectively.

Particularly, if the functions f and h are uniformly bounded, that is, the follow-
ing conditions hold:

(H2)
′′ There exists a constant N1 > 0 such that

∥f(t, x)∥ ≤ N1, ∀t ∈ J, x ∈ H.

(H4)
′′ h : C(J,H) → H is continuous and there exists a constant N2 > 0 such

that
∥h(x)∥ ≤ N2, ∀x ∈ H

then by Theorem 3.1, we obtain the following existence result.

Corollary 3.1. Let the assumptions (HAE), (H1), (H2)
′′, (H3), (H4)

′′ and (H5) hold.
Then the fractional control system (1.1) possesses a mild solution on J provided that

MLg
(
1 +

M2M2
Bb

2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)
< 1.

3.2. The case g is completely continuous
Sometimes, the Lipschitz condition is not easy to verify in application. So if we
replace the condition (H3) by
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(H3)
∗ g : C(J,H) → H is completely continuous and there exist constants

d1, d2 > 0 such that

∥g(x)∥ ≤ d1∥x∥C + d2, ∀x ∈ C(J,H)

then we can obtain the following existence theorem.

Theorem 3.2. Let the assumptions (HAE), (H1), (H2), (H3)
∗, (H4) and (H5) hold.

Then the fractional control system (1.1) has at least one mild solution on J provided
that

(1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)(Md1 +Mbσ2 +
Mbα−1

Γ(α)
σ1) < 1.

Proof. By the assumption (H3)
∗, Q1 : C(J,H) → C(J,H) is clearly continuous,

where Q1 is given in (3.4). By the strong continuity of {CEα,1(t)}t≥0, Q1(Br) is equi-
continuous in C(J,H). So we only prove the relative compactness of Q1(Br)(t) on
J . Indeed, since g : C(J,H) → H is completely continuous, it follows that g(Br)
is relatively compact. Hence, the exponential boundedness of CEα,1(t) for t ≥ 0
yields that Q1(Br)(t) is a relatively compact set on J . Thus, Q1 : Br → Br is
completely continuous. By Lemmas 3.3, 3.4 and 3.5, Q2 : Br → Br is completely
continuous. Therefore, Q = Q1 + Q2 : Br → Br is completely continuous. By
applying Schauder’s fixed point theorem, we conclude the existence of fixed point
of Q in Br, which is the mild solution of fractional control system (1.1).

By Corollary 3.1, we can obtain the following corollary.

Corollary 3.2. Let the assumptions (HAE), (H1), (H2)
′′, (H4)

′′ and (H5) hold. In
addition, the function g satisfies the condition

(H3)
∗∗ g : C(J,H) → H is compactly continuous and there exists a constant

N3 > 0 such that
∥g(x)∥ ≤ N3, ∀x ∈ H.

Then the fractional control system (1.1) has at least one mild solution on J .

3.3. The case g is continuous
In this section, we assume that the nonlocal function g satisfies the condition

(H3)
∗∗∗ g : C(J,X) → X is continuous and there exists a constant N4 > 0 such

that
∥g(x)∥ ≤ N4, ∀x ∈ C(J,X).

Moreover, there exists a constant ϱ ∈ (0, b) such that g(x) = g(y) for any x, y ∈
C(J,X) with x(s) = y(s) for s ∈ [ϱ, b].

In order to prove the existence of mild solutions of control system (1.1), for
n ≥ 1, we first consider the following approximate problemCDα

t (Ex)(t) = Ax(t) + f(t, x(t)) +Bux(t), t ∈ J,

Ex(0) = x0 − CEα,1(
1
n )g(x), (Ex)′(0) = y0 − h(x),

(3.7)

where ux is defined by (3.1) and

p(x) = xb−CEα,1(b)[x0−CEα,1(
1

n
)g(x)]−SEα,1(b)[y0−h(x)]−

∫ b

0

PEα,1(b−s)f(s, x(s))ds.

(3.8)
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Lemma 3.6. Let the assumptions (HAE), (H1), (H2), (H3)
∗∗∗, (H4) and (H5) hold.

Then the fractional approximate problem (3.7) possesses at least one mild solution
on J provided that

(1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)(Mbσ2 +
Mbα−1

Γ(α)
σ1) < 1. (3.9)

Proof. For n ≥ 1, we define an operator Φn : C(J,X) → C(J,X) by

(Φnx)(t) =C
E
α,1(t)[x0 − CEα,1(

1

n
)g(x)] + SEα,1(t)[y0 − h(x)]

+

∫ t

0

PEα,1(t− s)[f(s, x(s)) +Bux(s)]ds, t ∈ J.

By Definition 2.3, the mild solution of fractional approximate problem (3.7) is equiv-
alent to the fixed point of Φn. We will apply Schauder’s fixed point theorem to show
that the operator Φn has at least one fixed point in C(J,X). For this purpose, we
divide the proof into three steps.

Step I, there is a constant r > 0 such that Φn(Br) ⊂ Br is continuous, where
Br = {x ∈ C(J,X) : ∥x(t)∥ ≤ r, t ∈ J}. If this is not true, for ∀r > 0, there exists
x̃ ∈ Br such that ∥(Φnx̃)(t)∥ > r for all t ∈ J . By means of the assumptions listed
above and (3.8), we have

∥p(x)∥ ≤ ∥xb∥+M(∥x0∥+MN4) +Mb(∥y0∥+ ψ(r)) +
Mbα−1

Γ(α)
∥φr∥L1

and

r < ∥(Φnx̃)(t)∥ ≤M
2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

∥xb∥

+ (1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)
[
M(∥x0∥+MN4)

+Mb(∥y0∥+ ψ(r)) +
Mbα−1

Γ(α)
∥φr∥L1

]
.

Dividing r in both sides of the above inequality and taking lower limit as r → ∞,
we obtain that

1 ≤ (1 +
M2M2

Bb
2α−1∥R(δ,Ψb0)∥
(Γ(α))2

)(Mbσ2 +
Mbα−1

Γ(α)
σ1).

This contradicts to (3.9). Hence, there is a constant r > 0 such that Φn(Br) ⊂ Br.
Similar to the proof of Lemma 3.3, we can easily show that Φn : Br → Br is
continuous.

Step II, the set Λn(·) := {CEα,1(·)[x0 − CEα,1(
1
n )g(x)] : x ∈ Br} is relatively

compact in C(J,X). For any 0 ≤ t1 < t2 ≤ b and x ∈ Br, Since

∥Λn(t2)− Λn(t1)∥ = ∥
[
CEα,1(t2)− CEα,1(t1)

][
x0 − CEα,1(

1

n
)g(x)

]
∥ → 0

as t2 − t1 → 0 due to the strong continuity of CEα,1(t) for t ≥ 0, it follows that the
set Λn(·) is equi-continuous in C(J,X). On the other hand, owing to the uniform
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boundedness of g and compactness of CEα,1( 1n ), the set Λn(0) is relatively compact.
For 0 < t ≤ b, Since CEα,1(t) is compact for t > 0 and ∥x0 − CEα,1(

1
n )g(x)∥ ≤

∥x0∥ +MN4 for all x ∈ Br, we obtain that the set Λn(t) is relatively compact for
0 < t ≤ b. Therefore, the set Λn(·) is relatively compact in C(J,X) by Ascoli-Arzela
theroem.

Step III, the operator Φn : Br → Br is completely continuous. Since the set
Λn(·) is relatively compact in C(J,X), Combining this fact with the conclusions
of Lemmas 3.4 and 3.5, we deduce that Φn : Br → Br is relatively compact in
C(J,X). Thus, Φn : Br → Br is completely continuous. Consequently, the operator
Φn admits a fixed point in Br for n ≥ 1 by using Schauder’s fixed point theorem,
and it is the mild solution of fractional approximate problem (3.7).

Let
S(u) := {xn ∈ C(J,X) : xn = Φnxn, n ≥ 1}.

Then S(u) is called the solution set of fractional approximate problem (3.7). Define

x̂n(t) =

xn(t), t ∈ [ϱ, b],

xn(ϱ), t ∈ [0, ϱ],

where ϱ comes from the assumption (H3)
∗∗∗. Then g(x̂n) = g(xn) owing to (H3)

∗∗∗.
According to Lemma 3.6 and Theorem 3.7 of [11], we can obtain the following
lemma.

Lemma 3.7. Let the assumptions (HAE), (H1), (H2), (H3)
∗∗∗, (H4) and (H5) hold.

Then the solution set S(u) is relatively compact in C(J,X).

Theorem 3.3. Let the assumptions (HAE), (H1), (H2), (H3)
∗∗∗, (H4) and (H5) hold.

In addition, the inequality (3.9) is satisfied. Then the fractional control system (1.1)
has a mild solution on J .

Proof. By Lemma 3.7, since the solution set S(u) is relatively compact in C(J,X),
there is a subsequence {xn : n ≥ 1} ⊂ S(u) converging to some x∗ in C(J,X). By
the definitions of S(u) and Φn, we have

xn(t) =C
E
α,1(t)[x0 − CEα,1(

1

n
)g(xn)] + SEα,1(t)[y0 − h(xn)]

+

∫ t

0

PEα,1(t− s)[f(s, xn(s)) +Buxn(s)]ds, t ∈ J,

where
uxn

(t) = B∗(PEα,1)
∗(b− t)R(δ,Ψb0)p(xn)

and

p(xn) =xb − CEα,1(b)[x0 − CEα,1(
1

n
)g(xn)]− SEα,1(b)[y0 − h(xn)]

−
∫ b

0

PEα,1(b− s)f(s, xn(s))ds.

Taking the limit as n → ∞ in both sides of above identities, by the continuity
of functions g, h and f and Lebesgue’s dominated convergence theorem, we obtain
that

x∗(t) =C
E
α,1(t)[x0 − g(x∗)] + SEα,1(t)[y0 − h(x∗)]
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+

∫ t

0

PEα,1(t− s)[f(s, x∗(s)) +Bux∗(s)]ds, t ∈ J,

where
ux∗(t) = B∗(PEα,1)

∗(b− t)R(δ,Ψb0)p(x∗)

and

p(x∗) = xb−CEα,1(b)[x0 − g(x∗)]−SEα,1(b)[y0 −h(x∗)]−
∫ b

0

PEα,1(b− s)f(s, x∗(s))ds.

Therefore, x∗ ∈ C(J,X) is the mild solution of fractional control system (1.1).
By Theorem 3.3, we can obtain the following corollary.

Corollary 3.3. Let the assumptions (HAE), (H1), (H2)
′′, (H3)

∗∗∗, (H4)
′′ and (H5)

hold. Then the fractional control system (1.1) has a mild solution on J .

4. Approximate controllability
Now, we are in the position to state and prove our main results of approximate
controllability.

Theorem 4.1. Suppose that the assumptions (HAE), (HB), (HC), (H1), (H2)
′′,

(H3), (H4)
′′ and (H5) are satisfied. If the function g is uniformly bounded and

MLg < 1, then the fractional control system (1.1) is approximately controllable on
J .

Proof. For every δ > 0 and xb ∈ H, we choose the control uδ by

uδ(t) = B∗(PEα,1)
∗(b− t)R(δ,Ψb0)p(xδ),

where

p(xδ) = xb−CEα,1(b)[x0 − g(xδ)]−SEα,1(b)[y0 − h(xδ)]−
∫ b

0

PEα,1(b− s)f(s, xδ(s))ds.

By Corollary 3.1, the fractional control system (1.1) has a mild solution correspond-
ing to uδ expressed by

xδ(t;uδ) :=xδ(t) = CEα,1(t)[x0 − g(xδ)] + SEα,1(t)[y0 − h(xδ)]

+

∫ t

0

PEα,1(t− s)[f(s, xδ(s)) +Buδ(s)]ds, t ∈ J.

Owing to δR(δ,Ψb0) = I −Ψb0R(δ,Ψ
b
0), we have

xδ(b;uδ) = xb − δR(δ,Ψb0)p(xδ). (4.1)

In view of (HAE) and Lemma 2.3, {CEα,1(t)}t>0 and {SEα,1(t)}t≥0 are compact.
Then the sets {CEα,1(b)[x0 − g(xδ)] : δ > 0} and {SEα,1(b)[y0 − h(xδ)] : δ > 0} are
relatively compact due to the uniform boundedness of g and h. Therefore, they
have subsequences, still denoted by themselves, tend to some x′ and y′ in H as
δ → 0+, respectively. Moreover, the condition (H2)

′′ yields∫ b

0

∥f(s, xδ(s;uδ))∥2ds ≤ N2
1 b.
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Combining this fact with the reflexive property of L2(J,H), there exists ϕ ∈ L2(J,H)
such that a subsequence of {f(·, xδ(·;uδ)) : δ > 0}, still denoted by itself, weakly
converges to ϕ(·) in L2(J,H) as δ → 0+. Then the compactness of {PEα,1(t)}t≥0

implies ∫ b

0

PEα,1(b− s)
[
f(s, xδ(s;uδ))− ϕ(s)

]
ds→ 0

as δ → 0+. Denote by

µ := xb − x′ − y′ −
∫ b

0

PEα,1(b− s)ϕ(s)ds.

Then µ ∈ H and

∥p(xδ)− µ∥ → 0 (4.2)

as δ → 0+. By virtue of (4.1), (4.2) and Lemmas 2.5 and 2.6, we get

∥xδ(b;uδ)− xb∥ =∥δR(δ,Ψb0)p(xδ)∥
≤∥δR(δ,Ψb0)∥∥p(xδ)− µ∥+ ∥δR(δ,Ψb0)µ∥ → 0

as δ → 0+. Therefore, the fractional control system (1.1) is approximately control-
lable on J .

By Corollaries 3.2 and 3.3, we can obtain the following approximate controlla-
bility theorems.

Theorem 4.2. Suppose that (HAE), (HB), (HC), (H1), (H2)
′′, (H3)

∗∗, (H4)
′′ and

(H5) are satisfied. Then the fractional control system (1.1) is approximately con-
trollable on J .

Proof. The proof is similar to the one of Theorem 4.1, we omit it here.

Theorem 4.3. Suppose that (HAE), (HB), (HC), (H1), (H2)
′′, (H3)

∗∗∗, (H4)
′′ and

(H5) are satisfied. Then the fractional control system (1.1) is approximately con-
trollable on J .

Proof. The proof is similar to the one of Theorem 4.1, we also omit the detail
here.

Remark 4.1. In Theorem 4.3, if we choose E ≡ I, where I is the identity operator,
then it is a nature improvement of Theorem 3.8 of [11].

Remark 4.2. In [3, 11, 12], when the authors considered the approximate control-
lability of the nonlinear evolution equations, they always supposed the approximate
controllability of the corresponding linear system. But in our Theorems 4.1, 4.2
and 4.3, this assumption is removed by adding (HB) and (HC).
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5. Applications
Consider the fractional differential control system of Sobolev type in the following

CDα
t

(
x(t, η)− ∂2x(t, η)

∂η2

)
=
∂2x(t, η)

∂η2
+

1

e3t
(
20 + x2(t, η)

) + τu(t, η),

t ∈ [0, 1], η ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],

[(I − ∂2

∂η2
)x](0, η) = [x0 − g(x)](η), η ∈ [0, π],

[(I − ∂2

∂η2
)x]′t(0, η) = [y0(η)− 1− sin(2 + x3(·, η))], η ∈ [0, π],

(5.1)

where α ∈ (1, 2), ρ > 0 is a constant.
Let H = U = L2[0, π]. We define

D(A) = D(E) = {x ∈ H : x ∈W 2,2[0, π], x(0) = x(π) = 0},

Ax =
∂2x

∂η2
, Ex = (I − ∂2

∂η2
)x.

Noting that A has eigenvalues −n2, n ∈ N with corresponding eigenvectors en(s) =√
2
π sin(ns), and {en : n ∈ N} is a complete orthonormal system in H, by Example

6.3 of [3], the pair (A,E) generates an (α, 1)-resolvent family {CEα,1(t)}t≥0 given by

CEα,1(t)x =

∞∑
n=1

Eα,n(t)⟨x, en⟩en, ∀x ∈ H,

where Eα,n(t) =
∞∑
k=0

(−1)kn2ktαk

(1+n2)kΓ(αk+1)
. Then CEα,1(t) is norm continuous for t > 0 and

∥CEα,1(t)∥ ≤ 2. Moreover, the operator (λαE − A)−1 is compact for λ > 0. By
Remark 2.1, CEα,1(t) is a compact operator for all t > 0. Thus, the assumption
(HAE) holds.

For t ∈ [0, 1], let

x(t)(η) = x(t, η), Bu(t)(η) = τu(t, η),

f(t, x(t))(η) =
1

e3t
(
20 + x2(t, η)

)
and

h(x)(η) = 1 + sin(2 + x3(·, η)).
Then

∥f(t, x(t))∥ ≤ 1

20
, ∥h(x)∥ ≤ 2.

Hence the assumptions (H2)
′′ and (H4)

′′ are satisfied with N1 = 1
20 and N2 = 2,

respectively.
Consequently, if one of the following conditions are satisfied:

(i) g(x)(η) is Lipschitz continuous with Lipschitz constant Lg ∈ (0, 12 ) and uni-
formly bounded;
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(ii) g(x)(η) is completely continuous and uniformly bounded;
(iii) g(x)(η) satisfies the condition (H3)

∗∗∗.
then the control system (5.1) is approximately controllable provided that the con-
ditions (HB) and (HC) are satisfied.

Remark 5.1. The technique used in this paper can be applied to investigate the ex-
istence and approximate controllability of mild solutions of the following Riemann-
Liouville fractional control system of Sobolev type in the Hilbert space H

LDα
t (Ex)(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J,

E(g2−α ∗ x)(0) = x0 − g(x),

[E(g2−α ∗ x)]′(0) = y0 − h(x),

(5.2)

where LDα
t denotes the Riemann-Liouville fractional derivative operator of order

α ∈ (1, 2).
The mild solution of the control system (5.2) is defined by

x(t) =CEα,α−1(t)[x0 − g(x)] + CEα,α(t)[y0 − h(x)]

+

∫ t

0

CEα,α(t− s)[f(s, x(s)) +Bu(s)]ds, t ∈ J,

where CEα,α−1(t) is the (α, α − 1) resolvent family generated by the pair (A,E),
which satisfies

λR(λαE,A)x =

∫ ∞

0

e−λtCEα,α−1(t)xdt, Reλ > ω, x ∈ H,

CEα,α(t) is given by CEα,α(t) =
∫ t
0
CEα,α−1(s)ds, which satisfies

R(λαE,A)x =

∫ ∞

0

e−λtCEα,α(t)xdt, Reλ > ω, x ∈ H.

6. Conclusion
In this paper, the existence and approximate controllability of the α ∈ (1, 2) ordered
Sobolev type fractional evolution system (1.1) are investigated in the Hilbert space
H. For any α, β > 0, with the help of the resolvent family {CEα,β(t)}t≥0 generated
by (A,E), the definition of the mild solution of (1.1) is given by utilizing Laplace
Transform. Then some sufficient conditions for the existence of mild solutions of
fractional evolution system (1.1) is established by using fixed point theorems. The
approximate controllability of fractional evolution system (1.1) is also discussed
without assuming the approximate controllability of corresponding linear system.
In our discussion, we assume that the nonlocal function g is Lipschitz continuous,
or completely continuous, or continuous, and the nonlocal function h is continuous
without any compactness conditions. Particularly, the existence and compactness
of E−1 are not needed in our work, hence the results obtained in this work improve
and extend some existing results.
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