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A SHADOWING LEMMA FOR RANDOM
DYNAMICAL SYSTEMS
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Abstract This paper proves a shadowing lemma for the random dynamical
systems generated by a class of random parabolic equations. We propose
random versions of Newton’s method and solution-tracing theory to obtain our
main theorem. This result applies to C1 random dynamical systems on Banach
space without assuming the corresponding map to be a diffeomorphism. We
also provide sufficient conditions to assure the measurability of the resulting
solution. This measurability can be verified as long as a proper subsequence
of the initial iteration sequence is measurable.
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1. Introduction
As well known, the shadowing lemma has been widely used as an efficient tool to
solve various problems in theoretical analysis and numerical computation. For ex-
ample, through this lemma, Lin [24] substantiated the validity of the expansions
for a singularity perturbed boundary value problem; Dellnitz and Melbourne [10]
proved the density of periodic points with given symmetry; Chow and Van Vleck [8]
estimated the global error of the solution for initial value ordinary differential equa-
tions. Another vital application of shadowing lemma is chaotic behavior detection.
Due to the mysterious nature of chaotic orbits, the rigorous proof of chaotic be-
havior had been a rather complicated problem. However, the shadowing lemma
vastly simplifies this proof procedure and provides new perspectives to investigate
the orbital properties of chaotic dynamical systems.

The celebrated Birkhoff-Smale theorem has proposed that homoclinic points may
cause quite complex behavior. By the construction of Smale horseshoe map [29],
the essence of chaotic dynamical systems was gradually revealed and explicitly ex-
pressed as some iterates of diffeomorphism, which are topologically conjugate to a
Bernoulli shift with finite symbols. After being put forward and proved (Anosov [1],
Bowen [4]) and then successively generalized (Franke and Selgrade [15], Robin-
son [28], Guckenheimer etc [17]), the shadowing lemma was first used by Palmer [25]
to construct the conjugation relationship for proving Birkhoff-Smale Theorem. It
bridges the existence of pseudo-orbit to the fact that the discretization of the ini-
tial dynamical system admits a Bernoulli shift as a subsystem. After that, the
shadowing lemma earned more and more attention and interest in many aspects.
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In deterministic cases, Chow etc [6] proved a shadowing lemma for C1 maps
in infinite-dimensional space, which may not be diffeomorphisms. Coomes etc [9]
proposed a shadowing lemma for flows. Some other important results can be seen
in Palmer [26], Pilyugin [27], Gan [16], Delshams etc [11], and recently Han and
Wen [19], Delshams etc [12], Li [22]. In addition to the results mentioned before, the
shadowing lemma is also of great significance in random dynamical systems theory.
Chow and Van Vleck [7] proved a shadowing lemma for random diffeomorphisms.
To take one step further, Gundlach [18] introduced stable and unstable manifolds
for stationary orbits of the finite-dimensional random dynamical system correspond-
ing to diffeomorphisms φ(n, ω), and then proved that the random hyperbolic set
contains an invariant subset on which the dynamics are conjugate to random shifts.
In [20], He etc first defined a type of hyperbolicity on full measure invariant sets
and proved the shadowing property of diffeomorphisms by the assumptions of equi-
continuity and uniformity of the Oseledec splitting. Though there are some results
in random cases, most of them only took into account of the random mappings
which are diffeomorphisms. In this paper, we weaken this assumption and consider
the mappings that are not necessarily diffeomorphisms.

We intend to prove a shadowing lemma for a C1 random dynamical system,
which is generated by the solution operator of a random parabolic evolution equa-
tion. The time map of this system is not required to be a diffeomorphism. The
process to achieve this goal involves the theory of invariant manifolds (see Deng and
Xiao [13], Bento and Vilarinho [3]) and random exponential dichotomy (see Lian
and Lu [23], Zhou etc [30]). Moreover, by following the ingenious method in [6], we
present a random version of Newton’s method, which plays an essential part in our
proof. This attempt brings up a set of brand new problems. The most tricky one
of them is the measurability of the tracing solution. To solve these problems, we
propose a strategy centering around the strong measurability of specific operators.
It is worth mentioning that, rather than the whole initial iteration sequence, the
measurability of a proper subsequence will suffice to guarantee that the entire re-
sulting solution is measurable. The detailed derivation and proof will be elucidated
progressively in the following few sections.

The outline of this paper is as follows. In Section 2, we introduce some basic
definitions and specify the system we will study. In particular, we generalize the
idea of hyperbolic set to this random case and present their critical properties, which
contribute to the main result as stated in Theorem 2.1. Section 3 investigates a set
of random linear difference equations which serve as a discretization of the system
we are interested in. As a preparation to prove the main result, a shadowing lemma
for this linearized system is presented and proved in Section 4. Finally, Section 5
gives the proof of the main result.

2. Random Parabolic Equations
In this section, we first review some basic concepts about random dynamical sys-
tems, which are referenced from Arnold [2]. Then we describe the system we are
concerned with and generalize some definitions for it. At the end of this section,
we state the main theorem.

Let (Ω,F ,P) be a probability space. Let time T = R or Z and endow it with
Borel σ-algebra B(T). X is a separable Banach space with norm | · | and Borel
σ-algebra B.
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Definition 2.1. A family of mappings (θt)t∈T from Ω into itself is called a metric
dynamical system if

(i) (ω, t) → θtω is F ⊗ B(T)-measurable;
(ii) θ0 = IdΩ, θt+s = θt ◦ θs for all t, s ∈ T;
(iii) θt preserves the probability measure P.

For the dynamical systems with discrete time, part (i) of the definition above
can be reduced to (i)′ ω → θtω is F measurable for each t ∈ T.

Definition 2.2. A random dynamical system (or RDS) on X over a metric
dynamical system (Ω,F ,P, θt) with time T is a mapping

ϕ : T× Ω×X → X, (t, ω, x) → ϕ(t, ω, x),

which satisfies
(i) ϕ is B(T)⊗F ⊗ B-measurable;
(ii) The mappings ϕ(t, ω) := ϕ(t, ω, ·) form a cocycle over θt:

ϕ(0, ω) = IdX for all ω ∈ Ω,

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all s, t ∈ T, ω ∈ Ω.

If in addition ϕ is differentiable with respect to x, and both ϕ and its derivative Dϕ
are continuous with respect to (t, x), then ϕ is called a C1 random dynamical
system.

Consider the random parabolic evolution equation

ẋ+Ax = f(θtω, x), (2.1)

where A is a sectorial operator on X with Reσ(A) > 0. By Theorem 1.3.4 on Henry
[21, p20], −A is the infinitesimal generator of an analytic semigroup {e−At}t⩾0. And
also, for 0 ⩽ α ⩽ 1, the fractional power operator Aα : D(Aα) → X is well-defined,
and the space Xα = D(Aα) is Banach with graph norm |x|α = |Aαx|. Both of these
two norms can induce corresponding measurable norms | · |· and | · |(·,α) on Ω×X
and Ω × Xα respectively, i.e., the mappings (ω, x) → |x|ω and (ω, x) → |x|(ω,α)

are F ⊗ B-measurable. The corresponding norm of the operators from {θmω} ×X
to {θnω} × X (resp. from {θmω} × Xα to {θnω} × Xα) is denoted by | · |(m,n,ω)

(resp. | · |(m,n,ω,α)). For the sake of conciseness, if a point is obviously on a certain
fiber, we will omit the part of the subscript which indicates its location on base
space. Assume f(·, x) is (F ,B)-measurable for each x ∈ X, and f(ω, ·) is Lipschitz
continuous for each ω ∈ Ω with Lipschitz constant L(ω) satisfying∫ b

a

L(θsω)ds < ∞, for −∞ < a < b < ∞.

Then according to Theorem 3.5 in Caraballo etc [5], given initial condition x(t0, ω) =
x ∈ Xα, the random differential equation (2.1) has a unique mild solution x(t, ω)
on any interval t ∈ [t0, t1] for any ω ∈ Ω and it generates a continuous random
dynamical system, which is given by

ϕ(t, θt0ω, x) = e−Atx+

∫ t

0

e−A(t−s)f(θs+t0ω, ϕ(s, θt0ω, x))ds. (2.2)
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Note that (2.2) implies ϕ(0, θt0ω, x) = x for all ω. Assume in addition that x →
f(ω, x) is C1 and Lipschitz continuous, t → f(θtω, x) is locally Hölder continuous,
and also in the sense of operator norm, x → Df(ω, x) is Lipschitz continuous,
t → Df(θtω, x) is Hölder continuous. Then ϕ is a C1 random dynamical system.

In order to present a random version of Shadowing Lemma for this system
precisely, we need to introduce some notations and definitions. First, denote the
metric on X measuring the distance between a point x and a set U ⊂ X as

d(x,U) = inf
y∈U

|x− y|.

Then a mapping Λ : Ω → 2X is called a random set if ω → d(x,Λ(ω)) is measurable
for any x ∈ X. In addition, if each Λ(ω) is closed (compact), Λ is said to be a random
closed (compact) set. If Λc is a random closed set, Λ is called a random open set.
A set-valued mapping of this kind can also define a subbundle {(ω, x) ∈ Ω×X|x ∈
Λ(ω)}, which is also denoted by Λ. To avoid causing confusion, we will explicitly
specify which one is mentioned each time they appear. We say that a subbundle
Λ is forward invariant under random dynamical system ϕ, if ϕ(t, θt0ω,Λ(θt0ω)) ⊂
Λ(θt+t0ω) for all t ⩾ 0.

Definition 2.3. A random bounded linear operator T : Ω → L (X) is called
strongly measurable on X, if the mapping ω → T (ω)x is (F ,B)-measurable for
each x ∈ X. If for every ω ∈ Ω, T (ω) is invertible, then T is called invertible.

Now we are ready to define the hyperbolicity of subbundle in the sense of random
dynamical system.

Definition 2.4. A forward invariant subbundle Λ under RDS ϕ is called hyper-
bolic, if Dϕ admits exponential dichotomy on Λ, which means the following
conditions are satisfied:

(i) For each (ω, x) ∈ Λ, there is a splitting

Xα = Es(ω, x)⊕ Eu(ω, x),

which is invariant under Dϕ in the following sense,

Dϕ(t, θt0ω, x)Es(θt0ω, x) ⊂ Es(θt+t0ω, ϕ(t, θt0ω, x)),

Dϕ(t, θt0ω, x)Eu(θt0ω, x) ⊂ Eu(θt+t0ω, ϕ(t, θt0ω, x)),

for all (θt0ω, x) ∈ Λ and t > 0. And this splitting is also measurable and continuous,
which means the splitting projection P(ω, x) with range Es(ω, x) and nullspace
Eu(ω, x) is strongly measurable in (ω, x) and uniformly continuous in the operator
norm.

(ii) Dϕ(t, θt0ω, x) : Eu(θt0ω, x) → Eu(θt+t0ω, ϕ(t, θt0ω, x)) is an isomorphism
with bounded inverse

Dϕ(t, θt0ω, x)−1 : Eu(θt+t0ω, ϕ(t, θt0ω, x)) → Eu(θt0ω, x)

satisfying Dϕ(t, θt0ω, x)−1(I − P(θt0ω, x)) is strongly measurable in (ω, x). And
there exist constants K ⩾ 1, β > 0 such that for all (θt0ω, x) ∈ Λ, t > 0,

|Dϕ(t, θt0ω, x)P(θt0ω, x)| ⩽ Ke−βt,

|Dϕ(t, θt0ω, x)−1(I −P(θt+t0ω, ϕ(t, θt0ω, x)))| ⩽ Ke−βt.
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Let
⋃

n∈Z[τn−1, τn] = R be a partition of R with 0 < τ ⩽ τn − τn−1 ⩽ 2τ for all
n, where τ > 0 is a constant.

Definition 2.5. Let δ : Ω → R+ be a θt invariant random variable, i.e., δ(θtω) =
δ(ω) for all t ⩾ 0. A sequence {xn(t, ω)}n∈Z, t ∈ [τn−1, τn] is called an (ω, δ)
pseudo-solution for (2.1) if for all n,

|xn(τn, ω)− xn+1(τn, ω)|α ⩽ δ(ω),

and
sup{|hn(θ

tω)| : τn−1 ⩽ t ⩽ τn} ⩽ δ(ω),

where
hn(θ

tω) := ẋn(t, ω) +Axn(t, ω)− f(θtω, xn(t, ω)).

Definition 2.6. Let ε : Ω → R+ be a θt invariant random variable. An ω-solution
x(t, ω) of (2.1) is said to (ω, ε)-shadows the (ω, δ) pseudo-solution {xn(t, ω)} if
x(t, ω) is defined for all t ∈ R and

|x(t, ω)− xn(t, ω)| ⩽ ε(ω) for τn−1 ⩽ t ⩽ τn, n ∈ Z.

Our main result then can be summarized as follows.

Theorem 2.1. Suppose Λ is a forward invariant hyperbolic subbundle of random
dynamical system (2.2). There is a positive θt invariant random variable ∆(ω), such
that for each ω ∈ Ω, both f(ω, x) and Df(ω, x) are bounded in the ∆-neighborhood
O of Λ, which is ω-wise defined as O(ω) = {x ∈ X|d(x,Λ(ω)) ⩽ ∆(ω)}. Let
{xn(t, ω)}n∈Z, τn−1 ⩽ t ⩽ τn be a (ω, δ) pseudo-solution of (2.1), where xn(t, ω) is
in a δ(ω)-neighborhood of Λ(θtω). Then there exists a positive θt invariant random
variable ε0, such that if 0 < ε(ω) ⩽ ε0(ω), then there is an ε-dependent positive
random variable δ(ω, ε), such that if δ(ω) ⩽ δ(ω, ε), there exists a unique ω-solution
x(t, ω) of (2.1) which (ω, ε)-shadows {xn(t, ω)}. Furthermore, if there exist positive
integers k and l satisfying 16K3λk ⩽ 1, k ⩽ l, such that {xn(τn−1, ω)} possesses a
measurable subsequence {xni

(τni−1, ω)}i∈Z with k ⩽ ni+1 − ni ⩽ l, then x(t, ω) is
measurable for all t.

3. Random Difference Equations and its Lineariza-
tion

In this section, we change the angle of view to consider a nonautonomous random
difference equation with discrete time and its linearization. This procedure will show
a clearer picture of the behavior of the system we care about, since the dynamics of
a system on hyperbolic invariant set can be reflected by the exponential dichotomy
of its linearized system.

Let φ : Ω×X → X be a measurable mapping and φ(ω, ·) is C1 for each ω ∈ Ω.
Consider the system generated by {φ(θnω, ·)}n∈Z. The role of φ in this system is
analogous to the time-one map in a classic random dynamical system, but it is not
necessarily a diffeomorphism, and the invertibility about it will be specified at once.

Definition 3.1. For fixed ω ∈ Ω, an ω-orbit of {φ(θnω, ·)}n∈Z is a sequence of
points {xn}n∈Z with xn ∈ {θnω} ×X for all n, which satisfies

xn+1 = φ(θnω, xn) for all n ∈ Z.
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A sequence of mappings xn : Ω → X is called an orbit of φ, if {xn(ω)}n∈Z is an
ω-orbit of {φ(θnω, ·)}n∈Z for every ω ∈ Ω.

Such {xn}n∈Z can also be called a solution of measurable difference equation

un+1 = φ(θnω, un).

Since φ is measurable, a unique measurable forward solution will be generated if
initial value xm(ω) = ξ is preassigned for each ω ∈ Ω. Here m represents the initial
time and will be set 0. Assume Λ : Ω → 2X is a random set, and the subbundle Λ
it defines is invariant under φ, i.e., φ(θnω,Λ(θnω)) ⊂ Λ(θn+1ω) for all n. There is
a θn invariant positive function ∆(ω), such that for all n ∈ Z, ω ∈ Ω, φ(θnω, ·) and
Dφ(θnω, ·) are uniformly bounded and continuous in a closed ∆(ω)-neighborhood
O(ω) of Λ(ω). Let the bound of |Dφ(θnω, ·)| be M .

Definition 3.2. Let Λ be an invariant subbundle under φ. It is called hyperbolic,
if there exist constants K ⩾ 1, 0 ⩽ λ < 1 and for all (ω, x) ∈ Λ a splitting

X = Es(ω, x)⊕ Eu(ω, x),

which is invariant under Dφ(θnω, x) in the following sense,

Dφ(θnω, x)Es(θnω, x) ⊂ Es(θn+1ω, φ(θnω, x)),

Dφ(θnω, x)Eu(θnω, x) ⊂ Eu(θn+1ω, φ(θnω, x)),

and depends measurably on (ω, x) ∈ Λ, for each fixed ω ∈ Ω continuously on x ∈
Λ(ω), i.e., there is a strongly measurable projection P(ω, x) with range Es(ω, x) and
nullspace Eu(ω, x), which satisfies |P(ω, x)| ⩽ K, |I−P(ω, x)| ⩽ K and is uniformly
continuous in operator norm with respect to x ∈ Λ(ω), such that Dφ(θnω, x) :
Eu(θnω, x) → Eu(θn+1ω, φ(θnω, x)) is an isomorphism with strongly measurable
inverse Dφ−1(θnω, x) : Eu(θn+1ω, φ(θnω, x)) → Eu(θnω, x). Furthermore, for any
pair of integers m < n, the finite sequence xm(ω), xm+1(ω) = φ(θmω, xm(ω)),
xm+2(ω) = φ(θm+1ω, xm+1(ω)), · · · , xn(ω) = φ(θn−1ω, xn−1(ω)) satisfies

|Dφ(θnω, xn(ω)) · · ·Dφ(θmω, xm(ω))P(θmω, xm(ω))| ⩽ Kλn−m+1,

|Dφ−1(θmω, xm(ω)) · · ·Dφ−1(θnω, xn(ω))(I −P(θn+1ω, xn+1(ω)))| ⩽ Kλn−m+1.

Definition 3.3. Let δ : Ω → R+ be a θn invariant function. For any ω ∈ Ω, a
sequence {yn(ω)}n∈Z, where yn(ω) ∈ {θnω}×X, is called an (ω, δ) pseudo-orbit
of {φ(θnω, ·)}n∈Z, if

|yn+1(ω)− φ(θnω, yn(ω))| ⩽ δ(ω) for all n ∈ Z.

Definition 3.4. Let ε : Ω → R+ be a θn invariant function. An ω-orbit {xn(ω)}n∈Z,
where xn(ω) ∈ {θnω}×X, is said to (ω, ε)-shadow the (ω, δ) pseudo-orbit {yn(ω)},
if

|xn(ω)− yn(ω)| ⩽ ε(ω) for all n ∈ Z.

To conclude the assumptions above and provide an auxiliary result for our main
theorem, we present the following theorem and prove it in the next few sections.
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Theorem 3.1. Let (Ω,F ,P) be a probability space and (θn)n∈Z be a metric dy-
namical system defined on Ω. X is a separable Banach space equipped with Borel
σ-algebra B. Λ is a hyperbolic invariant subbundle for C1 measurable mappings
{φ(θnω, ·)}n∈Z with constants K ⩾ 1, 0 ⩽ λ < 1. Then there exists a positive θn

invariant function ε0(ω), such that for each θn invariant function ε(ω) satisfying
0 < ε(ω) ⩽ ε0(ω), there is a δ(ω) > 0 such that if {yn(ω)}n∈Z, yn(ω) ∈ Λ(θnω), is
an (ω, δ) pseudo-orbit for {φ(θnω, ·)}n∈Z, then there is a unique orbit {xn(ω)}n∈Z
which (ω, ε)-shadows {yn(ω)}n∈Z. Moreover, if there exist positive integers k and l
satisfying 16K3λk ⩽ 1, 0 < k ⩽ l < ∞ such that {yn(ω)}n∈Z possesses a measur-
able subsequence {yni(ω)}i∈Z with k ⩽ ni+1 − ni ⩽ l for any i ∈ Z, then the orbit
{xn(ω)}n∈Z is measurable for all n ∈ Z.

Let An : Ω → L (X), n ∈ Z, be a sequence of strongly measurable operators,
then equations

xn+1 = An(ω)xn, n ∈ Z, (3.1)
constitute a measurable linear difference equation set, and the corresponding tran-
sition matrices of it are as follows

Φ(n,m, ω) =

An−1(ω) ◦An−2(ω) ◦ · · · ◦Am(ω) for n > m,

I for n = m.

Definition 3.5. We say the measurable linear difference equation set (3.1) has
exponential dichotomy if there exist constants K ⩾ 1, 0 ⩽ λ < 1 and strongly
measurable projections Pn on {θnω}×X, such that for all ω ∈ Ω and any arbitrary
pair of integers n ⩾ m, we have

Φ(n,m, ω)Pm(ω) = Pn(ω)Φ(n,m, ω),

|Φ(n,m, ω)Pm(ω)| ⩽ Kλn−m.

In addition, Φ(n,m, ω) : N (Pm(ω)) → N (Pn(ω)) is an isomorphism with bounded
strongly measurable inverse Φ(n,m, ω)−1 = Φ(m,n, ω) : N (Pn(ω)) → N (Pm(ω))
satisfying

|Φ(m,n, ω)(I −Pn(ω))| ⩽ Kλn−m.

Now we introduce a product space ΠX = · · · × X × X × X × · · · of bounded
sequences x = {xn}n∈Z, xn ∈ X. It is a Banach space if we endow it with norm

∥x∥ = sup
n∈Z

|xn|.

This norm also induces a measurable norm

∥x∥ω = sup
n∈Z

|xn|ω

on Ω × ΠX, since the norm on Ω ×X is measurable. The corresponding operator
norm from {θmω} × ΠX to {θnω} × ΠX is denoted by ∥ · ∥(m,n,ω). Unless it is
necessary, the subscripts will be omitted. Define πn : ΠX → X as πn(x) = xn to be
the coordinate map. Recall that B is the Borel σ-algebra on X, then the product
Borel σ-algebra

⊗
B on ΠX is generated by {π−1

n (Vn)|Vn ∈ B for n ∈ Z}, where
π−1
n (Vn) = Πm∈ZVm and Vm = X for m ̸= n. By proposition 1.3 in Folland [14, p23],⊗
B is also generated by {Πn∈ZVn|Vn ∈ B}. So we have
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Lemma 3.1. If x(ω) = {xn(ω)}n∈Z, then x(ω) : Ω → ΠX is measurable if and
only if xn(ω) : Ω → X is measurable for all n ∈ Z.

This lemma leads us directly to a fact about strongly measurable operators.

Corollary 3.1. Let Tn : Ω → L (X), n ∈ Z, be a sequence of strongly measurable
operators on X, then the operator T : Ω → L (ΠX) defined as

(T (ω)x)n = Tn(ω)xn

is strongly measurable on ΠX.

We also need another simple lemma about strongly measurable operators.

Lemma 3.2. Let T1, T2 : Ω → L (X) be two strongly measurable operators, then
−T1, −T2, T1 + T2, and T1 ◦ T2 are all strongly measurable on X.

With the assistance of the results above, we are safe to draw the following
conclusion.

Proposition 3.1. Assume Ai : Ω → L (X), i ∈ Z are strongly measurable satisfy-
ing

sup
n∈Z

|Ai(ω)| < ∞ for all ω ∈ Ω.

Qi : Ω → L (X) are strongly measurable projections with properties that there exist
positive constants K, M1, M2 satisfying K ⩾ 1, 8KM1 ⩽ 1, 8M2 ⩽ 1, such that
for all i ∈ Z, ω ∈ Ω,

|Qi(ω)| ⩽ K, |I −Qi(ω)| ⩽ K, |Ai(ω)Qi(ω)| ⩽ M1,

|Qi+1(ω)Ai(ω)(I −Qi(ω))| ⩽ M2,

|(I −Qi+1(ω))Ai(ω)Qi(ω)| ⩽ M2.

Suppose (I −Qi+1(ω))Ai(ω) : N (Qi(ω)) → N (Qi+1(ω)) has an inverse Bi(ω) such
that

|Bi(ω)(I −Qi+1(ω))| ⩽ M1,

and Bi(ω)(I − Qi(ω)) is strongly measurable. Then the random operator L : Ω →
L (ΠX) defined as (L(ω)x)i = xi−Ai−1(ω)xi−1 is strongly measurable and invertible
with a strongly measurable inverse L−1 which satisfies

∥∥L−1(ω)
∥∥ ⩽ 2K + 1 for all

ω. And if x = x(·) = {xi(·)}i∈Z, where xi : Ω → X is measurable for all i, then
{(L−1(ω)x(ω))i} is a measurable sequence.

Proof. By Lemma 3.2 in [6], for arbitrarily fixed ω, L(ω) is invertible and its
inverse satisfies ∥L(ω)−1∥ ⩽ 2K + 1. Then as a random operator, L is invertible
and its inverse possesses the same norm estimation. To elaborate further, if we
define operator S(ω) on ΠX as (S(ω)h)i = Qi(ω)hi −Bi(ω)(I −Qi+1(ω))hi+1, we
have ∥I − L(ω)S(ω)∥ ⩽ 1

2 , then L(ω)S(ω) has an inverse T (ω) with an expansion
expression

T (ω) = (L(ω)S(ω))−1 = (I − (I − L(ω)S(ω)))−1 =

∞∑
j=0

(I − L(ω)S(ω))j ,
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which is convergent in the operator norm on L (ΠX), since ∥T (ω)∥ ⩽ (1 − ∥I −
L(ω)S(ω)∥)−1 ⩽ 2. So the inverse of L(ω) can be written as

L(ω)−1 = S(ω)T (ω) =

∞∑
j=0

S(ω)(I − L(ω)S(ω))j . (3.2)

By the measurability assumption of Ai, Bi, Qi, Lemma 3.2 and Corollary 3.1,
S and L are both strongly measurable. Then the expanded formula (3.2) implies
L−1 is strongly measurable. So for each x ∈ ΠX, ω → L−1(ω)x is measurable.
Note that x → L−1(ω)x is continuous for each ω ∈ Ω, then (ω,x) → L−1(ω)x
is measurable. For any x = x(ω) = {xi(ω)}, where xi(ω) is measurable for all
i, the mapping ω → (ω,x(ω)) is measurable from Ω to Ω × ΠX by Lemma 3.1.
By compositing the two mappings above, we have ω → L−1(ω)x(ω) is measurable.
Again by Lemma 3.1, {(L−1(ω)x(ω))} is a measurable sequence, which completes
the proof.

Remark 3.1. The property of operator L−1 in this proposition that it maps a
measurable sequence to another could apply to all strongly measurable operators
on separable product Banach space.

4. Proof of Theorem 3.1
In this section, we first prove a random Newton’s method, and especially we prove
that if the initial function of iteration is measurable, the unique resulting solution
is measurable. Then we follow the procedure in [6] to give proof of Theorem 3.1.

Proposition 4.1 (Newton’s Method). Let (Ω,F ,P, (θn)n∈Z) be a metric dynamical
system, Y be a separable Banach space with Borel σ-algebra B(Y ), U(ω) ⊂ Y be
a random open subset and the subbundle defined by it is denoted by U . Suppose
F : U → Y is a mapping satisfying that ω → F (ω, x) is measurable for each x,
(ω, x) → F (ω, x) is measurable, and x → F (ω, x) is C1 for each ω. Let y : Ω → Y
be a measurable function such that y(ω) ∈ U(ω) for all ω ∈ Ω, and DF (ω, y(ω))−1

exists and is strongly measurable. Let ε0 be a positive random variable such that for
each ω ∈ Ω, if ∥x− y(ω)∥ ⩽ ε0(ω), we have

∥DF (ω, x)−DF (ω, y(ω))∥ ⩽ (2∥DF (ω, y(ω))−1∥)−1.

Then if 0 < ε(ω) ⩽ ε0(ω) and

∥F (ω, y(ω))∥ ⩽ ε(ω)(2∥DF (ω, y(ω))−1∥)−1,

the random equation
F (ω, x) = 0 (4.1)

has a unique measurable solution x : Ω → Y such that ∥x(ω)− y(ω)∥ ⩽ ε(ω) for all
ω ∈ Ω.

Proof. For each ω ∈ Ω, F (ω, x) can be expanded with respect to x near y(ω) as
following

F (ω, x) = F (ω, y(ω)) +DF (ω, y(ω))(x− y(ω)) + η(ω, x),
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where η(ω, x) = o(x). Let ε(ω) be a random variable satisfying 0 < ε(ω) ⩽ ε0(ω)
for any ω. Define operator T (ω, ·) on Bε(ω) = {x ∈ Y : ∥x− y(ω)∥ ⩽ ε(ω)} as

T (ω, x) := y(ω)−DF (ω, y(ω))−1(F (ω, y(ω)) + η(ω, x)). (4.2)

Then T (ω, ·) is a contraction mapping on Bε(ω) by Proposition 4.1 in [6]. By
Banach contraction mapping principle, for each ω ∈ Ω, T (ω, ·) has a unique fixed
point x(ω), which is the unique ω-solution of equation (4.1). After taking all values
for ω, the map x : Ω → Y is the unique solution of (4.1).

Now we turn to the measurability of this unique solution. Set x0(ω) = y(ω).
It can be seen from the process above that x(ω) is the limit of iteration sequence
xn(ω) = T (ω, xn−1(ω)) for n = 1, 2, · · · . The mapping ω → F (ω, y(ω)) is measur-
able since it is the composition of measurable maps ω → (ω, y(ω)) and (ω, x) →
F (ω, x). Similarly, η(ω, y(ω)) is measurable. The operator DF (ω, y(ω))−1 is
strongly measurable by assumption. Then every approximate solution we get from
each step of iteration formula (4.2) is measurable. So the limit x(ω) is also measur-
able.

Lemma 4.1. Let X be a Banach space equipped with Borel σ-algebra B. (Ω,F) is
a measurable space. Let P , Q : Ω → L (X) be strongly measurable projections such
that |P (ω)| ⩽ K, |I − P (ω)| ⩽ K for all ω ∈ Ω. Then if |P (ω) − Q(ω)| < 1

2K ,
the operator J(ω) = P (ω)Q(ω) + (I − P (ω))(I −Q(ω)) is invertible with a strongly
measurable inverse J−1(ω) satisfying |J−1(ω)| ⩽ (1 − 2K|P (ω) − Q(ω)|)−1. And
J(ω)R(Q(ω)) = R(P (ω)), J(ω)N (Q(ω)) = N (P (ω)).

Proof. For each fixed ω ∈ Ω, we know that |I − J(ω)| < 1 through Lemma 5.1
in [6]. So J(ω) is invertible with inverse

J−1(ω) =

∞∑
j=0

(I − J(ω))j = I + (I − J(ω)) + (I − J(ω))2 + · · · , (4.3)

thus,

∥J−1(ω)∥ ⩽ ∥I∥+ ∥I − J(ω)∥+ ∥I − J(ω)∥2 + · · ·
= (1− ∥I − J(ω)∥)−1 ⩽ (1− 2K∥P (ω)−Q(ω)∥)−1.

J(ω)R(Q(ω)) ⊂ R(P (ω)), J(ω)N (Q(ω)) ⊂ N (P (ω)) and the equalities follow from
the invertibility of J(ω). Since ω is arbitrary, J is invertible as a random operator.
In addition, the strong measurability of P and Q, the definition of J , the expansion
formula (4.3) and Lemma 3.2 imply that J and J−1 are both strongly measurable.

Recall that M is the uniform bound of |Dφ(θnω, ·)| on O(ω), the ∆(ω) neigh-
borhood of Λ(ω).

Lemma 4.2. Let l < ∞ be a positive integer. If {yn(ω)}n∈Z is an (ω, δ) pseudo-
orbit of {φ(θnω, ·)}n∈Z with yn(ω) ∈ Λ(θnω) for all n. Then its subsequence
{yni

(ω)}i∈Z satisfying ni+1 − ni ⩽ l is an (ω,
∑l−1

j=0 M
jδ) pseudo-orbit of map-

pings {φ(θni+1−1ω, ·) ◦ · · · ◦ φ(θni+1ω, ·) ◦ φ(θniω, ·)}i∈Z.

Proof. For any arbitrary pair of ni and ni+1, we have ni+1 − ni ∈ {1, 2, · · · , l}.
We intend to prove this lemma by examining all these l possibilities inductively.
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If ni+1 − ni = 1, we have

|yni+1(ω)− φ(θniω, yni(ω))| ⩽ δ(ω) =

ni+1−ni−1∑
j=0

M jδ(ω) ⩽
l−1∑
j=0

M jδ(ω),

since {yn(ω)}n∈Z is an (ω, δ) pseudo-orbit of {φ(θnω, ·)}n∈Z.
Suppose

|yni+1
(ω)− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, yni

(ω))) · · · )| ⩽
ni+1−ni−1∑

j=0

M jδ(ω)

for the case of ni+1 − ni = a, where a ∈ {1, · · · , l− 1}. Then for ni+1 − ni = a+ 1,

|yni+1
(ω)− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, yni

(ω))) · · · )|
⩽|yni+1(ω)− φ(θni+1−1ω, yni+1−1(ω))|
+ |φ(θni+1−1ω, yni+1−1(ω))− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, yni

(ω))) · · · )|
⩽δ(ω) +M · |yni+1−1(ω)− φ(θni+1−2ω, · · ·φ(θni+1ω, φ(θniω, yni

(ω))) · · · )|

⩽
a∑

j=0

M jδ(ω) ⩽
l−1∑
j=0

M jδ(ω).

The conclusion is drawn from the arbitrariness of pair ni and ni+1.

Lemma 4.3. Let {yn(ω)}n∈Z be an (ω, δ) pseudo-orbit for {φ(θnω, ·)}n∈Z, and
{xn(ω)}n∈Z be an ω-orbit of {φ(θnω, ·)}n∈Z such that its subsequence {xni

(ω)}i∈Z
satisfying ni+1−ni ⩽ l can (ω, ε)-shadow {yni

(ω)}i∈Z. Set ϵ(ω) = max{ε(ω), δ(ω)}.
Then if (

∑l
j=0 M

j)ϵ(ω) ⩽ ∆(ω), orbit {xn(ω)}n∈Z will (ω,
∑l

j=0 M
jϵ)-shadow

{yn(ω)}n∈Z.

Proof. For any pair of ni and ni+1, we have ni+1−ni ∈ {1, · · · , l}. If ni+1−ni = 1,
then

|yni+1
(ω)− φ(θniω, xni

(ω))|
⩽|yni+1

(ω)− φ(θniω, yni
(ω))|+ |φ(θniω, yni

(ω))− φ(θniω, xni
(ω))|

⩽δ(ω) +Mε(ω) ⩽ (1 +M)ϵ(ω).

Suppose for the case of ni+1 − ni = a, where a ∈ {1, · · · , l − 1},

|yni+1
(ω)− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, xni

(ω))) · · · )| ⩽
a∑

j=0

M jϵ(ω),

then if ni+1 − ni = a+ 1,

|yni+1(ω)− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, xni(ω))) · · · )|
⩽|yni+1

(ω)− φ(θni+1−1ω, yni+1−1(ω))|
+ |φ(θni+1−1ω, yni+1−1(ω))− φ(θni+1−1ω, · · ·φ(θni+1ω, φ(θniω, xni

(ω))) · · · )|

⩽δ(ω) +M

a∑
j=0

M jε(ω) ⩽
a+1∑
j=0

M jϵ(ω) ⩽
l∑

j=0

M jϵ(ω).
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Since ni and ni+1 are arbitrary, this conclusion does follow.
Before proceeding to the next step, we need to introduce and reiterate some

parameters and symbols. Let k, l be two positive integers such that 0 < k ⩽ l < ∞
and 16K3λk ⩽ 1. Pick an arbitrary subsequence {ni}i∈Z of {· · · ,−1, 0, 1, · · · },
which satisfies k ⩽ ni+1 − ni ⩽ l for all i ∈ Z. Let F (i, ω, ·) = φ(θni+1−1ω, ·) ◦ · · · ◦
φ(θniω, ·), then subbundle Λ is invariant under F as F (i, ω,Λ(θniω)) ⊂ Λ(θni+1ω).
Define new random variables as

µ(ω, η)=sup
i
{|DF (i, ω, x)−DF (i, ω, y)| : x∈{θniω} ×X, y∈Λ(θniω), |x−y|⩽η},

ν(ω, η) = sup{|P(ω, x)−P(ω, y)| : x ∈ {ω} ×X, y ∈ Λ(ω), |x− y| ⩽ η}.

Because of the uniform continuity of DF (i, ω, ·) and P(ω, ·), we have µ(ω, η) → 0,
ν(ω, η) → 0 for all ω ∈ Ω if η → 0. A positive random variable ε0 can be chosen
ω-wise such that ε0(ω) < ∆(ω) and µ(ω, ε0(ω)) < 1

4K+2 . For given 0 < ε̄(ω) ⩽
ε0(ω), let δ̄(ω) be a positive θn invariant random variable such that δ̄(ω) ⩽ ∆(ω),
(4K + 2)δ̄(ω) ⩽ ε̄(ω), 8M lKν(ω, δ̄(ω)) ⩽ 1, 4Kν(ω, δ̄(ω)) ⩽ 1 for all ω ∈ Ω.

We first prove Shadowing Lemma for random mapping sequence {F (i, ω, ·)}i∈Z.
Let ȳ(ω) = {ȳi(ω)}i∈Z be an (ω, δ̄) pseudo-orbit of {F (i, ω, ·)}, where ȳi(ω) ∈
Λ(θniω) are all measurable. Define F : U → ΠX by

(F (ω,x))i := xi − F (i− 1, ω, xi−1),

where
U = {(ω,x) ∈ Ω×ΠX| sup |xi − ȳi(ω)| < ∆(ω)}.

F (ω,x) is C1 with derivative (DF (ω,x)h)i = hi −DF (i− 1, ω, xi−1)hi−1. Define
L(ω) : ΠX → ΠX by

(L(ω)h)i := (DF (ω, ȳ(ω))h)i = hi −DF (i− 1, ω, ȳi−1(ω))hi−1.

Let Ai(ω) = DF (i, ω, ȳi(ω)), Qi(ω) = P(θniω, ȳi(ω)). By the assumptions of hy-
perbolicity of Λ, for all i ∈ Z, ω ∈ Ω, we have |Ai(ω)| ⩽ M l, |Qi(ω)| ⩽ K,
|I − Qi(ω)| ⩽ K, |Ai(ω)Qi(ω)| ⩽ Kλk and Ai(ω)(I − Qi(ω)) : N (Qi(ω)) →
N (P(θni+1ω, Fi(ω, ȳi(ω)))) is invertible with strongly measurable inverse having
norm bounded by Kλk. In addition, we can calculate

|Qi+1(ω)Ai(ω)(I −Qi(ω))|
=|(P(θni+1ω, ȳi+1(ω))−P(θni+1ω, Fi(ω, ȳi(ω))))Ai(ω)(I −Qi(ω))|

⩽ν(θni+1ω, δ1(ω)) ·M lK ⩽ 1

8
.

And similarly we have |(I − Qi+1(ω))Ai(ω)Qi(ω)| ⩽ 1
8 for all ω ∈ Ω. Let Ji(ω) =

Qi+1(ω)P (θni+1ω, Fi(ω, ȳi(ω))) + (I −Qi+1(ω))(I −P (θni+1ω, Fi(ω, ȳi(ω)))). Since

|Qi+1(ω)− P (θni+1ω, F (i, ω, ȳi(ω)))|
=|P (θni+1ω, ȳi+1(ω))− P (θni+1ω, F (i, ω, ȳi(ω)))|

⩽ν(θni+1ω, δ1(ω)) <
1

2K
,

by Lemma 4.1, Ji(ω) is invertible with strongly measurable inverse operator satisfy-
ing |J−1

i (ω)| ⩽ (1− 2Kν(ω, δ1(ω)))
−1 ⩽ 2, and Ji(ω)(N (P (θni+1ω, Fi(ω, ȳi(ω)))) =

N (Qi+1(ω)). Then

(I−Qi+1(ω))Ai(ω)(I−Qi(ω)) = Ji(ω)Ai(ω)(I−Qi(ω)) : N (Qi(ω)) → N (Qi+1(ω))
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is invertible with strongly measurable inverse, which is denoted by Bi(ω), and
|Bi(ω)(I − Qi+1(ω))| ⩽ 2K2λk. Let M1 = 2K2λk, M2 = 1

8 . Then by Proposition
3.1, L(ω) is invertible with ∥L(ω)−1∥ ⩽ 2K + 1. Since DF (ω, ·) : ΠX → L (ΠX)
is continuous, we can choose ε0(ω) small enough so that

∥DF (ω,x)−DF (ω, ȳ(ω))∥ ⩽ (∥2DF (ω, ȳ(ω))−1∥)−1

for ∥x− ȳ(ω)∥ ⩽ ε0(ω). Furthermore,

∥F (ω, ȳ(ω))∥ = sup |ȳi(ω)− F (i− 1, ω, ȳi−1(ω))| ⩽ δ1(ω) ⩽
ε̄(ω)

4K + 2
⩽ ε̄(ω)

2∥L(ω)−1∥
= ε̄(ω)(2∥DF (ω, ȳ(ω))−1∥)−1.

Consider ΠX to be space Y in Proposition 4.1, then there exists a unique measurable
solution x̄(ω) = {x̄i(ω)} of {F (i, ω, ·)} such that ∥x̄(ω)− ȳ(ω)∥ ⩽ ε̄(ω).

For 0 < ε(ω) ⩽ ε0(ω), let ε̄(ω) = ε(ω)/
∑l

j=0 M
j , δ(ω) =

∑l
j=0 M

j δ̄(ω). If
{yn(ω)}n∈Z is an (ω, δ) pseudo-orbit of {φ(θnω, ·)}, which possesses a measurable
subsequence {yni(ω)} satisfying k ⩽ ni+1 − ni ⩽ l, then by lemma 4.2, {ȳi(ω)}n∈Z
with ȳi(ω) = yni(ω) is a (ω, δ̄) pseudo-orbit for {F (i, ω, ·)}. So there exists a unique
measurable orbit {x̄i(ω)} which (ω, ε̄)-shadows {ȳi(ω)}. Define xni

(ω) = x̄i(ω)
and refill the points between each two elements in this subsequence by natural
way, so {xn(ω)} is a measurable orbit of {f(n, ω, ·)}. It follows from Lemma 4.3
and max{ε̄(ω), δ(ω)} = ε̄(ω) that {xn(ω)} can (ω, ε)-shadow {yn(ω)}. And the
uniqueness of {xn(ω)} follows from the uniqueness of {xni(ω)}.

5. Proof of Theorem 2.1
Lemma 5.1. Let the hypotheses of Theorem 2.1 hold and M be the uniform bound
for Df(ω, x) in O. Let x(t, ω) be a solution of (2.1) with initial condition x(t0, ω) =
x0 for all ω, such that x(t, ω) ∈ Λ(θtω). Let y(t, ω) be a solution of the initial value
problem

ẏ(t, ω) +Ay(t, ω) = f(θtω, y) + h(θtω), y(t0, ω) = y0

for t ∈ [t0, t0 + 2τ ], where y(t, ω) ∈ O(θtω) for all t ∈ [t0, t0 + 2τ ] and ω ∈ Ω,
|y0 − x0|α ⩽ δ(ω), mapping t → h(θtω) is continuous and sup |h(θtω)| ⩽ δ(ω).
Then there exists a constant C ⩾ 1 such that |y(t, ω) − x(t, ω)|α ⩽ Cδ(ω) for
t ∈ [t0, t0 + 2τ ].

Proof. According to [21] Theorem 1.3.4 and Theorem 1.4.3, there exist positive
constants C1, C2 and c such that for t ⩾ 0,

|e−At|L (Xα,Xα) ⩽ C1e
−ct, |e−At|L (X,Xα) ⩽ C2t

−αe−ct.

Let z(t, ω) = y(t, ω)− x(t, ω), then

|z(t, ω)|α =|e−A(t−t0)(y0 − x0) +

∫ t

t0

e−A(t−s){f(θsω, y(s, ω))− f(θsω, x(s, ω))}ds

+

∫ t

t0

e−A(t−s)h(θsω)ds|α

⩽C1e
−c(t−t0)δ(ω) +

∫ t

t0

MC2(t− s)−αe−c(t−s)|z(s, ω)|αds
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+

∫ t

t0

C2(t− s)−αe−c(t−s)δ(ω)ds.

So by the inequality above and Lemma 7.1.1 in [21],

ect|z(t, ω)|α ⩽C1e
ct0δ(ω) +

∫ t

t0

MC2(t− s)−αecs|z(s, ω)|αds

+

∫ t

t0

C2(t− s)−αecsδ(ω)ds

⩽C1e
ct0δ(ω) +

∫ t

t0

C2(t− s)−αecsδ(ω)ds

+

∫ t

t0

∞∑
n=1

(MC2Γ(1− α))n(t− s)n−nα−1

Γ(n− nα)

· (C1e
ct0δ(ω) +

∫ s

t0

C2(s− τ)−αectδ(ω)dτ)ds.

Since the series in the inequality above converges, there indeed exists a constant
C ⩾ 1 such that |z(t, ω)|α ⩽ Cδ(ω) for t ∈ [t0, t0 + 2τ ].

By our assumptions in this theorem, for each ω ∈ Ω and every t ∈ [t0, t0 +
2τ ], there exists a closed ∆1(ω)-neighborhood O1(ω) of Λ(ω), where ∆1(ω) is θt

invariant, such that for given initial point x(t0, ω) = x0 ∈ O1(θ
t0ω), the random

dynamical system (2.2) is well defined and both ϕ(t, θt0ω, x) and Dϕ(t, θt0ω, x) are
uniformly bounded and continuous.

First, we investigate a special case in which hn(θ
tω) = 0 and xn(t, ω) ∈ Λ(θtω)

for all t ∈ [τn−1, τn], n ∈ Z. In order to take advantage of the result we have
obtained in the past few sections, consider Xα as X, ϕ(τn − τn−1, θ

τn−1ω, x) as
φ(θnω, x), Λ(θτn−1ω) as Λ(θnω), and xn(τn−1, ω) as yn(ω). Since

|ϕ(τn−τn−1, θ
τn−1ω, xn(τn−1, ω))−xn+1(τn, ω)|α= |xn(τn, ω)−xn+1(τn, ω)|α⩽δ(ω),

by Theorem 3.1, there exists ε1(ω) > 0 such that for each ε(ω) satisfying 0 < ε(ω) ⩽
ε1(ω), there is an ε-dependent random variable δ1(ω, ε), if δ(ω) ⩽ δ1(ω, ε), there is
a unique orbit {x(τn−1, ω)}n∈Z such that |x(τn−1, ω)− xn(τn−1, ω)|α ⩽ ε(ω) for all
n. Furthermore, if the sequence {xn(τn−1, ω)}n∈Z possesses a proper measurable
subsequence, {x(τn−1, ω)}n∈Z is measurable. Then the resulting orbit x(ω, t) =
ϕ(t− τn−1, θ

τn−1ω, x(τn−1, ω)) on [τn−1, τn] is measurable, as a composition of two
measurable mappings.

Now we set 0 ⩽ ε(ω) ⩽ ε0(ω) =
1
2 min{∆(ω), ε1(ω)}, δ(ω) ⩽ δ(ω, ε) = min{(C+

2)−1δ1(ω,
ε
2C ), ε(ω)

2C }. Based on the special case above, it is easier to analyze the
general situation where hn(θ

tω) ̸≡ 0, xn(t, ω) is in a δ(ω)-neighborhood of Λ(θtω),
{xn(τn−1, ω)} possesses {xni(τni−1, ω)} as a measurable subsequence and k ⩽ ni+1−
ni ⩽ l for all i. We choose yn(ω) ∈ Λ(θτn−1ω) for each ω and n such that
|yn(ω) − xn(τn−1, ω)|α ⩽ δ(ω) and especially yni

(ω) can be chosen to be mea-
surable for each i. Let x̄n(t, ω) = φ(t− τn−1, θ

τn−1ω, yn(ω)) for t ∈ [τn−1, τn]. Then
by Lemma 5.1, there exists a constant C > 1 such that

|x̄n(t, ω)− xn(t, ω)|α ⩽ Cδ(ω) for t ∈ [τn−1, τn], n ∈ Z.

Then

|x̄n+1(τn, ω)− x̄n(τn, ω)|α
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⩽|x̄n+1(τn, ω)−xn+1(τn, ω)|α+|xn+1(τn, ω)−xn(τn, ω)|α+|xn(τn, ω)−x̄n(τn, ω)|α

⩽(C + 2)δ(ω) ⩽ δ1(ω,
ε

2C
).

So {x̄n(t, ω)} is a (ω, δ1(ω,
ε
2C )) pseudo-solution of (2.1) with hn(θ

tω) ≡ 0 and
x̄n(t, ω) ∈ Λ(θtω) for all t ∈ [τn−1, τn], n ∈ Z. This coincides with the situation we
have considered. So by the first part of this proof, there exists a unique measurable
solution x(t, ω) of (2.1) such that

|x(τn−1, ω)− x̄n(τn−1, ω)|α ⩽ ε(ω)

2C
for all n ∈ Z.

Then

|x(τn−1, ω)− xn(τn−1, ω)|α
⩽|x(τn−1, ω)− x̄n(τn−1, ω)|α + |x̄n(τn−1, ω)− xn(τn−1, ω)|α

⩽ε(ω)

2C
+ δ(ω).

Again by Lemma 5.1,

|x(t, ω)− xn(t, ω)|α ⩽ C(
ε(ω)

2C
+ δ(ω)) ⩽ ε(ω).

This means that we have at least one measurable solution which (ω, ε)-shadows
{xn(t, ω)}.

Suppose that x̃(t, ω) is another solution which (ω, ε)-shadows {xn(t, ω)}. Then

|x̃(τn−1, ω)− x̄n(τn−1, ω)|α
⩽|x̃(τn−1, ω)− xn(τn−1, ω)|α + |xn(τn−1, ω)− x̄n(τn−1, ω)|α
⩽ε(ω) + δ(ω) ⩽ ε1(ω).

Since
|x̄n+1(τn, ω)− x̄n(τn, ω)|α ⩽ δ1(ω,

ε

2C
) ⩽ δ1(ω, ε1),

{x̃(τn−1, ω)} should be the unique orbit that (ω, ε1)-shadows the δ1(ω, ε1) pseudo-
orbit {x̄n(τn−1, ω)}. By the uniqueness of such orbit, x̃(τn−1, ω) = x(τn−1, ω), and
this completes the proof.
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