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TRAVELING WAVE SOLUTIONS OF THE
GENERALIZED (2+41)-DIMENSIONAL
KUNDU-MUKHERJEE-NASKAR EQUATION*

Minrong Ren', Yugian Zhou®' and Qian Liu?

Abstract In this paper, we consider two types of traveling wave systems
of the generalized Kundu-Mukherjee-Naskar equation. Firstly, due to the in-
tegrity, we obtain their energy functions. Then, the dynamical system method
is applied to study bifurcation behaviours of the two types of traveling wave
systems to obtain corresponding global phase portraits in different parame-
ter bifurcation sets. According to them, every bounded and unbounded or-
bits can be identified clearly and investigated carefully which correspond to
various traveling wave solutions of the generalized Kundu-Mukherjee-Naskar
equation exactly. Finally, by integrating along these orbits and calculating
some complicated elliptic integral, we obtain all type I and type II traveling
wave solutions of the generalized Kundu-Mukherjee-Naskar equation without
loss.
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1. Introduction

In this paper, we consider the following generalized (2+41)-dimensional Kundu-
Mukherjee-Naskar (GKMN) equation [7]

g + ey +ibq(qq; — ¢7qz) =0, i = V-1, (1.1)

where complex function ¢ = ¢(z,y,t) represents the profile of soliton, ¢* is the
complex conjugation of ¢(z,y,t), , y and t are the spatial and temporal variables
respectively. Real parameters a and b are the dispersion coefficient and nonlinear
coefficient respectively. This equation can be used to describe optical wave propaga-
tion through coherently excited resonant waveguides, especially in the phenomenon
of the bending of light beams [3].
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When the coefficients a = 1 and b = 2, the GKMN equation degenerates to the
classical KMN equation

iq; + Quy + 2iq(qq; — ¢"q2) = 0, (1.2)

which was first proposed by Kundu, Mukherjee and Naskar in 2014 [8-10]. Besides
description of the dynamics of optical soliton propagation in optical fibers, Eq. (1.2)
also can be used extensively to address the problems of oceanic rogue waves, hole
waves and an ion acoustic wave in a magnetized plasma [10,12,14].

Since the KMN equation is completely integrable and possesses the dynamic
characteristics similar to the standard nonlinear Schrédinger equation [10,12], it can
be regarded as an integrable generalization of the well-known nonlinear Schrédinger
equation

Gt + iqze + 2i|q)%q = 0. (1.3)

Uunlike the conventional Kerr type nonlinearity in the Eq. (1.3), the nonlinear terms
of Eq. (1.2) can be considered as the current nonlinearity caused by chirality [1].
Hence, Eq. (1.3) only allows bright (dark) soliton for focusing (defocusing) nonlin-
earity or with anomalous (normal) dispersion, whereas Eq. (1.2) admits both bright
and dark soliton solutions regardless of its positive spatial dispersive term [17].
Traveling wave solutions of the KMN equation have been always focused on by
people. In 2015, Mukherjee showed the connection between Eq. (1.2) and Kadomt-
sev Petviashvili equation and obtained its one-soliton solution, two-soliton solution
and static lump solution by using Hirota bilinear method [12]. In 2017, Wen [20]
pointed out that the solutions, satisfying the focusing nonlinear Schrédinger equa-
tion
Gy + iqee + 2ilg|?q = 0, (1.4)

and the complex modified Korteweg-de Vries equation

@ + Quax + 6]q*qz = 0, (1.5)

must satisfy Eq. (1.2). So, by generalizing the n-fold Darboux transformation of
Egs. (1.4) and (1.5) to the perturbation (n; M )-fold Darboux transformation [20], he
obtained the higher order rogue wave solutions of Eq. (1.2). Recently, as a general-
ization model of Eq. (1.2), the GKMN equation has aroused people’s more extensive
interests and attentions. In 2018, Peng applied ansatz method to obtain the bright
soliton, dark soliton and power series solutions of Eq. (1.1) and constructed the
complexitons through the tanh method [13]. In 2019, Yildirim got bright, dark, sin-
gular, combo bright-dark, combo singular and singular periodic solitons of Eq. (1.1)
by using the modified simple equation method, Riccati function method and so
on [21-25]. In the same year, Ekici explored the plane wave solutions of Eq. (1.1)
via the extended trial function method [3]. Later, Kudryashov used the Jacobi el-
liptic functions [7] to construct the general solution of the Eq. (1.1). With the aid of
extended rational sinh-Gordon equation expansion method [18], Sulaiman obtained
the trigonometric functions solutions of Eq. (1.1). In addition, Jhangeer applied the
direct extended algebraic approach to Eq. (1.1) to derive the complex waves [6]. In
2020, Rizvi [15] got dark, bright, periodic U-shaped and singular solitons through
the generalized Kudryashov method. Subsequently, Kumar [11] discussed singular,
dark, combined dark-singular solitons and other hyperbolic solutions by using the
csch method, extended tanh-coth method and extended rational sinh-cosh method.
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Meanwhile, Talarposhti [19] and Ghanbari [4] derived some new solitary solutions
by using the Exp-function method. More recently, Rezazadeh constructed the an-
alytical solutions of Eq. (1.1) by utilizing the functional variable method [16].

Although various concise and efficient methods have been put forward to obtain
so many profound results about traveling wave solutions of the Eq. (1.1), there
still exist some problems unsolved. Firstly, due to the limitations caused by both
the ansatz equations and the assumption about solutions in these direct methods,
some solutions of Eq. (1.1) could be lost. In addition, we note that unbounded
traveling wave solutions of Eq. (1.1) have not been reported in previous work. So,
in this paper, we will try to apply the bifurcation method of dynamical system [2,
5] to solve these problems. This method allows detailed analysis of phase space
geometry of the traveling wave system of Eq. (1.1). Through exploring various
orbits of traveling wave system of Eq. (1.1), we construct its traveling wave solutions
uniformly, including the bounded traveling wave solutions and unbounded ones.

Our paper is organized as follows: In section 2, we derive two types of travel-
ing wave systems of Eq. (1.1), including a singular traveling wave system. Then,
by studying bifurcation of traveling wave solutions, we try to give global phase
portraits of the two types of traveling wave systems. In section 3, by calculating
some complicated elliptic integrals along various orbits, we construct bounded and
unbounded traveling wave solutions of Eq. (1.1) uniformly.

2. Traveling wave systems and bifurcation analysis

In this section, inspired by previous work [7,22], we firstly derive two types of
traveling wave systems of Eq. (1.1). Then, we study bifurcation of the two traveling
wave systems (2.3) and (2.8) by dynamical system method.

2.1. Two types of traveling wave systems of the GKMN equa-
tion

Firstly, we assume that the type I traveling wave solution has the form

q(z,y,t) = p(§)exp(Y(z,y,1)i), (2.1)

where real function p(§) is the portion of the amplitude with £ = « + my — ¢t and

real function ¥(z,y,t) = kx + wy — rt + 0 is the phase component. Parameters m,

¢, r and @ are reals and represent the inverse width of the soliton in the direction

y, wave velocity, wave number and phase constant respectively. Real parameters s

and w denote the frequencies along the x and y directions respectively.
Substituting the solution (2.1) into Eq. (1.1), we obtain

real part: amp  + (r — akw)p + 2kbp® = 0, (2.2)

imaginary part: (—c¢ + amk + aw)p/ =0,
where ' denotes d/d¢. From the imaginary part in (2.2), we have

c=amk + aw.
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It means that system (2.2) has the equivalent form
(2.3)

with constraint ¢ = amk + aw. Obviously, system (2.3) is a Hamiltonian system
with the energy function

1 akw —71 o Kb 4

H = 9% — ) 2.4
(P, y) 5Y Sy oy (2.4)

Then, we consider the type II traveling wave solution

q(z,y,t) = p(§)exp((p(§) — pt)i), &= x+my— ct, (2.5)

where ¢(§) is the amplitude function, ¢(&) is the phase function and real parameters
m, ¢ and p represent the inverse width of the soliton in the direction y, wave velocity
and wave frequency respectively. Here, we suppose that the amplitude function
@(&) # 0, otherwise the solution ¢(x,y,t) of Eq. (1.1) degenerates to the trivial
solution. Substituting (2.5) into (1.1) and separating the real and imaginary parts,
we have

real part: am@ + noyp + cd — am¢(¢’)2 + 2630 =0,

’ o 7 (26)
imaginary part: —c¢ + 2am¢o ¢ +amop =0,
where ' denotes d/d¢. From the second equation in (2.6), we can solve
/ e c
=t (2.7)

am@?  2am
where e is the integral constant. Plugging (2.7) into the real part in (2.6), we obtain

’

¢ =y,
r a1¢6—|—0¢2¢4+a3 (28)
y - ¢3 b
b 2 4+ 8b 2
where aq :—ﬁ, QQZ—L—gaDdO@: ﬁ £ 0. If ag = 0,

am
system (2.8) degenerates to system (2.3). System (2.8) is a singular traveling wave
system. With the transformation d¢ = ¢3d(, it can be converted to the associated
regular system

’ — 3
¢, ?°y, (2.9)
y = a1’ + azg* + as,
where ’ stands for d/d¢, which has the energy function
1 a1 (6%) Q3 1
H =y — —¢t— =+ == 2.1
() = 5ut = ot = For e P (2.10)

When ¢ # 0, systems (2.8) has the same vector field as system (2.9). So, the
function (2.10) is also the energy function of system (2.8).
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2.2. Bifurcation analysis

Firstly, we study the distribution and properties of equilibria of systems (2.3)
and (2.9).

Theorem 2.1. When kb(akw—r)>0, system (2.3) has three equilibria P(—/ %54 0),

b
P»(0,0) and P3(y/ %525+, 0). If:—m < 0(>0), P, and P3 are saddles(centers), while
P, is a center(saddle). When kb(akw — 1) < 0, system (2.3) has only one simple

b
equilibrium P5(0,0). If AL 0(> 0), Py is a saddle(center). When akw —r =0,
am

b
system (2.3) has a unique degenerate equilibrium Py(0,0). If :—m <0(>0), Pr is

still a saddle(center).

Proof. When kb(akw — r) # 0, by the theory of dynamical system and the prop-
erties of Hamiltonian system [2,5,26], it is easy to verify the corresponding results
above.

Especially, when akw —r = 0, we see that system (2.3) has a unique equilibrium
P5(0,0) with the degenerate Jacobian matrix

0 1
M(Py) =
0 0

In this case, system (2.3) has the associated normal form

P =y,
, b .
V' = L+ ) + byl + fo(p)] + 12 o) = — o

- D
am

2kb
where k = 3, a, = —i, b, =0, fi(p) =0, fa(p) = 0 and f3(p,y) = 0. From
am

the fact that k is an odd number, the degenerate equilibrium P, is a saddle when
ar, > 0, whereas P; is a center when aj; < 0 and b,, = 0 according to the qualitative
theory of differential equation [26, Theorem 7.2, Chapter 2]. O

Furthermore, we note that when xkb(akw — r) > 0, the energy of three equilibria
has the following relationship

h(P2) =0,
(akw —1)?
h(P))=h(P3) = —————
(P1) (Ps) Sabkm
which means that the energy of saddles P; and Pj is always equivalent. So, according

to the properities of Hamilton system [2], we have the following results:

b
Case 1. When xb(akw —r) > 0 and 2 < 0, there exist two heteroclinic orbits I'°

am
and I'y connecting the saddles P, and P;. Center P is surrounded by a family of
periodic orbits

y(h) = {H(p,y) = h,h € (0, _%)}.
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(akw —1)?2

v(h) tends to P, as h—0, and tends to I'Y and 'y as h—— Except

8abk
the periodic orbit and the heteroclinic orbits, other orbits of system (2.3) are un-
bounded. Please see Fig. 1(a).
b
Case 2. When sb(akw —r) > 0 and :—m > 0, all orbits are bounded. There exist

two homoclinic orbits T; and T, connecting the saddle P,. Centers P; and P3 are
surrounded by two families of periodic orbits

(W) = (Hp,) = hohe (~ 22220 gy,
1 () = (Hp) = b e (— “2 217 g)y
(arw —r)*

v, (h) and v, (h) tend to P; and Pj respectively as h—— , and tend to

8abkm
T, and T respectively as h—0 shown in Fig. 1(a).

Case 3. When xb(akw —r) < 0 or akw —r = 0, system (2.3) has only one

b
equilibrium. If :—m < 0(> 0), all orbits of system (2.3) are unbounded(bounded)
shown in Figs. 2 and 3.

Figure 1. Phase portraits of system (2.3) for kb(akw — ) > 0.

4o

2703’

pairs of equilibria Py o(£u1,0) and Psa(tus,0), where Pi o are centers and Psa
4o

are saddles. When oy > 0, ag < 0 and ag = a2 system (2.9) has a pair of
@

Theorem 2.2. When a; >0, as <0 and 0 < ag < —

system (2.9) has two

4o
2704% ’
system (2.9) has no equilibrium. When oy < 0, system (2.9) has a pair of centers
P7)S(iU4, 0)

cusps ]35}6(j:u3,0). When either a; > 0, as > 0 or g > 0, ag <0, ag > —



Traveling wave solutions of ... 3089

¥ /
1 4
B Y
' ‘Y' ‘ Y,

-l‘.5 1 0.5 0.5 |,‘5
P
5 14 4
\§
2173
b

Kb
= 4. (b) = 27
am am am

T T
J 0.02 0.p4 0.0
P

arw — T

= —4.

Figure 2. Phase portraits of system (2.3) for kb(akw — r) < 0.

kb 1
(b) — = =, akw —r = 0.
am 2

Figure 3. Phase portraits of system (2.3) for akw — r = 0.

Proof. Similar to the proof of Theorem 2.1, we only give the detail proof for
4o
_Ta%’
a direct computation shows that system (2.9) has a pair of degenerate equilibria

ﬁg),g(ius, 0) with the degenerate Jacobian matrix

degenerate equilibria for simplicity. When a; > 0, as < 0 and az =

~ 0 :I:ug
M(Psg) =

)

0 0

In order to judge the type of the equilibrium P; (us3,0), we make the homeomor-
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phic transformation

1

u:gz)fu;z,,v:er$(3u§ay+3u;§a2y+a3y), (2.11)
3

which transforms system (2.9) to the normal form
u =,
v = apuF[1 + g1(u)] + buuv[1 + go(u)] + v2gs(u, v),

3u?2 4o M
where / stands for d/ds and ds = u3dC, k = 2, M = 227 2U% - o fell
a1 us

1
g1(u) = W((Su%M + 16usM)u + (12u3 + 24us + 25ui M )u® + (42u3 + 24uj +

19u3 M )u® + (54uf + 9u3 + TusM)u' + (33u3 + M)u® + uzu® +u'), b, = 0 and
3uf + 6uzu + 3u?

u3 + 3uiu + 3uzu? + ud’

and b,, = 0, we come to the conclusion that equilibrium ]55(U3, 0) is a cusp according

to the qualitative theory of differential equation [26, Theorem 7.3, Chapter 2].
Similarly, applying another homeomorphic transformation

g3(u,v) = From the fact that k¥ = 2 is an even number

1
u=¢+uz,v=y— $(3u§ay—3u3a2y—|—a3y), (2.12)
3
to system (2.9), one can check equilibrium Pg(—us, 0) is also a cusp. O
Based on the properties of the system (2.9), the bifurcation results of sys-
tem (2.8) are given as follows.

3
4o

Case I. When a7 > 0, as < 0 and 0 < a3z < EETvE there exist two homoclinic
ay

orbits Hg and Ha connecting saddles P3 and Py respectively. Centers P; and P

are surrounded by two families of periodic orbits, respectively

v (h) = {H(¢,y) = h,h € (h(u1,0), h(uz,0))},
v, (h) = {H(¢,y) = hyh € (h(—u1,0), h(—us,0))}.

7: (h) and 7; (h) respectively tend to ﬁl,g(i’ul, 0) as h—h(+uq,0), and tend to HS
and TI, as h—h(+uz,0). All orbits are unbounded except for the periodic orbits
and the homoclinic orbits shown in Fig. 4(a).

4o3
270[% ’
unbounded. In the positive ¢-axis, the orbit Q! is different from orbit ;. More
precisely, the w-limit set of Q! and the o-limit set of Q; correspond to the same
equilibrium Ps(ug, 0) shown in Fig. 4(b).

Case II. When a7 > 0, s < 0 and ag = —

all orbits of system (2.8) are

3
4oy

Case III. When a3 > 0, ag > 0or a3 > 0, as < 0 and ag > 3ol
1

there only
exist unbounded orbits of system (2.8) shown in Fig. 4(c).

Case IV. When o3 < 0, there exist two families of periodic orbits shown in Fig.

4(d).
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Figure 4. Phase portraits of system (2.8).

3. Exact solutions of systems (2.3) and (2.8)

In this section, we seek the explicit expressions of bounded and unbounded solutions
of systems (2.3) and (2.8).

3.1. Bounded solutions of system (2.3)

According to the bifurcation results in Theorem 2.1, to seek bounded solutions of
system (2.3), there are three cases need to be discussed.

b
1. When sb(akw — r) > 0 and = < 0, we consider two subcases as follows.

am
(1) Consider the periodic orbits shown in Fig. 1(a), whose energy is lower than
energy of the saddle Py, but higher than energy of center P,. Any one of them can
be expressed by

kb

y ==+~ (0= p)®—p2)ps = P)ps — ),
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where p1, p2, p3 and py satisfy the constraint condition p; < —/#55" < py <p <

aAarRW—T

ps < 5>~ < p4. Assuming that the period is 27 and choosing initial value

p(0) = pa, we have

P/ am dp ¢
- = d7 5
/102 kb /(p—p1)(p — p2)(ps — ) (s — p) /o §0sE<To
b2 am dp 0
- = [ e - ,
/ N R RO CEl ) fp e ~To<exo

which can be rewritten as

P am dp
I —l¢l, —T, Tp.
/pz kb \/(p—p1)(p — p2)(ps — p)(ps — p) €1 b

By calculating the elliptic integral

P

dp :g.snl(\/(pg—po(p—m) B
po V(0 —p1) (P —D2)(p3 — p) (P2 — p) (p3 —p2)(p—p1)"

2 o — _
where g = k2 = (ps = p2) (ps p1)7 we get the first type of

V(ps = p1)(ps —p2)’ (P4 — p2)(p3 — p1)
periodic solution of system (2.3)

(pz—Pl)(p:s—P;) Ty <t<Th.
(p3 —p1) — (p3 —m)srﬂ“/%@

(2) Consider the heteroclinic orbit T'° shown in Fig. 1(a), whose energy is equal to
energy of the saddle P;. It can be expressed by

Py, (&) =p1 +

)

— o2 (e — )2
y (P = ps)*(vs — )%,
. . - akw — T
where ps and pg satisfy the constraint condition — o ps < p < pg =
K
%{;r. Choosing initial value p(0) = bs ;rpﬁ = 0, we have
K

3
kb (p —ps)(ps — p) /o < o<

Noting that

p d 2 2p —
/ p _ tanh—1 22~ (s +ps).
o (»—ps5)(ps —p) P6 — D5 P6 — Ps

we obtain the expression of kink wave solution of system (2.3)

Db, (g) — De ;pf) tanh(pG

— D5
2

b
—Lf), — 00 < & < +o0.
am
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Applying similar calculation to another heteroclinic orbit I'g shown in Fig. 1(a), we
can get the corresponding kink wave solution of system (2.3) as follows

_ D6 — D5 ps—ps | kb -
Py, (&) = —3 tanh(i2 amg)’ 0 < € < 4o0.

Kb
2. When sb(akw —r) > 0 and — > 0, we need to consider three subcases in
am

this case.

(1) Consider the family of periodic orbits inside the homoclinic orbit Yo shown in
Fig. 1(b), whose energy is lower than energy of the saddle P,, but higher than
energy of center P;. Any one of them can be expressed by

Kb

y =4\ /(0= p1)(ps = )(po — P) (P10 — ),

where pr7, ps, pg and py satisfy the constraint condition p; < p < ps < 0 < pg <

ARW—T

2o < pio- Assuming that the period is 277, similar to the calculation of

solution py, (§), we get the second type of periodic solution of system (2.3)

(P10 — ps) (P10 — P7)

ng(\/%w&’

pbg(g):p107 *T1<§<T1.

(p10 — ps) + (ps — pr)s

Similarly, we can give the periodic solutions of system (2.3) corresponding to the
family of periodic orbits inside the homoclinic orbit T; shown in Fig. 1(b)

(P9 — ps) (P10 — ps)
o o) apr) o0
P1o —pg)an(\/%WQ

o, (§) =ps+ -1 <§<Th,

(plo - ps) - (

where p7 < —/*55" <pg <0 < pg < p < pio-

(2) Consider the homoclinic orbits shown in Fig. 1(b), whose energy is equal to
energy of the saddle P,. The homoclinic orbit To can be expressed by

kb
_ 2 _
y =4\ —/(p+p)p*(pn —p),

where p11 and —py; satisfy the constraint condition —p1; < p <0 </ *5F < p11.
Choosing initial value p(0) = —p11, we have
P am d &
R L — [as ¢
“pu V EO /(o +pi)p2(pii—p) o

,/’p“ om dp /Odg £<0
p &b \/lp+p)p2(pn —p) Je 7

which can be rewritten as

Jae dp ~l¢
“pu Vb /(0 + p11)p2(p11 — p) '
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Noting that
/p dp - In (o VPuiop? W )
—p11 p\/(p+p11)(p11 —p) —p11 ’

we obtain the expression of solitary wave solution of system (2.3)

—2p11exp(y/ 22p1q [ € )
pp, (§) = am , —o00< &<+

exp(2y/2Lpyy | €])+1

Similarly, we can get another solitary wave solution of system (2.3) corresponding
to the homoclinic orbit T

2p11exp( %pn | £1)
pb/(g): ; 7OO<€<+OO,

4
exp(2y/22pyy [ €]) +1

2kb
(3) Consider the family of large amplitude periodic orbits shown in Fig. 1(b), whose
energy is higher than energy of the saddle P». Any one of them can be expressed

where —p1; < —y/ 2455 <0< p < pn1.

by
Kb akw — 1
=44/ — - 24 ply — ——
y=%/_ \/(p+p12)(p12 p)(p* + piy o)
. . . 5 akw — T
where p12 and —p;o satisfy the constraint condition pijs > 0, piy — —a >0
K
and —p12 < p < p12. Assuming that the period is 275 and choosing initial value
_ —Dpi2t+pi2
p(0) = —5 = 0, we have
d 13
/,/ p :/dg, 0<&<T,
akw — T 0
\/p+P12 )(p12 — p)(P? + piy — T)
d 0
,/ P :/dg, Ty < £<0,
kb o | o OQKW—T ¢
(p + p12) (P12 — p)(p? + iy — T)

which can be rewritten as

d
/,/ P —le], —Ty<&é<T
K:b\/ 2 arw — T

(p + p12) (P12 — p)(P? + s — T)

Noting that
dp

/0 \/(p + p12) (P12 — p) (02 + 2y — $)

R 2 p2(2rbp3, —2anw +7) ).
pia(Kkbp? + Kbpiy — akw + 1)
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Kb 9 /ibp%Q

where g = , we obtain the third type

2kbp2y — akw + 1’ 2kbpl, — akw + T
of periodic solution of system (2.3)

(kbp3y — akw + 1)piasn?( wa

Do (§) = e , =T <E< T,

2kbp2, —akw—+r
2kbp3, — akw + r — Kbp?ysn? (1) T 6

b
3. When sb(akw — 1) < 0 and LLAEN 0, one can check that the periodic orbits

am
shown in Figs. 2(b) and 3(b) have the same form as solution py, (£). We ignore
them here for simplicity.

3.2. Unbounded solutions of system (2.3)

In this subsection, we need to consider two cases to get unbounded solutions of
system (2.3).

b
1. When kb(akw —r) > 0 and 2 < 0, we have five subcases to discuss.
am

(1) Consider the first type of unbounded orbits, for example I'* and I'y, shown in
Fig. 1(a), whose energy hg is higher than energy of saddles P; and Ps;. They can
be expressed respectively by

kb akw —r
y=+\/——p' + ———p° + 2hy,
am am

where 0 < p < +00. For the sake of simplicity, we take I'; for example to calculate
its corresponding solution. Choosing initial value p(0) = +o00, we have

P d §
—/ Y P :/ ¢, €>0.
400 Kb 4 T —akw 5 2amhy 0
P+ b p -

kb

Noting that

Jo0 dp . p2 _ _2a:£h0
=g-on (——F———k),
p \/p4 i (mwp2 _ 2ambhg P2+ _2azzho
kb kb
1 _ 2+/—2amxrbhg + akw — T

where g = ———, k2

24/ _ 2amhg 44/ —2am/€bh0

Kb
unbounded solution of system (2.3)

, we obtain the first type of

4 2amh 2
puo(g):\/_ bo' _1+ ) 0<€<§0a
K 1— CTL(2 4/ _ 2rbhg g)

am

z
where £y =24/ — am / 40 .
2K)bh0 0 \/1 2y —2amkbhotarw—r . SiIl2 9

4+/—2amrbhg
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It is not difficult to check that the corresponding unbounded solution of I'! has the
same form as py, ().

(2) Consider the second type of unbounded orbits I'?, I'y, I'* and I's shown in Fig.
1(a), whose energy is equal to energy of saddles P; and Ps;. The orbits I'? and I's
can be expressed respectively by

kb akw — T akw — T
= /= _ T )2 )2
y am\/(p Vo T o)

aKw — T
where 0 < o < p < 4oo. Similar to the discussion above, we only need to
K

discuss the orbit I'y. Choosing initial value p(0) = +o00, we have

P am dp B ¢
_Aw\/_%(p—W)(p+M)_/odf7 £>0.

2Kkb

Noting that

[ dp F | <p+ )
_ ] |
v ) VR T e

we obtain the second type of unbounded solution of system (2.3)

arkw — T 2

uy - -1 s 0.
p (E) 2kb ( + exp( 2(r—akw) 5) N 1> 5 ~

am

One can check that the corresponding unbounded solution of I'? has the same form
as Py, (§). If choosing initial value p(0) = —oo and applying similar calculation to
the orbit '3, we can get the corresponding unbounded solution of system (2.3)

akw — T 2
pull (5) == 2%b ’ <1 + 2(r—anw) >a £ > 07
exp(\/ = 28 —1
[akw — T o .
where —oco < p < — o < 0. And it is not difficult to conclude that the
K

corresponding unbounded solution of the orbit I'3 has the same form as Pu,s &).
(3) Consider the third type of unbounded orbits, for example I'j, shown in Fig.
1(a), whose energy is lower than energy of the saddle P;, but higher than energy of
center P,. It can be expressed by

Kb
=4 —7\/ — ’ — ’ — ’ — ’ ),
y o\ (2= P) (0 =y ) (P = p3) (P —py)
. . - arRw — T
where py/, py, Py and p,s satisfy the constraint condition p;» < — b
K

lakw —T
Py <0 < py < “onh < py < p < +oo. Similarly, we only need to consider
K
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the lower branch of I'f. Choosing initial value p(0) = +oo, we have

d 13
/ P - / de, €>0.
oo Hb Vio—p)p—py)p—py)o—py) Jo
Noting that

+oo dp

v V=0 )p—py)P—Dy)0—Dy)

_1,Dy
=g-sn 1(?7117)7

1 2
where g = k2 = pg , we get the third type of unbounded solution of system (2.3)
by Py
_ by
Puy(§) = ———F——, 0<E<&,

Sn(p4’ _%f)

where & = ,/ am /

If choosing initial value p(0) = —oo and adopting the similar calculation to the
upper branch of unbounded orbit I',, we can get the corresponding unbounded
solution of system (2.3)

pu, ()= 0<e<gy,
sn(py |/~ 2€)

28

where —co0 < p < ppr < —\/*F5E < py <0 < py < (/[T < py, &=

2kb
4 [am /g f
’ b 2/ ’
P " 0 1— % sin20

2.
1/

(4) Consider the fourth type of unbounded orbits, for example F;‘ and I'y’, shown

in Fig. 1(a), whose energy is equal to energy of the center P,. The unbounded orbit

F; can be expressed by

kb

y=+ —%\/(p+p5')p2(p—p5/)7

arw—T

where p,/ satisfies the constraint condition 0 < 5 < py < p < +oc. Choosing

initial value p(0) = +o0, we have

Lm\ﬁ\/pﬂ% *(p — p5)/o£d€’ $20

/+oo dp 1 . Dy
= arcsin =,
v 2Vt py)p—py) Py p

we obtain the fourth type of unbounded solution of system (2.3)

Noting that

Pus (§) = psr csc(py ——é) 0 <& <&,
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2
where &, = T
Dy kb
If choosing initial value p(0) = —oo, we can get another unbounded solution of

system (2.3) corresponding to the upper branch of unbounded orbit I'y

Puy (§) = py cse(—py _75) 0<&<&y,

2 am
where —00 < p < py < — /L= <0, &y = — Toj_am
Dy kb

(5) Consider the fifth type of unbounded orbit, for example T'¢", shown in Fig. 1(a),
whose energy is lower than energy of the center P,. It can be expressed by

kb aKkw — T
= 4y Mo — e Y (02 + 02, — D27
Yy \/am\/(p+p6)(p pe ) (P + g Pl
arw —r

where py satisfies the constraint condition 0 < 5
K

< pg < p < Hoo.

Choosing initial value p(0) = +o0, we have

/m\/j\/ ap e :/Ogdg, £>0.

(0 +pg )P~ P ) (P* + Py — — )

Noting that

(P +2g) (P~ 1) (P* + Py — — )

g sn( 2/<ebp6, —akw+T k)
=9 Kkbp? + nbpz, —akw+r "

\/ 9 arw — 1T

kb 5 nbpg, —akw + 1

where g = , we obtain the fifth type of

2/-£bp§/ —akw+7r QIibpg/ —akw+T
unbounded solution of system (2.3)

Kbp?, — akw + 1 2kbp?, — akw + 7
Pus(§) = | ——F + e , 0<E<g,
rb 2kbp*, —akw—+r
kbsn?(\) ————-—f)
4 z do
where &3 = o am / =
KOpy, — akw +r Jo Kbp?, —aKw+r - sin20

Dby, —anatr
If choosing initial value p(0) = —oo and applying similar calculation to the upper
branch of unbounded orbit I'y, it is obvious to conclude that the corresponding
unbounded solution has the same form as unbounded solution p,, (£).

Kb
2. When sb(akw — r) < 0 and — < 0, we need to consider three subcases in
am

this case.
(1) Consider the first type of unbounded orbits, for example Y3, T3, Y1 and Y3,
shown in Figs. 2(a) and 3(a), whose energy h is higher than energy of the saddle
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P;. One can check that the corresponding unbounded solution of T3 has the same
form as solution p,,(§). We ignore it here for simplicity.

In particular, when xb(akw —r) = 0, the unbounded orbits Y'! and Y; shown in
Fig. 3(a) can be expressed respectively by

| Kb
y:j: _ip4+2h,0/7
am

where 0 < p < +00. Choosing initial value p(0) = 400, we have
P d 3
_/ /_@—P:/ e, € 0.
VT \/W 0
pt— 0
kb

Noting that

2
pe—1
- k),

Feo d 1,/ b
/ / . = 4[5 ) Cn_l( > Kk
» ot 2amhy 2 2amhyy p?+1
Kb

1
where k? = g7 we obtain the sixth type of unbounded solution of system (2.3)

2
s =4|/———1, 0 ’y
p 5 (5) \/1—077/(8}10/5) <§<£4
1 2 do
h ;) = — ——————— W
whnere §4 2h0/ A 1 _ 1 _Sin29
2

(2) Consider the second type of unbounded orbits shown in Figs. 2(a) and 3(a),
whose energy is equal to energy of the saddle P,. The unbounded orbits YT* and

T, can be expressed by
kb 4, T akw
y==E\——\/p"+ ———p%
am Kb

where 0 < p < +00. Choosing initial value p(0) = 400, we have

P d 3
—/ - P :/ g, €>0.
Lo Kb | 5 T —akw 0
Py\/P"F+ ———
kb

Noting that

/+oo dp [ kb | (\/p2 + T*:bnw + \/T7:wa )
= - In 5

r — akw T — akw p
b P/ P?+ ———
\ Kb

we obtain the seventh type of unbounded solution of system (2.3)

- exp(y/ U )
Pua(§) =2/ L £>0.
anw—ré-)_l

exp(2 -
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Similar calculation can be applied to the unbounded orbit T shown in Fig. 2(a).
If choosing p(0) = —oo and —oo < p < 0, we obtain another unbounded solution of
system (2.3) as follows

[r = exp(y/ “5a—"8)
Pu, (g) =2 : IQC;I%J ) am.z—rg)’ £>0.

1 —exp(2

In particular, when xb(akw —r) = 0, the unbounded orbits Y2 and Yz shown in
Fig. 3(a) can be expressed respectively by

kb
y=|- 7,
am

where 0 < p < +o0o. By a direct calculation, we obtain the corresponding un-
bounded solution of system (2.3)

Pl = [~ >0

If choosing p(0) = —oo and adopting the similar calculation to the unbounded orbit
Y3 shown in Fig. 3(a), we have

pu7/(§):_ _@1 §>05

kb &’
where —oc0 < p < 0.
(3) Consider the third type of unbounded orbits, for example Y¢', Ty, Y, and Y,
shown in Figs. 2(a) and 3(a), whose energy is lower than energy of the saddle Ps.
It is not difficult to conclude that the corresponding unbounded solutions have the
same form as solution p,, (§). Due to the the tedious expressions of the solutions,
we ignore them here for simplicity.

3.3. Bounded solutions of system (2.8)

1 1
From the energy function H(¢,y) = §y2 — %¢4 — %(;52 + %? = h and the first
equation of system (2.8), we can obtain the following expression

¢ ¢do
60 V50 + a2t + 2h¢? — a3

f =
(3.1)

[ =
vo 2¢/ S0P + agh? + 20 — a3

where ¢ > 0 and ¢ = ¢?. Due to the symmetry of system (2.8), it is easy to check
that the bounded solutions of system (2.8) where ¢ < 0 have the same expressions
of bounded solutions of system (2.8) where ¢ > 0 except for the difference of signs.
4o

77a2 we have two subcases in this
@
1

I. When oy > 0, as < 0and 0 < ag < —

case.
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(i) Consider the periodic orbits shown in Fig. 4(a), whose energy is lower than
energy of the saddle 153, but higher than energy of center ]51. Assuming that 1, ro
and r3 satisfy the constraint condition 0 < r1 <9 < 79 < rs, the period is 27}, and
choosing 19 = ¥(0) = r1, we have

F\/(w 1,.1)(7,.2 w) (7«3
/’LL) (lw
r1 V Qal\/(w 1)(72 ’lp)(13 1/))

which can be rewritten as

§
w):/0 de, 0<€<Ty,

0
—/cﬁ —Ty <£<0,
13

/w v =[], —Ty <&<T,
n V20 =) =) =) T ’
Noting that

P _

& =g-sn Y v rl,k),

- \/(¢—T1)(T2—¢)(7’3—¢) r2—n

2 9 T2—T1 L .
where ¢ = ——, k° = , we get the first type of periodic solution of

\/7“3—7"17 r3 —T1

system (2.8)

¢b1<§>=\/m+<r2—n>sn2< als=nley 1y <<y,

(ii) Consider the homoclinic orbit I shown in Fig. 4(a), whose energy is equal to
energy of the saddle P3. Assuming that r4 and 75 satisfy the constraint condition
0 <14 < <15 and choosing 1y = ¥(0) = r4, we have

P dw 13
= [ ag ¢>o,
/. NN T CET)E RS

T4 d'l/} 0
- da 07
/w VS0P /g $ e

which can be rewritten as

[
ra V201(rs — V)V — 1y

=[], —o00<§< too.

Noting that

/1" dy 1 Vs —ra— V=14
T4 (’1"5 -

= — 1
VD —Ta s -1 st O 11

we obtain the expression of solitary wave solution of system (2.8)

9,(€) = \/ 4 (s = )1 = exp(y/20(rs —ra)6))?
2 (1+exp(m§))2 ’

— 00 < £ < +00.



3102 M. Ren, Y. Zhou & Q. Liu

II. When a3 < 0, there only exist two families of periodic orbits shown in Fig.
4(d). Assuming that r¢ and 77 satisfy the constraint conditions 0 < r¢ < ¥ < 77,

2
re + 17 + 222 0, the period is 2T}, and choosing ¥y = ¥(0) = r¢, we have
a1

(U di 3
/ :/ de, 0<€<Ty,
o 7201\ [0 — o) rr — )@ + o tro+ 22) o

a1

_/TG dy :/Odg, Ty <€<0,
" \/TOQ\/(T/)—%)(T7_7/))(¢+T6+T7+%) ¢

which can be rewritten as

y d
/ i — =[¢], ~Ty <E<Ty.
ro V/=2ary /(W = 6)(r7 — 0)(¥ + 1 + 77 + 222)

Noting that

X "
76 \/(1/) —716)(rr — ) (Y + 76 + 77 + 20%“)

(2r7 + 16 + %2) (¢ — 16)

-1
=g -sn 7k )
( (r7 —r6) (¢ + 716 + 77 + 222) )
2 9 T —7Tg .
where g = , k* = ———————— we obtain the second type of
2 2 20(2
2r7 + g + 222 TTTe T oy

periodic solution of system (2.8)

(20475 + arrr + 200) (7 — rg)sn? (]~ 2rriegratle)

(65) (7"7 — T6)8n2(\/7—2alr7+04217‘6+20‘2 f) — (20(17"7 =+ a1Te + 20[2)

¢b3 (5) = |76+

=Ty << Ty,

3.4. Unbounded solutions of system (2.8)

In this subsection, to seek the unbounded solutions of system (2.8) where ¢» > 0
and ¢ = /1) > 0, we need to discuss three cases. If applying similar calculation to
the unbounded orbits of system (2.8) where ¢ < 0, one can check the corresponding
unbounded solutions have the same expressions as unbounded solutions where ¢ > 0

except for the difference of signs.
403

TPk we have five subcases in this
o
1

I. When a7 > 0, ap < 0and 0 < a3 < —

case.
(i) Consider the first type of unbounded orbits, for example II;, shown in Fig. 4(a),
whose energy is higher than energy of the saddle P3. We consider to discuss the
lower branch of orbit II; for simplicity. Assuming that r; satisfies the constraint
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condition 0 < 7/ < ¢ < 400, hy € (h(ﬁg),+0®) and choosing ¥y = ¥(0) = 400,
we have

4 3
_/ = =/ g, ¢>0.
oo /oy /(0 =) + (222 gy + 2] o

a1

Noting that

oo dip W —rpy—A
/ =g-en (———, k),
Jw-r

)2+ (2a2+r1)¢+rl Jrg?] Yo+ 4
9 20[17"?/ +(011+2042)’I"1/ +4h, 1 o
where A° = L= —— =
a; VA 2a17%, + (a1 +2a9)ry +4hy
\/8a%rf/ +4daq (aq + 2a2)ry + 16a1hy — (2c2 + 3ayryr)
and k? = , we get the first

\/32a§r§, + 1601 (a1 + ao)ry + 6darhy
type of unbounded solution of system (2.8)

4 2a1?”f/-i-<a1+2a2)7"1/+4h1
2

@1

4 20(17’2,—0—(061+2042)7‘ 1+4hq
gbul (5): ry = \/ : aq . +

4 2a1T2/+(a1+2042)T1/+4h1

1—cen(v/2aq 1 o

where 0 < & <, and

4

4 20417’2, +(a1+20¢2)r1/ +4hq
20&1 L

50// =

do

/5
0 \/ \/Sa r2, +daq a1+2a2)7‘ /1 +16a1h1— (2a2+3a17‘1/)
1-—

.sin% 0

\/32a 7"1 s +160 (o1 +az)r r +64arhy

Similar calculation can be applied to the upper branch of the orbit II;. And one
can check the corresponding solution has the same form as solution ¢,, (§).

(ii) Consider the second type of unbounded orbit II, shown in Fig. 4(a), whose
energy is equal to energy of the saddle Py. Similar to the discussion above, we only
need to discuss the lower branch of orbit II,. Assuming that ry and ry satisfy the
constraint condition 0 < ry < 7y < % < 400 and choosing ¥y = ¥(0) = +oo, we

have
P dip 13
= d 0.
[Foo ,720&1\/ —7‘2 —7’3/)2 /0 fa §>

Noting that

/+00 dw 1 \/_77«2 _ \/ﬁ
P

N e N Vs RN
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we get the second type of unbounded solution of system (2.8)

Pu, (§) = \/7‘2/ + (7“3/ — T2’)(1 + exp( 2041(7‘3/ _ T2/)§))2’ -

(1 —exp(y/2a1(ry —19)))?

(iii) Consider the third type of unbounded orbits, for example unbounded orbit II3,

shown in Fig. 4(a), whose energy is higher than energy of the center Py, but lower
than energy of saddle P Assuming that r,/, ry and ry satisfy the constraint
condition 0 < ry <71y <71y < 1 < +00 and choosing 1y = 1(0) = +o0, it can be
expressed by

P dl/) £
— [ d, ¢>o0.
/mrzad T 1) | e e

Noting that

+
0 dw :g-sn_l( 7“6/ —T‘4/ k)
v W=y )@ —r5) (Y —ry) Y —ry
2 ’ — ’
where g = , k% = 's' — T4 , we get the third type of unbounded solution
’["6/ — ’F4/ 7"6/ — ’["4/

of system (2.8)

7’6/ — 7"4/

¢u3(§): T4'+ o (7’ — ) ) O<£<£1”7
sn2(y | ==t 62 £2¢)
where 51” B \/ /—7“4 / Te! Ty i 2 '
r, = -sin” 0

(iv) Consider the fourth type of unbounded orbits, for example II4, shown in Fig.
4(a), whose energy is equal to energy of the center P, Assuming that r» and rg
satisfy the constraint condition 0 < r» < rg < 19 < 400 and choosing ¥y = 1(0) =
400, we have

P dip 13
= dg, 0.
[Q—oo \/2061\/ —T7 w—rg’) /0 f §>

Noting that

oo d 1 — Ty
/ id = (m — 2arctan u),
¥ Y—rp )Y —ry g =Ty Ty —T7

we obtain the fourth type of unbounded solution of system (2.8)

%(&):%w(rgf—rm-coﬁ( Al “)e) o <e <y,

2
where { = | ———— - 7.
ai(rg —ry)



Traveling wave solutions of ... 3105

(v) Consider the fifth type of unbounded orbits, for example IT5, shown in Fig. 4(a),
whose energy is lower than energy of the center P. It is not difficult to obtain the
fifth type of unbounded solution as follows

4 20&17“2,—0-(0414-2042)1“ 1+ho
¢us (&) = |Ty — \/ 2 ai > +

&1

4 Zalrg/H&ﬁ?Dﬁz)Tg/th
2

4 2alr2,+(a1+2a2)r9/+4h2

1-cen(v2a7 9 o

where 0 < 7y <1 < +00, hg € (0,h(P2)), 0 < € < £y and

4
53// =
4 2a1r2,+(o¢1+20¢2)7‘9/+4h2
2041 2
Qg
5 do
(] \/Sa o +don (1 +2a2)rys +16a1ho —(2a2+3017y/) . Sin2 0
320272, +16a1 (a1 +az)r s +64a1 hs
1 9 9
4o . -
II. When oy > 0, as < 0 and ag = EETvE we consider two subcases in this
«
1

case.
(i) Consider the first type of unbounded orbits Q! and ; shown in Fig. 4(b), whose

energy is equal to energy of the cusp ﬁg,. Choosing ¥y = ¥(0) = 400, we have

» di
me\/wﬁ‘” v+ 322) /dg’ 0

Noting that

+o00
/w 2a2 \/1/1"’ 203 \/1/)+ 2a;

3041 3ay 3o

we get the sixth type of unbounded solution of system (2.8)

20[2 2

(bua(g): _E+T§27 §>0

(ii) Consider other unbounded orbits, for example 25 and €23, shown in Fig. 4(b),
they can be expressed uniformly. Assuming that 7, satisfies the constraint con-

dition 0 < 7y < ¥ < +o00, hs # h(ﬁ5) and choosing ¥y = ¥(0) = +oo, we
obtain

4/ 2017? Hoar2az)r, s+4hs
Pur (€)= ""10’_\/ B— - T

4 2a1r2 ,Ha+2ag)r  ,+4hg
2 10 10

@1

4 2a17‘2 /+(a1+2a2)1‘10/+4h3

1-cen(v/2aq 10 o

where 0 < £ < ¢~ and
4

420172, +(a14+2a2)r, s +4hs
T

54// =

3}
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s

do

/?
0 \/1 \/Safrfo,+4a1(a1+2a2)rw/+16a1h3 (2az+3aqr, 1)

10 .
.sin% 0

\/32afr?0, +16a1 (al—i—az)rlo/ +64a1hs

III. Simlarly, when aq > 0, as > 0, one can check that the unbounded solution
®us () has the same form as solution ¢, (§). We get the corresponding unbounded
solution of system (2.8)

af 20172 4 (ay+2a)r , +4hy
2 11 11

@l

4 2@17“?1/ +(o1+2002)r 1 +4hy
T’ —

a1

Pus (5) =

4f 20172, +(agt+2a)r s +dhy

1—cn(+v/2a7 11 o

where 0 < r;;7 < 9 < 400, hy is a real number, 0 < £ < & and

4

2 4 2041T‘il,+(041+20£2)’l”11/ +4hy
Q' 041

55// =

do

/5
0 \/1 B \/80¢fo1, +4o¢1(a1+2a2)r11/ +16a1h4—(2a2+3a17‘11/ )

\/32(1%7“?1, +16a1 (a1taz)r, s +64arha

-sin% 0

4. Exact traveling wave solutions of Eq. (1.1)

In order to get the type I traveling wave solution of the GKMN equation, it only
needs to substitute the solution p(§) of system (2.3) into the formula (2.1). Here
we list them in the Appendix 1 for the sake of simplicity.

But, it is not so easy to get the type II traveling wave solution of the GKMN
equation. It needs us to substitute the solutions ¢(§) of system (2.8) into the
ODE (2.7) to solve (&), and then plug ¢(&) and ¢(&) into the formula (2.5)

(S1) Noting that

¢b1<§>=\/ﬁ+(r2—n)sn2< als ) ceory

2

and p X

VR S B |

/1+k-sn2(u) =3ty s [+ R)in(w) - nd(u)];
we have
€ C
<pb1(§> - / <Qm¢%1(§) + 2am)d§
_ et T #
-~ 2amr; 2ry 1(rg — 1)

o (o g T,
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where (' is a constant.
Thus we obtain the final solution g1 (x,y,t) = ¢p, (§)exp(vs, (§) — ut)i).

(S2) Noting that

b, (€) = \/T4 + (7“5 - 7"4)(1 - eXp(\/ 2001 (15 — 7“4)’5))2

(14 exp(y/2a1(r5 — r4)€))?

, —o00< &< +o0,

we have

e c
on©= [ (am¢>§2 @ 2w )
_ 2er/201(r5 —rg) + cr5g n (rs —ra)e

2amrs 8amrs/ra(rs —14)

s —
- arctan 7exp (vV2a1(rs—r4)€)+ >+C’ ,
(2 (7‘5—7"4) 1 2\/’/‘4 ’I“5—7"4 27“4 ?

where C5 is a constant.
Thus we obtain the final solution ga(z,y,t) = ¢, (§)exp(pp, (§) — ut)i).

(S3) Noting that

(20176 + a1r7 + 200) (17 — 7"6)8”2(\/——2&”7%‘2”6“&2 €)

b, (§) = |16 +

)

o (ry — TG)Snz(\/——2alT7+(§”5+2az §) — (2aar7 + a1re + 2a2)

=Ty <&< Ty,

and

/ H:kdun(u) = (B + KO £ b sn(w) - ed(w),

where k' = v/1 — k2, we have

ew® = [ (s + )

_ ey \/ 2 n c ¢
— \am(3ayre + airr + 2az) 20177 + airg + 200 2am
e(3aire + arr7 + 200 — al)\/—2(2a17’7 + a1 + 2a0)
am(3aqre + axrr + 2a2) (201716 + @177 + 2002)

20117 + 116 + 200 Q1T — g
(2ot os

200117 + e + 20

2 2
.cd(\/— ATt a2£)> +Cs,

where (5 is a constant.
Thus we obtain the final solution gs(z,y,t) = ¢p, (§)exp(pp, (§) — ut)i).
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(S4) Noting that

) 4\1/2(117-3, +(ay +2(12)'r'1/ +4hy

a1

4 20(17‘2,+(O¢1+2(12)7’ ;+4h,
Gy (5) = |- \/ : a1 : +

4 20417?, +(ay +2a2)7‘1/ +4hq

1—cen(v/2a1

@1

and
2

1 —cn(u) 1 1 a
[ Trmatsdu = lout { (e =B = - )]

where 0 < § <y, ¢ = am(u) and f1 = ,/ﬁ-tanfl[\/%-sd(u)], K =

V1 — k2, we have
Pu, (§)

-/ (amgsal G m)dg

e Cc
+ 3
4 20172, +(a1+2a2)r s +4hy 2am
am(ry — {220 SRELy

a1

4 2a1rf,+(a1+2a2)r1/+4h1
e( s + 7’1’)
+
420172, +(a1+2a2)r s +4h
2amry {1/804%7“%, + 4o (a1 + 200)r + 16a1h1(\/ 1 o L —ry)

. H[am({‘/Sa%rf, +4ag (a1 + 2a2)ry + 1601 ki €),

(4 2a1rf,+(a1+2a2)rl/ +4h, ., /)2
aq 1
k]
4 4 2a1rf,+(a1+2a2)rl/ +4h1'r /
[e5] 1
e

amry </8oz%’rf, + 4oy (al + 2042)7‘1/ + 161 hq

Q/Qozlrf, +(a1+2a2)r  +4hy

’
(5] 1

o4 2a1rf,+(a1+2a2)rl/ +4h, 4 2a1rf,+(a1+2a2)r1/+4h1 9
dryk + ( —ry)
a1 aq

( 4 20(17“?,+(O(1+2042)T1/ +4hq _ /)2
fan~" ( k2 + - !
- tan

4 {1/20417“?, +(O¢1+20¢2)T1/ +4hq

@ 7'1/

. Sd(</804%1"%/ +4doq (o + 200)ry + 16a1h1§)> + Cy,

\/804%7’% + 4oy (o1 + 2a2)ry + 16a1hy — (202 + 3aq 7))

where k? = , Cy is a con-

\/3205%1"%, + 1601 (a1 + )1y + 64y
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stant.

Thus we obtain the final solution q4(z,y,t) = ¢y, (§)exp(pu, (&) — ut)i). Similar
calculation can be applied to the solutions ¢, (§), du,(§) and ¢, (§), we ignore
them here for simplicity.

(S5) Noting that

(1 —exp(y/201(ry — 1y )8))?

we have

Puy (§)

e c

= d

/ (am% @ * 3w )€

de(ry —1y)

= In(ry /200 (ry —ry )& + 1y —2ry)

amrg /200 (13 — ryr)

4 ; — ’ 2
+ elry = 1y) + S e,
amry /204 (ry — 1o ) (T exp(\/mf) +ry —2ry)  2am

where C5 is a constant.
Thus we obtain the final solution g5(x,y,t) = ¢u, (§)exp(pu, (&) — ut)i).

(S6) Noting that

Tg — Ty

(bu?' (5) = T4l + ( — ) 3 0< 6 < 51//7
a2y =)
2
and i )
u u 1
=5 : 1+ k)- .
/ T+ k-sn2(u) 2 2011k) tan™'[(1 4 k) - tn(u) - nd(u)],
we have
€ c
Pus (§) _/(am¢33(§) + 2am)d£
_etory . e(rg —ry) 2
-~ 2amry 4amri, re \| aa(rg —ry)

a8 ()2l =) gy \/m
tan (TG’_T4' tn( 5 &) - nd( 5 &) ) + Ce,

where Cy is a constant.
Thus we obtain the final solution gg(z,y,t) = Py, (§)exp(u,(§) — ut)i).

(S7) Noting that

bus(§) = \/7'8’ + (rg —77) - cot?( Wf)v 0<g<yr,
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we have

e c
2e + cry e 2
ammr amry \| airy
arctan ( [T (s /W£)> s
’[“8/ — ’]"7/ 2

where C7 is a constant.
Thus we obtain the final solution q7(z,y,t) = ¢y, (§)exp(u, (&) — ut)i).

(S8) Noting that
2042 2

¢u6(§): _TM+@, §>O7

we have

e ¢
(puc(f) - / <am¢%6(£) + 2am)d£
cag — e Qea% 3 Qg
p— - —_—— t/ - T
2amas ¢ dama3 ' an arctan( 3 ) +Cs,

where Cg is a constant.
Thus we obtain the final solution gs(z,y,t) = ¢y (£)exp(us (&) — ut)i).

5. Discussion and conclusion

In this paper, by using the dynamical system method, we study two kinds of travel-
ing wave systems of the GKMN equation and obtain all type I and type II traveling
wave solutions of it. Especially, some new solutions g, gy, (¢t = 2,2'74..874/..8/)
and ¢;(j = 1..8) have not been reported before, which not only help ones to un-
derstand the complicated physical phenomena described by the model further, but
also can be used to verify the correctness of the numerical solutions. In particular,
we can generate more solutions of Eq. (1.1) by using of these new solutions. For
example, when a = —1 and b = —2, one can consider these new solutions as ”seeds”
and apply the perturbation (n; M)-fold Darboux transformation @ = T(\)p and
dn_, = Q0 — 2B ™" mentioned in [20] to construct more new solutions. In addi-

tion, this method is an effective way to deal with traveling waves of a PDE and can
be used in other PDE models.
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