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HOPF BIFURCATION AT A DEGENERATE
SINGULAR POINT IN 3-DIMENSIONAL

VECTOR FIELD∗
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Abstract The work of this paper focuses on investigating limit cycle bifurca-
tion for a degenerate singular point in 3-Dimensional vector fields. By making
two appropriate transformations and making use of singular values methods
to compute focal values carefully, we give the expressions of the first five Lya-
punov constants at the origin that is a degenerate singular point. Moreover,
we obtain the considered system can bifurcate 5 limit cycles near the origin.
In terms of results on limit cycle bifurcation from degenerate singular point in
3-Dimensional vector field, it is less seen in published references..
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1. Introduction
For the limit cycle bifurcation of polynomial differential system, many good pub-
lished results focus on 2-dimensional systems because of attracting effect from the
“Hilbert 16-th problem”, up to now, it is a hot topic, for example some recent
works (see [1, 6, 13, 17–19, 21, 23–26, 29, 32] etc). Recently we also carried out some
investigations about the Hopf bifurcation for 2-dimensional polynomial differential
systems and obtained some good results (see [9, 12, 12]. In terms of the limit cycle
bifurcation from non-degenerate singular point of 3-dimensional polynomial sys-
tems, a lot of published references showed this is also an attractive topic, although
there is relatively little literatures on this subject. For example: [2] and [20] studied
two classes of 3-dimensional polynomial systems and considered their limit cycle
bifurcation behavior by using the averaging method, [12] offered a kind of method
(singular values method) to investigate the limit cycle bifurcation in 3-Dimensional
vector field and showed a class of 3-Dimensional quadratic systems could bifurcate 8
limit cycle, [32] considered the limit cycle bifurcation for a class of 3-d quadratic sys-
tem with quadratic perturbation and showed it could bifurcate ten limit cycles, [28]
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introduced computational algebra approach to study Hopf bifurcations in R3, A.
Buica et.al studied the multiple Hopf bifurcation in R3 in Ref. [4] and introduced
some methods and results in [3], Ref. [12] made use of singular values method given
by [12] and computational algebra approach to investigate the Hopf bifurcation for
a class of cubic Kolmogorov model in 3-dimensional vector field and obtained it
could yield 5 small limit cycles. Romanovski and his coauthors studied the cen-
ter problem or integrability for several classes of 3-D systems and obtained some
good results which were shown in [15, 16, 27]. There are else many articles about
the limit cycle bifurcation of polynomial differential system, we will not list one by
one. It can be seen that most of these conclusions are concerned with the bifurca-
tion behavior of non-degenerate singular point. Of course, there are a few articles
about the bifurcation behavior of degenerate singular point in 2-dimensional vector
field, [5, 15, 30] offered some cases about this class of degenerate singular points.
For the limit cycle bifurcation of degenerate singular point in 3-dimensional vector
field, it is less to see this kind of cases. At present, [22] considered the limit cycle
bifurcation for a degenerate singular point of the following 3-Dimensional systems:

dx
dτ = −Hy(x, y) + P2n(x, y, z) + εP2n−1(x, y),

dy
dτ = Hx(x, y) +Q2n(x, y, z) + εQ2n−1(x, y),

du
dτ = R2n(x, y, z) + εcz2n−1,

(1.1)

in which

H =
1

2n
(x2l + y2l)m, n = lm,

=P2n−1 = x(p1x
2n−2 + p2x

2n−3y + · · ·+ p2n−1y
2n−2),

=Q2n−1 = y(p1x
2n−2 + p2x

2n−3y + · · ·+ p2n−1y
2n−2),

and proved using the averaging theory of first order that, moving the parameter ε
from ε = 0 to ε ̸= 0 sufficiently small, from the origin it could bifurcate 2n−1 limit
cycles, and that using the averaging theory of second order from the origin it could
bifurcate 3n− 1 limit cycles when l = 1.

We also try to carry out some researches about bifurcation behavior of degen-
erate singular points in 3-D vector field in order to supplement some cases about
Hopf bifurcation of 3-d system, hence, in this paper, we will study the limit cycle
bifurcation for a degenerate singular point in 3-Dimensional vector field by making
use of our method (singular values method). Considered system is as follows:

dx

dt
=(−y + δx)(x2 + y2)

4
3 + u(A1u+A2y)(x

2 + y2)

+ 2ux(A1ux+B2uy +A2xy +B3xy) + 2B1x
3y,

dy

dt
=(x+ δy)(x2 + y2)

4
3 + (B2u

2 +B3ux+B1x
2)(x2 + y2)

+ 2yu(A1ux+B2uy +A2xy +B3xy) + 2B1x
2y2,

du

dt
=− u(x2 + y2)

4
3 + Cxy(x2 + y2)

+ 2u2(A1ux+B2uy +A2xy +B3xy) + 2B1x
2yu,

(1.2)
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in which A1, A2, B1, B2, B3, C, are six real parameters and they are not zero.
Obviously, the origin of system (1.2) is a degenerate singular point.

We will make use of singular values method offered by article [12] to study the
limit cycle bifurcation of the origin. In order to investigate the bifurcation behavior
at the origin of system (1.2), we at first make two appropriate transformations of
system (1.2) which let the origin of system (1.2) be changed into the origin of system
(3.3). Next, we carry out investigation on limit cycle bifurcation at the origin of
system (3.3) according to the method offered by article [12]. Via using computer
Algebra system Mathematica 7.0 to compute carefully, we obtain the expressions
of the first five focal values at the origin of system (3.3), and we show that the
origin of system (3.3) can become a fine focus of fifth order. Moreover, we give
the condition that from this point can bifurcate 5 limit cycles. From the relation
between the origin of system (1.2) and system (3.3), we give the bifurcation behavior
of the origin of system (1.2), namely system (1.2) can bifurcate 5 limit cycles from
the origin. Of course perhaps our result can be improved, but we think it is a
class of new interesting problem for investigating the Hopf bifurcation problem of
a degenerate singular point in 3-D vector fields which will attract more attentions.

The remainder of this paper is organized as follows. In section 2, we introduce a
method to study Hopf bifurcation of the elementary focus point for 3-Dimensional
polynomial differential systems which will show the relation between focal values
of real system and singular point values of the corresponding complex system at
the origin. This kind of method is introduced in [12]. In section 3, we make
two appropriate transformations which let research of the origin of system (1.2)
be reduced to investigate the origin of system (3.3). For system (3.3), we obtain
the condition that the origin of system (3.3) can be a fine focus of fifth order and
bifurcate 5 small limit cycles. Moreover, we give the result that the degenerate
singular point (the origin) of system (1.2) can bifurcate 5 limit cycles by comparing
the relation between the degenerate singular point (the origin) of system (1.2) and
the elementary focus point of system (3.3).

2. Our preliminary method to study the 3-Dimensi-
onal Hopf bifurcations

For 3-Dimensional Hopf bifurcations system, the singular values method is used to study
the Hopf bifurcations problems of the elementary focus point in [12], it is a valid method
for investigating Hopf bifurcation of the elementary focus point in 3-Dimensional vector
field. Consider the following 3-Dimensional Hopf bifurcations systems:

dx

dt
= −y + δx+

∞∑
k+j+l=2

Ajklx
kyjul = X(x, y, u),

dy

dt
= x+ δy +

∞∑
k+j+l=2

Bjklx
kyjul = Y (x, y, u),

du

dt
= −gu+

∞∑
k+j+l=2

djklx
kyjul = U(x, y, u),

(2.1)

in which x, y, u, g, t, Ajkl, Bjkl, djkl, δ ∈ R (k, j, l ∈ N). This kind of method focuses on
obtaining the expressions of focal values in real system and those of singular values in
corresponding complex system by comparing the relation between them.
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For system (2.1), there exists a center manifold u = u(x, y), which can be expressed
as the polynomial series about x and y as follows:

u = x2 + y2 + h.o.t., (2.2)

in which h.o.t. stands for higher-order term about x and y. It is clear that u can be
expanded only from the beginning of a square item. However, here we will consider the
implicit function formal series about u, x and y. By means of the following complex
transformation

z = x+ iy, w = x− iy, u = u, T = it, i =
√
−1, (2.3)

system (2.1)|δ=0 is changed into the following complex system

dz

dT
= z +

∞∑
k+j+l=2

ajklz
kwjul = Z(z, w, u),

dw

dT
= −w −

∞∑
k+j+l=2

bjklz
kwjul = −W (z, w, u),

du

dT
= igu+

∞∑
k+j+l=2

d̃jklz
kwjul = Ũ(z, w, u),

(2.4)

where z, w, T, ajkl, bjkl, d̃jkl ∈ C (k, j, l ∈ N). It is clear that the coefficients of (2.4) ajkl

and bjkl are a pair of conjugate complex numbers, i.e. ajkl = bjkl, j ≥ 0, k ≥ 0, l ≥
0, j + k + l ≥ 2, Hence system (2.1) and (2.4) can be called as concomitant systems
each other. For convenience, we may as well write d̃jkl, Ũ as djkl, U in the following
investigation.

Ref. [12] obtain the computing method of the singular values at the origin of system
(2.4) , namely the following Lemma.

Lemma 2.1 ( [12]). For system (2.4), Let c110 = 1, c101 = c011 = c200 = c020 = 0, ckk0 =
0, k = 2, 3, · · · , then the terms of the following formal series can be derived successively
and uniquely:

F (z, w, u) = zw +

∞∑
α+β+γ=3

cαβγz
αwβuγ (2.5)

satisfying
dF

dT
=

∂F

∂z
Z − ∂F

∂w
W +

∂F

∂u
U =

∞∑
m=1

µm(zw)m+1, (2.6)

and we have let cα,β,γ = 0 if α < 0 or β < 0 or γ < 0 or γ = 0, α = β, and cαβγ of (2.5)
is determined by the following recursive formula if α ̸= β or α = β, γ ̸= 0:

cαβγ =
1

β − α− idγ
×

α+β+γ+2∑
k+j+l=3

[(α− k + 1)ak,j−1,l − (β − j + 1)bj,k−1,l

+ (γ − l)dk−1,j−1,l+1]× cα−k+1,β−j+1,γ−l,

(2.7)

and for any positive integer m, µm of (2.6) is determined by the following recursive formula:

µm =

2m+2∑
k+j=3

[(m− k + 1)ak,j−1,0 − (m− j + 1)bj,k−1,0]cm−k+1,m−j+1,0. (2.8)

Obtained µm from (2.8) is called as mth singular values at the origin of (2.4) . Ref. [12]
gave the relation between mth singular values and mth Lyapunov constants (or called focal
values ), namely the following Lemma.
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Lemma 2.2 ( [12]). For the mth Lyapunov constants of focal values of system (2.1)|δ=0

and the mth singular values of system (2.4) and any positive integer m, the following
assertion holds:

v2m+1(2π) = iπ(µm +

m−1∑
k=1

ξ(k)m µk), (2.9)

in which v2k+1(2π), (k = 1, 2, · · ·,m− 1) are the kth Lyapunov constants (or focal values )
at the origin of (2.1), µk(k = 1, 2, · · ·,m − 1) are the kth singular values at the origin of
system (2.4) , ξ(k)m , (k = 1, 2, · · ·,m− 1) are polynomial functions on coefficients of system
(2.4) .

Definition 2.1. For system (2.1)|δ=0, if v1(2π) ̸= 1, then the origin is called a rough
focus(strong focus); if v1(2π) = 1, and v2(2π) = v3(2π) = ··· = v2k(2π) = 0, v2k+1(2π) ̸= 0,
then the origin is called a fine focus (weak focus) of order k, in which the quantity of
v2k+1(2π), k = 1, 2, · · · is the kth focal value (or Liapunov Constants) at the origin of
system (2.1); if v1(2π) = 1, and for any positive integer k, v2k+1(2π) = 0, then the origin
is called a center.

According to Lemma 2.1 and Lemma 2.2, the following lemma holds

Lemma 2.3 ( [12]). For the mth Lyapunov constants of focal values of system (2.1)|δ=0

and the mth singular values of system (2.4) , the following relation holds:

v2m+1(2π) = iπµm, (2.10)

if µk = 0, k = 1, 2, · · ·,m− 1.

Further, Ref. [12] gave the following two results to study the Hopf bifurcation behavior.

Lemma 2.4 ( [12]). For Hopf bifurcation system (2.1), the following conclusions hold:
(i) System (2.1) can bifurcate m limit cycles at most in a small enough neighborhood

at the origin of (2.1), if expressions of focal values can be expressed in the following
form under a suitable coefficients’ perturbation:

v1(2π, ϵ)− 1 = λ0ϵ
l0+N + o(ϵl0+N+1), (2.11)

v2k+1(2π, ϵ) = λkϵ
lk+N + o(ϵlk+N+1), k = 1, 2, · · ·, 0 < |ϵ| ≪ 1, (2.12)

in which l0, l1, · · ·, lm,m,N are positive integers and lm = 0, λm ̸= 0.

(ii) If conditions (2.11) and (2.12) hold, and λkλk−1 < 0 (k = 1, 2, · · ·,m), lk−1 − lk >

lk−lk+1, (k = 1, 2, ···,m−1), then equation
m∑

k=0

λkϵ
lkh2k = 0 has m positive solutions,

i.e.,

hk(ϵ) =

√
(−λk−1

λk
)ϵlk−1−lk + o(ϵ

lk−1−lk
2 ). (2.13)

Accordingly, system (2.1) can bifurcate m limit cycles which are close to circles
x2 + y2 = (−λk−1

λk
)ϵlk−1−lk .

Lemma 2.5 ( [12]). If the origin of unperturbed system (2.1) is a fine focus of n−th
order, then the origin of disturbed system (2.1) can bifurcate n limit cycles under a suitable
perturbation.

Obviously, for 3-Dimensional Hopf bifurcations system (2.1), we can obtain the first
m-th singular values by using recursive formula offered by Lemma 2.1, moreover we can
judge whether the origin of (2.1) will be a m-th fine focus. Next, according to Lemma
2.5, we can obtain the origin of (2.1) can bifurcate m limit cycles if the origin of (2.1) is
a m-th fine focus.
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3. Limit cycle bifurcation of system (1.2)
Lemma 2.1–Lemma 2.5 offered a kind of method to investigate the Hopf bifurcation of
elementary focus point in 3-Dimensional vector field, while we will focus on the limit
cycle bifurcation of the degenerate singular point (the origin) of system (1.2). In order to
study the limit cycle bifurcation at the origin of system (1.2), we may as well make some
appropriate transformations so as to carry out our investigation.

3.1. The reduction of system (1.2)
By means of the following homeomorphous transformation

x = x1(x
2
1 + y2

1), y = y1(x
2
1 + y2

1), u = u1(x
2
1 + y2

1), (3.1)

and time transformation
dτ = (x2

1 + y2
1)

4dt, (3.2)
system (1.2) is turned into the following form

dx1

dτ
= −y1 + δx1 +A1u

2 +A2y1u1,

dy1
dτ

= x1 + δy1 +B1x
2
1 +B2u

2
1 +B3x1u1,

du1

dτ
= −u1 + Cx1y1.

(3.3)

Clearly, the origin of system (1.2) becomes the origin of (3.3) correspondingly under
transformations (3.1) and (3.2). From transformation (3.1), it is easy to obtain the con-
clusion that the origin of system (1.2) can also bifurcate k limit cycles if the origin of
system (3.3) can bifurcate k small limit cycles. On the other hand, the computation of
focal values plays pivotal role to study the limit cycle bifurcation of system (3.3) according
to method offered by [12]. In this sense, the focal values at the origin of system (3.3) can
be called general focal values at origin of system (1.2). Next it is necessary to compute
the focal values or general focal values under center manifold u1 = x2

1 + y2
1 + h.o.t..

3.2. The general focal values of system (1.2)
It can be seen that system (3.3) belongs to the class of system (2.1), hence we can inves-
tigate the limit cycle bifurcation behavior by using the method by [12].

Let
z = x1 + iy1, w = x1 − iy1, u = u1, T = iτ, i =

√
−1, (3.4)

system (3.3) |δ = 0 becomes

dz

dT
=z +

1

4
B1(z

2 + w2) + (B2 − iA1)u
2 +

1

2
(A2 +B3)uw

− 1

2
(A2u−B3u−B1w)z,

dw

dT
=− w − 1

4
B1(z

2 + w2)− (B2 + iA1)u
2 +

1

2
(A2 −B3)uw

− 1

2
(A2u+B3u+B1w)z,

du

dT
=iu+

1

4
C(w2 − z2).

(3.5)

According to Lemma 2.1, we can obtain the following recursive formula of the singular
values of the origin of system (3.5) by using computer Algebra system Mathematica 7.0.



Hopf bifurcation at a degenerate singular point. . . 3007

Theorem 3.1. Let ck,j,l = 0 if k < 0 or j < 0 or l < 0 or l = 0, k = j, and if k ̸= j or
k = j, l ̸= 0, ckjl is determined by the following recursive formula:

ck,j,l =− 1

4(j − k − il)
(Cc−2+k,j,1+l + Clc−2+k,j,1+l +B1c−2+k,1+j,l +B1jc−2+k,1+j,l

+B1c−1+k,j,l + 2B1jc−1+k,j,l −B1kc−1+k,j,l + 2A2c−1+k,1+j,−1+l

+ 2B3c−1+k,1+j,−1+l + 2A2jc−1+k,1+j,−1+l + 2B3jc−1+k,1+j,−1+l − Cck,−2+j,1+l

− Clck,−2+j,1+l −B1ck,−1+j,l +B1jck,−1+j,l − 2B1kck,−1+j,l − 2A2jck,j,−1+l

+ 2B3jck,j,−1+l + 2A2kck,j,−1+l − 2B3kck,j,−1+l + 4iA1ck,1+j,−2+l

+ 4B2ck,1+j,−2+l + 4iA1jck,1+j,−2+l + 4B2jck,1+j,−2+l −B1c1+k,−2+j,l

−B1kc1+k,−2+j,l − 2A2c1+k,−1+j,−1+l − 2B3c1+k,−1+j,−1+l − 2A2kc1+k,−1+j,−1+l

− 2B3kc1+k,−1+j,−1+l + 4iA1c1+k,j,−2+l − 4B2c1+k,j,−2+l + 4iA1kc1+k,j,−2+l

− 4B2kc1+k,j,−2+l),

in addition, for any positive integer j, µj is determined by the following recursive formula:

µj−1 =
1

4
(−Cc−2+j,j,1 −B1c−2+j,1+j,0 −B1jc−2+j,1+j,0 −B1c−1+j,j,0 −B1jc−1+j,j,0

+ Ccj,−2+j,1 +B1cj,−1+j,0 +B1jcj,−1+j,0 +B1c1+j,−2+j,0 +B1jc1+j,−2+j,0).

By making use of the recursive formula of Theorem 3.1, we can obtain the singular
values at the origin of system (3.5) with help of computer algebra system Mathematica
7.0, namely the following theorem.

Theorem 3.2. The simplified expressions of the first five singular values at the origin of
system (3.5) are as follows:

µ1=− i

20
(A2 +B3)C,

µ2=
iCB1

1200
(25A2B1 − 70B1B3 + 54A1C + 22B2C),

µ3=
iC2

736440000
[(3347619A2

1−9964150A1B2−3434431B2
2)C

2−475B3
1(86099A1+3942B2)],

µ4=− iC6

45475170000000B1(86099A1 + 3942B2)2
m4,

µ5=− iC8

12717285906078000000000B2
1(86099A1 + 3942B2)3

m5,

where

m4 =137232850846045614558A5
1 − 1316781479020086046443A4

1B2

− 2738536719956146718841A3
1B

2
2 − 493533738629180767087A2

1B
3
2

+ 94740972566268445601A1B
4
2 + 9758294079800363856B5

2 ,

m5 =1297403394924790703138396915618379A7
1

+ 220499875217835855907986708736368A6
1B2

− 8204926501612658110679519467756935A5
1B

2
2

− 24773038184601714406772029435961040A4
1B

3
2

− 13890964239369034289374946752728475A3
1B

4
2

− 3239163577332233019751853146115648A2
1B

5
2

− 391711709332688950695164211487201A1B
6
2
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− 18051111923534308386029607447960B7
2 .

In the above expressions of µn n ∈ {2, 3, 4, 5}, we have let µ1 = · · ·µn−1 = 0.

Proof. The course of proof on Theorem 3.2 can be realized by computer with help of
computer algebra system Mathematica 7.0. According to the recursive formula of Theorem
3.1, we have

µ1 = − i

20
(A2 +B3)C,

because C ̸= 0, then we let A2 +B3 = 0 which deduce that

B3 = −A2, (3.6)

moreover we have

µ2 =
iCB1

1200
(25A2B1 − 70B1B3 + 54A1C + 22B2C).

From CB1 ̸= 0, we let 25A2B1 − 70B1B3 + 54A1C + 22B2C = 0, then

A2 = −2(27A1C + 11B2C)

95B1
, (3.7)

at this time we have

µ3 =
iC2

736440000
[(3347619A2

1 − 9964150A1B2 − 3434431B2
2)C

2

− 475B3
1(86099A1 + 3942B2)].

According to µ3 = 0 and C ̸= 0, we have

B3
1 =

(3347619A2
1 − 9964150A1B2 − 3434431B2

2)C
2

475(86099A1 + 3942B2)
, (3.8)

under conditions (3.6) (3.7) (3.8), we obtain

µ4 = − iC6

45475170000000B1(86099A1 + 3942B2)2
m4,

and

µ5 = − iC8

12717285906078000000000B2
1(86099A1 + 3942B2)3

m3.

While the remainder from dividing the polynomial m3 in A1 by m4 is m5, hence

µ5 = − iC8

12717285906078000000000B2
1(86099A1 + 3942B2)3

m5.

From the above course of computation, it can be seen that the expression of µn, n ∈
{2, 3, 4, 5} is obtained after letting µ1 = · · ·µn−1 = 0.

According to the relation between the singular values and the focal values, we have
the following theorem.

Theorem 3.3. The first five focal values at the origin of system (3.3) (or the first five
general focal values at the origin of system (1.2)) are expressed as follows:

v3 =
π

20
(A2 +B3)C,
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v5 =− πCB1

1200
(25A2B1 − 70B1B3 + 54A1C + 22B2C),

v7 =− πC2

736440000
[(3347619A2

1 − 9964150A1B2 − 3434431B2
2)C

2

− 475B3
1(86099A1 + 3942B2)],

v9 =
πC6

45475170000000B1(86099A1 + 3942B2)2
m4,

v11 =
πC8

12717285906078000000000B2
1(86099A1 + 3942B2)3

m5,

in which the expressions of m4, m5 are the same as those of Theorem 3.2.

3.3. Limit cycle bifurcation of system (1.2)
At first, we may as well consider the limit cycles bifurcation at the origin of system (3.3).
From Lemma 2.5 and Theorem 3.3, we only need to consider the number of order that
origin of system (3.3) become a fine focus. We can obtain the following theorem.

Theorem 3.4. The origin of system (3.3) can become a fine focus of 5th order if and only
if the following condition holds:

B3 = −A2, A2 = − 2(27A1C+11B2C)
95B1

,

B3
1 =

(3347619A2
1−9964150A1B2−3434431B2

2)C
2

475(86099A1+3942B2)
,

m4 = 0, m5 ̸= 0.

(3.9)

Proof. According to the proof course of Theorem 3.2, the above conclusion is clear.
In fact, under condition (3.9), the real number solutions about A1, A2, B1, B2, B3, C

such that v3 = v5 = v7 = v9 = 0 and v11 ̸= 0. If conditions (3.6) (3.7) (3.8) hold, then
v3 = v5 = v7 = 0. We can obtain the solution of m4 = m5 = 0 is A1 = 0, B2 = 0,
while A1 ̸= 0, B2 ̸= 0, hence equations group m4 = m5 = 0 don’t hold, which deduce
v9 = v11 = 0 don’t hold at the same time. Next we try to find the relation between A1

and B2 if the origin of system (3.3) is a fine focus of 5th order. Let m4 = 0, we have
B2 = λA1, in which λ is the real number root of the following equation

137232850846045614558− 1316781479020086046443λ− 2738536719956146718841λ2−

493533738629180767087λ3 + 94740972566268445601λ4 + 9758294079800363856λ5 = 0.

(3.10)
Equation (3.10) have 5 real number roots, namely

λ ≈ −12.0509, λ ≈ −3.32558, λ ≈ −0.641669, λ ≈ 0.0878996, λ ≈ 6.22153. (3.11)

Hence B2 = λA1, λ satisfies (3.11) and A1 ̸= 0.
From the above analysis, the real number roots about A1, A2, B1, B2, B3, C such

that v3 = v5 = v7 = v9 = 0 and v11 ̸= 0 have an infinite number of groups of real numbers.
According to Theorem 3.3 and Theorem 3.4, we will deduce the following theorem.

Theorem 3.5. Suppose that the origin of system (3.3) is a fine focus of 5th order, then
under a certain parameters’ perturbed condition, the origin of system (3.3) can bifurcate
5 small limit cycles in which 3 limit cycles can be 3 stable cycles, and system (1.2) can
bifurcate 5 limit cycles, in which 3 limit cycles can be 3 stable cycles.
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Proof. If condition (3.11) holds, then the origin of unperturbed system (3.3) is a fine
focus of 5th order, and the Jacobian of the functions group (v3, v5, v7, v9) with respect to
the variables group (B3, A2, B1, A1) is as follows:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v3
∂B3

∂v3
∂A2

∂v3
∂B1

∂v3
∂A1

∂v5
∂B3

∂v5
∂A2

∂v5
∂B1

∂v5
∂A1

∂v7
∂B3

∂v7
∂A2

∂v7
∂B1

∂v7
∂A1

∂v9
∂B3

∂v9
∂A2

∂v9
∂B1

∂v9
∂A1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − B3

1C
10π4

5937238195200000000000(86099A1 + 3942B2)2
m1, (3.12)

in which

m1 =35446833674981044103487726A5
1 − 224042277634125217962453534A4

1B2

− 256548283412692993125804483A3
1B

2
2 − 32385935250201391097013666A2

1B
3
2

− 12048122992335608065514407A1B
4
2 − 1306889810097232842716346B5

2 .

By computing, we can obtain the resultant of m1 and m4 on A1 is as follows:

r = Resultant[m1,m4, A1] = 8721246660991825 · · · 8750000000B25
2

in which B2 ̸= 0, so m4 = 0 deduces that m1 ̸= 0. In addition, B1 ̸= 0, C ̸= 0, B2 ̸= 0,
hence J ̸= 0 under condition (3.9).

Obviously, equations group v3 = v5 = v7 = v9 = 0 have many real number solutions on
B3, A2, B1, A1 such that v11 ̸= 0. We may as well let B3 = b3, A2 = a2, B1 = b1, A1 = a1

are a group of solutions satisfying v3 = v5 = v7 = v9 = 0, v11 ̸= 0.
Give a suitable perturbation about these parameters, we may as well let

v3(2π, ε) = ε1, v5(2π, ε) = ε2, v7(2π, ε) = ε3, v9(2π, ε) = ε4, (3.13)

in which ε1, ε2, ε3, ε4 are a group of arbitrary real numbers. Because J ̸= 0, then according
to existence theorem of implicit function, equation (3.13) has a group of solutions as follows:

B3 = b3 + f1(ϵ1, ϵ2, ϵ3, ϵ4),

A2 = a2 + f2(ϵ1, ϵ2, ϵ3, ϵ4),

B1 = b1 + f3(ϵ1, ϵ2, ϵ3, ϵ4),

A1 = a1 + f4(ϵ1, ϵ2, ϵ3, ϵ4).

(3.14)

Obviously, given perturbations by (3.14) will let (3.13) hold.
Here we can let

δ = 1
2
c0ϵ

10 + o(ϵ10), ϵ1 = c1πϵ
8 + o(ϵ9), ϵ2 = c2πϵ

6 + o(ϵ7),

ϵ3 = c3πϵ
4 + o(ϵ5), ϵ4 = c4πϵ

2 + o(ϵ3),
(3.15)

in which
c0 = −14400j0, c1 = 21076j0, c2 = −7645j0, c3 = 1023j0,

c4 = −55j0, j0 = v11|ϵ=0,M=0,A=a,B=b,C=c ̸= 0.
(3.16)
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At this time, the focal values at the origin of perturbed system (3.3) ( or the general
focal values at the origin of perturbed system (1.2)) are follows:

v1(2π, ϵ)− 1 = e2πδ − 1 = c0πϵ
10 + o(ϵ11),

v3(2π, ϵ) = c1πϵ
8 + o(ϵ9),

v5(2π, ϵ) = c2πϵ
6 + o(ϵ7),

v7(2π, ϵ) = c3πϵ
4 + o(ϵ5),

v9(2π, ϵ) = c4πϵ
2 + o(ϵ3),

v11(2π, ϵ) = v9|ϵ=0 + o(ϵ).

(3.17)

At this time, Poincaré succession function for the origin of system (3.3) is changed into
the following form:

d(ϵh) = r(2π, ϵh)− ϵh

= (v1(2π, ϵ)− 1)ϵh+ v2(2π, ϵ)(ϵh)
2 + v3(2π, ϵ)(ϵh)

3 + . . .+ v11(2π, ϵ)(ϵh)
11 + · · ·

= πϵ11h[g(h) + ϵhG(h, ϵ)],
(3.18)

in which

g(h) = c0 + c1h
2 + c2h

4 + c3h
6 + c4h

8 + j0h
10

= −14400j0 + 21076j0h
2 − 7645j0h

4 + 1023j0h
6 − 55j0h

8 + j0h
10

= j0(h
2 − 1)(h2 − 4)(h2 − 9)(h2 − 16)(h2 − 25),

(3.19)

and G(h, ϵ) is an analytic function about h and ϵ at (0, 0).
Clearly, g(h) = 0 has 5 simple positive real number solutions namely 1, 2, 3, 4, 5. From

implicit function theorem, the number of positive zero points of equation d(ϵh) = 0 is equal
to one of g(h) = 0, and these positive zero points are close to 1, 2, 3, 4, 5 if 0 < |ϵ| ≪ 1.
The above analysis shows there exists 5 small limit cycles in a small enough neighborhood
at the origin of system (3.3), which are close to cycles x2

1 + y2
1 = k2ϵ2, k = 1, 2, 3, 4, 5. At

the same time, when v11 < 0, there exists 3 stable limit cycles which are close to cycles
x2
1 + y2

1 = k2ϵ2, k = 1, 3, 5. Correspondingly, system (1.2) has 5 limit cycles which are
close to cycles x2 + y2 = k6ϵ6, (k ∈ {1, 2, 3, 4, 5}). At the same time, when v11 < 0, there
exists 3 stable limit cycles which are close to spheres x2 + y2 = k6ϵ6, k = 1, 3, 5.

4. Conclusion
The work of this paper focuses on the limit cycle bifurcation problem at infinity for a
class of polynomial systems in 3-Dimensional vector fields. By making two appropriate
transformations and making use of singular values methods on center manifolds to compute
and simply the general focal values carefully, we give the expressions of the first five focal
values of the infinity and prove the conditions of the fifth fine focuses. Moreover, we
obtain the infinity can bifurcate 5 large limit cycles and the relative positions and stability
of these limit cycles are given. Similar published results are hardly seen, and the result of
the number of large limit cycles is new.
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