
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 1, February 2022, 125–152 DOI:10.11948/20210085

LONG-TIME BEHAVIOR OF STOCHASTIC
STAGED PROGRESSION EPIDEMIC MODEL

WITH HYBRID SWITCHING FOR THE
TRANSMISSION OF HIV

Songnan Liu1, Xiaojie Xu2,† and Zhangyi Dong3

Abstract In this paper, one stochastic hybrid switching SP (staged progres-
sion) model for the transmission of HIV is proposed and investigated. The
system disturbed by both white and telegraph noises, sufficient conditions for
positive recurrence and the existence of an ergodic stationary distribution to
the solutions are established. The existence of stationary distribution implies
stochastic weak stability to some extent. Furthermore, sufficient conditions for
extinction of disease are established. At last, some examples and simulations
are provided to illustrate our results.

Keywords Stochastic staged progression infectious disease models, Lyapunov
function, Extinction, stationary distribution and ergodicity, hybrid switching.

MSC(2010) 60H10, 34F05.

1. Introduction
In 1981, human immunodeficiency virus (HIV) spreads at a very rapid speed to every
corner of the world since the discovery of acquired immune deficiency syndrome
(AIDS), and it causes a serious threat to people’s health. Mathematical models
based on the underlying transmission mechanisms of the disease can evaluate the
potential effectiveness of different approaches for bringing an epidemic under control
and help the medical/scientific community anticipate and understand the spread of
an epidemic. The behavior of the epidemic is a highly non-linear function of the
parameter values and levels of intervention strategies, because the transmission
dynamics form a complex non-linear dynamical system. This at times may even
lead to changes in infection spread that are counter to both intuition and simple
extrapolated predictions. We can use the knowledge gained from studying models to
help set priorities in research, saving time, resources, and lives, see [9,12,15,25,31].

All these mentioned HIV models are ordinary differential equations and do not
take into account the random variations on the model parameters. Previously,
through experimental data, Singh et al. have showed that HIV transcription is
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an inherently random process [27] and Liu et al. investigated stochastic differen-
tial susceptibility (DS) susceptible-infective-AIDS (SIA) models in [16, 17]. They
discussed the sufficient conditions for positive recurrence and the existence of an
ergodic stationary distribution to the solutions. The existence of stationary dis-
tribution implies stochastic weak stability to some extent. Furthermore, sufficient
conditions for extinction of disease are established.

In this paper we studied a simple version of a staged-progression (SP) model, in
which every infected individual goes through the same series of stages. The param-
eters we use for the SP model give a short, early, highly infectious, stage equivalent
to the acute phase of infection; a middle period of low infectiousness; and a late
chronic stage with higher infectiousness. Thus the SP model captures differences in
time within the same individual. [10,11] simulated the transient dynamics. Hyman
et al. also developed a robust method for initializing multigroup epidemic mod-
els. For the SP model, these studies provided further insight into the observations
in [13, 14] that, when partner acquisition rates are high, the bulk of the infections
early in the epidemic are caused by those in the acute infectious stage.

The SP model accounts for the temporal changes in the infectiousness of an
individual by a staged Markov process of n infected stages, progressing from the
initial infection to AIDS. The equations for the SP model illustrated in Fig. 1 are

Figure 1. In the SP model every infected individual goes through the same series of stages. This
model can account for a short early highly infectious stage equivalent to the acute phase of infection,
a middle period of low infectiousness, and a late chronic stage with higher infectiousness, where λ =
r
∑n

i=1 βiIi(t)S(t).



dS(t) = [µ(S0 − S(t))− r

n∑
i=1

βiIi(t)S(t)]dt,

dI1(t) = [r
n∑

i=1

βiIi(t)S(t)− (µ+ γ1)I1(t)]dt,

dIi(t) = [γi−1Ii−1 − (γi + µ)Ii]dt, 2 ≤ i ≤ n,

dA(t) = (γnIn − δA)dt.

(1.1)

Here, r is the average number of partners per individual per unit of time, β1, . . . , βn

are the transmission probability per partner with an infected individual in subgroup
I1, . . . , In. Individuals enter the susceptible class at a constant rate µS0 > 0. The
natural death rate is assumed to be constant d > 0 and Sexually active removal
rate is α > 0. Thus the total removal rate is assumed to be proportional to the
population number in each class, with rate constant µ = d+α > 0. In addition, there
is an AIDS-related death in the AIDS class which is assumed to be proportional to
the population number in that class, with rate constant δ > 0 which is the sum of
natural mortality rate and mortality due to illness.
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System (1.1) has only two kinds of equilibrium: the disease-free equilibrium and
the endemic equilibrium. Hyman and Li showed that the reproductive number can
be defined by [10]

R0 =

n∑
i=1

rβiqiS
0

γi + µ
,

where qi =
∏i−1

j=1
γj

γj+µ , i = 2, . . . , n and q1 = 1. When R0 > 1, the infection-
free equilibrium is unstable, and thus the number of infected individuals will grow
when a small number of individuals are infected. The epidemic will die out in the
neighborhood of the infection-free equilibrium when R0 < 1.

Since the dynamics of group A has no effect on the disease transmission dynam-
ics, thus we only consider subgroup S, I1, · · · , In.

However, as we know, real life is full of randomness. Hence it is necessary to
consider stochasticity into epidemic models (see e.g. [3,5,18,19]. For these models,
the nature of epidemic growth and spread is random due to the unpredictability
in person-to-person contacts [26]. Therefore the variability and randomness of the
environment is fed through the state of the epidemic [1]. And in epidemic dynamics,
stochastic systems may be a more appropriate way of modeling epidemics in many
circumstances (see e.g. [20–22, 35]). Motivated by the above discussion, in this
paper, we tend to do some work in this field. By taking into account the effect of
randomly fluctuating environment, we adopt the approach used in Liu et al. [18]
and assume that the environmental noise is proportional to the variables of system
(1.1). Then the stochastic version corresponding to system (1.1) takes the following
form:

dS(t) = [µ(S0 − S(t))− r

n∑
i=1

βiIi(t)S(t)]dt+ σ1S(t)dB1(t),

dI1(t) = [r

n∑
i=1

βiIi(t)S(t)− (µ+ γ1)I1(t)]dt+ σ2I1(t)dB2(t),

dIi(t) = [γi−1Ii−1 − (γi + µ)Ii]dt+ σi+1Ii(t)dBi+1(t), 2 ≤ i ≤ n,

(1.2)

where B1(t), · · · , Bn(t), and Bn+1(t) are independent Brownian motions, and σ2
1 >

0, σ2
2 > 0, · · · , σ2

n+1 > 0 represent the intensities of white noise. Other parameters
are the same as in system (1.1).

Besides white noise, epidemic models may be disturbed by telegraph noise which
makes population systems switch from one regime to another. Let us now take a
further step by considering another type of environmental noise, namely, telegraph
noise (see Refs [23, 30]) and Liu et al. investigated stochastic differential suscepti-
bility (DS) susceptible-infective-AIDS (SIA) models disturbed by both white and
telegraph noises (see Refs [16, 17]). The telegraph noise can be illustrated as a
switching between two or more regimes of environment, which differs by factors
such as nutrition or as rain falls [4, 28, 32, 33]. For example, the growth rate for
some fish in dry season will be much different from that in rainy season. Therefore
the regime switching can be modeled by a continuous time finite-state Markov chain
(ξ(t))t≥0 with values in a finite state space M = {1, 2, . . . , L}. In this paper, we
consider the HIV disease spread between environmental regimes. Because the HIV
epidemic model may be influenced by different social cultures, we also introduce
the telegraph noise to consider HIV disease spread between different social cultures
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that is the large disturbance in environment. That is following stochastic SP model
disturbed by white and telephone noises.



dS(t) = [µ(l)(S0 − S(t))− r(l)

n∑
i=1

βi(l)Ii(t)S(t)]dt+ σ1(l)S(t)dB1(t),

dI1(t) = [r(l)

n∑
i=1

βi(l)Ii(t)S(t)− (µ(l) + γ1(l))I1(t)]dt+ σ2(l)I1(t)dB2(t),

dIi(t) = [γi−1(l)Ii−1 − (γi(l) + µ(l))Ii]dt+ σi+1(l)Ii(t)dBi+1(t), 2 ≤ i ≤ n.

(1.3)
The switching between these L regimes is governed by a Markov chain on the state
space M = {1, 2, . . . , L}. The SP systems under regime switching can therefore be
described by the following stochastic model (SDE):



dS(t) = [µ(ξ(t))(S0 − S(t))−r(ξ(t))

n∑
i=1

βi(ξ(t))Ii(t)S(t)]dt+σ1(ξ(t))S(t)dB1(t),

dI1(t) = [r(ξ(t))

n∑
i=1

βi(ξ(t))Ii(t)S(t)− (µ(ξ(t)) + γ1(ξ(t)))I1(t)]dt

+ σ2(ξ(t))I1(t)dB2(t),

dIi(t) = [γi−1(ξ(t))Ii−1 − (γi(ξ(t)) + µ(ξ(t)))Ii]dt+ σi+1(ξ(t))Ii(t)dBi+1(t),

2 ≤ i ≤ n,
(1.4)

where ξ(t) is a continuous time Markov chain with values in finite state space M =
{1, 2, . . . , L}, the parameters µ(l), r(l), β1(l), β2(l), γ1(l), γ2(l), σk(l), k = 1, 2, · · ·n+
1, are all positive constants for each l ∈ M. This system is operated as follows: If
ξ(1) = l1, the system obeys systems (1.3) with l = l1 till time τ1 when the Markov
chain jumps to l2 from l1; the systems will then obey (1.3) with l = l2 from τ1 till τ2
when the Markov chain jumps to l3 from l2. The system will continue to switch as
long as the Markov chain jumps. We aim to investigate the positive recurrence and
extinction. Since system (1.4) is perturbed by both white and telegraph noises, the
existence of positive recurrence of the solutions is an important issue. However, to
the best of our knowledge, there has been no result related this. In this paper, we
attempt to do some work in this field to fill the gap. The theory we used is developed
by Zhu and Yin [34]. The key difficulty is how to construct a suitable Lyapunov
function and a bounded domain. So one of the main aim of this paper is to establish
sufficient conditions for the existence of an ergodic stationary distribution of the
solutions to system (1.4).

This paper is organized as follows. In the next section, we present some pre-
liminaries that will be used in our following analysis. In section 3, we obtain the
existence of a unique ergodic stationary distribution according to the theory of
Has¡¯minskii [7]. We establish the sufficient conditions for the extinction of HIV
infection, by constructing suitable Lyapunov functions in Section 4. In Section 6,
we perform numerical simulations to discuss how the white noises and telegraph
noises affect the dynamic behavior based on the referenced parameter values ob-
tained from the previous literatures. Finally, we summary our main results and
identify future work.
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2. Preliminaries
Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0, P ) be a com-
plete probability space with a filtration {Ft}t≥0 satisfying the usual conditions(i.e.
it is right continuous and F0 contains all P -null sets). Denote

Rn
+ = {x ∈ Rd : xi > 0 for all 1 ≤ i ≤ n}.

We consider the general d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t ≥ t0 (2.1)

with initial value x(t0) = x0 ∈ Rd, where B(t) denotes d-dimensional standard
Brownian motions defined on the above probability space.

Define the differential operator L associated with Eq.(2.1) by

L =
∂

∂t
+Σfi(x, t)

∂

∂xi
+

1

2
Σ[gT (x, t)g(x, t)]ij

∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × R̄+; R̄+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trac[gT (x, t)Vxx(x, t)g(x, t)]

where Vt = ∂V
∂t , Vx = ( ∂V

∂x1
, · · · , ∂V

∂xd
) and Vxx = ( ∂2V

∂xi∂xj
)d×d. By Itô′s formula, if

x(t) is a solution of Eq.(2.1), then

dV (x(t), t) = LV (x(t), t)dt+ Vx(x(t), t)g(x(t), t)dB(t).

In Eq.(2.1), we assume that f(0, t) = 0 and g(0, t) = 0 for all t ≥ t0. So x(t) ≡ 0
is a solution of Eq.(2.1), called the trivial solution or equilibrium position.

By the definition of stochastic differential, the equation (2.1) is equivalent to the
following stochastic integral equation

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

d∑
r=1

∫ t

t0

gr(x(s), s)dBr(s), for t ≥ t0 (2.2)

For any vector g = (g(1), . . . , g(L)), set ĝ = mink∈M{g(k)} and ǧ = maxk∈M{g(k)}.
Suppose the generator Γ = (γij)L×L of the Markov chain is given by

P{ξ(t+ δ) = j|ξ(t) = i} =

γijδ + o(δ), if i ̸= j,

1 + γijδ + o(δ), if i = j,

where δ > 0, γij ≥ 0 for any i ̸= j is the transition rate from i to j if i ̸= j

while
∑N

j=1 γij = 0. In this paper, we assume γij > 0, for any i ̸= j. Assume
further that Markov chain ξ(t) is irreducible and has a unique stationary distribution
π = {π1, π2, . . . , πN} which can be determined by equation

πΓ = 0, (2.3)
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subject to
L∑

h=1

πh = 1, and πh > 0,∀h ∈ M.

We assume that Brownian motion and Markov chain are independent.
Let (X(t), ξ(t)) be the diffusion process described by the following equation:

dX(t) = b(X(t), ξ(t))dt+ σ(X(t), ξ(t))dB(t), X(0) = x0, ξ(0) = ξ, (2.4)

where b(·, ·) : Rn×M → Rn, σ(·, ·) : Rn×M → Rn×n, and D(x, l) = σ(x, l)σT (x, l) =
(dij(x, l)). For each l ∈ M, let V (·, l) be any twice continuously differentiable func-
tion, the operator L can be defined by

LV (x, l) =

n∑
i=1

bi(x, l)
∂V (x, l)

∂xi
+

1

2

n∑
i,j=1

dij(x, l)
∂2V (x, l)

∂xi∂xj
+

L∑
m=1

γlmV (x,m).

Lemma 2.1 ( [34]). If the following conditions are satisfied:
(a) γij > 0 for any i ̸= j;
(b) for each k ∈ M, D(x, k) = (dij(x, k)) is symmetric and satisfies

λ|ξ|2 ≤ ⟨D(x, k)ξ, ξ⟩ ≤ λ−1|ξ|2for, all ξ ∈ Rn,

with some constant λ ∈ (0, 1] for all x ∈ Rn;
(c) there exists a nonempty open set D with compact closure, satisfying that, for

each k ∈ M, there is a nonnegative function V (·, k) : Dc → R such that V (·, k) is
twice continuously differential and that for some α > 0,

LV (x, k) ≤ −α, (x, k) ∈ Dc ×M,

then (X(t), ξ(t)) of system (2.4) is positive recurrent and ergodic. That is to say,
there exists a unique stationary distribution µ(·, ·) such that for any Borel measurable
function f(·, ·) : Rn ×M → R satisfying

N∑
k=1

∫
Rn

|f(x, k)|µ(dx, k) < ∞,

we have

P( lim
t→∞

1

t

∫ t

0

f(X(t), ξ(t))ds) =

L∑
k=1

∫
Rn

f(x, k)µ(dx, k) = 1.

3. Existence and uniqueness of positive solution
3.1. Theorem and Lemma
To study the dynamical behavior of an epidemic model, the first concern is whether
the solution is global and positive. The following result is concerned with the
existence and uniqueness of the global positive solution which is prerequisite for
investigating the long-term behavior of model (1.4).
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Theorem 3.1. There is a unique positive solution X(t) = (S(t), I1(t), . . . , In(t)) of
system (1.4) on t ≥ 0 for any initial value (S(0), I1(0), . . . , In(0)) ∈ Rn+1

+ , and the
solution will remain in Rn+1

+ with probability 1, namely, (S(t), I1(t), . . . , In(t)) ∈
Rn+1

+ for all t ≥ 0.

Proof. Since the coefficients of the equation are locally Lipschitz continuous for
given initial value (S(0), I1(0), . . . , In(0)) ∈ Rn+1

+ . By using the same approach as
that in Liu et al. [16], we can easily obtain the above results. Define a C2-function
V : Rn+1

+ → R̄+ by

V (S, I1, . . . , In) = (S − 1− lnS) +

n∑
i=1

(Ii − 1− ln Ii) +
p

µ̌
(S +

n∑
i=1

Ii),

where p = max{řβ̌i, i = 1, . . . , n}. The non-negativity of this function can be see
from u− 1− log u ≥ 0, ∀u > 0. Let m ≥ m0 and T > 0 be arbitrary then by Itô’s
formula one obtains

dV (S, I1, . . . , In) = LV (S, I1, . . . , In)dt+ σ1(ξ(t))(S − 1)dB1(t)

+
∑n

i=1 σi+1(ξ(t))(Ii − 1)dBi+1(t) +
p
µ̌ [σ1(ξ(t))SdB1(t)

+
∑n

i=1 σi+1(ξ(t))IidBi+1(t)],

where

LV = (1− 1
S )[µ(l)(S

0 − S)− r(l)

n∑
i=1

βi(l)IiS] + (1− 1

I1
)[r(l)

n∑
i=1

βi(l)IiS − (µ(l)

+γ1(l))I1]+

n∑
i=2

(1− 1

Ii
)[γi−1(l)Ii−1 − (µ(l)+γi(l))Ii]+

n+1∑
i=1

σ2
i (l)

2
+
pµ(l)

µ̌
S0

−pµ(l)
µ̌ (S +

n∑
i=1

Ii)−
pγn(l)

µ̌
In

< (µ̌+ p)S0 + µ̌+

n∑
i=1

(µ̌+ γ̌1) +

n+1∑
k=1

σ̌2
k

2
− p

n∑
i=1

Ii +

n∑
i=1

řβ̌iIi

< (µ̌+ p)S0 + µ̌+

n∑
i=1

(µ̌+ γ̌1) +

n+1∑
k=1

σ̌2
k

2
:= C

(3.1)
where C is a positive constant which is independent of S, I1, . . . , In and t. The
remainder of the proof follows that in ref. [16].

4. Recurrence and ergodicity
Our study about epidemic models lies in the fact that when the disease will prevail in
the population. In the deterministic models, the problem can be solved by verifying
that the endemic equilibrium of the corresponding model is local asymptotically
stable. However for system (1.4), there is no endemic equilibrium. In this section,
based on the theory of Has’minskii [7], we prove that there is an ergodic stationary
distribution, which reveals that the disease will persist. The classic infectious disease
model is mainly concerned with the existence and global stability of the equilibrium
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point of the model. In recent years, due to the more general infection rate in
the infectious disease model, this makes the infectious disease model have more
complex dynamics. So it is difficult to obtain complete qualitative analysis results
by traditional analytical methods. However, in the epidemiological sense, studying
the persistence of disease is as important as studying the ultimate behavior of
the disease, some scholars have studied the persistence of epidemics. We define a
parameter

Rs
0 :=

(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

∑L
l=1 πl(µ(l) + γ1(l) +

σ2
2(l)
2 )

+
n∑

i=2

(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )
∑L

l=1 πl(µ(l) + γ1(l) +
σ2
2(l)
2 )

.

(4.1)

Theorem 4.1. Assume that Rs
0 > 1, then system (1.4) has a unique stationary

distribution π(·) and it has the ergodic property.

Proof. By Theorem (3.1), we have obtained that for any initial value (S(0), I1(0),
. . . , In(0)) ∈ Rn+1

+ , there is a unique global solution (S(t), I1(t), . . . , In(t)) ∈ Rn+1
+ .

For brevity we denote I1(t), . . . , In(t) and S(t) as I1, . . . , In and S, respectively. In
order to show Theorem (4.1), we only need to verify that conditions (a), (b), (c) of
Lemma (2.1) are satisfied. By using the same method as those in [29], we consider
the following bounded open subset:

D = (
1

β
, β)× . . .× (

1

β
, β) ⊂ Rn+1

+ ,

where β is a sufficiently large number. Then D̄ ⊂ Rn+1
+ . We have D(S, I, k) =

R(S, I, k)RT (S, I, k), in which R(S, I, l) = diag(Sσ1(l), I1σ2(l), . . . , Inσn+1(l)), l ∈
M. Then D(S, I, k) is positive semi-definite and since R(S, I, l) is a nonsingular
matrix, we deduce that D(S, I, k) is positive definite. Hence

λmax(D(S, I, k)) ≥ λmin(D(S, I, k)) > 0. (4.2)

On the other hand, we have for all ξ ∈ D

λmin(D(S, I, k))|ξ|2 ≤ ξTD(S, I, k)ξ ≤ λmax(D(S, I, k))|ξ|2. (4.3)

It is easy to see that λmin(D(S, I, k)) and λmax(D(S, I, k)) are two continuous
functions of S, I. Therefore we show that λ̂ = min(S,I,k)∈D̄×M λmin(D(S, I, k)) > 0

and λ̌ = max(S,I,k)∈D̄×M λmax(D(S, I, k)) > 0 from (4.2). Moreover, (4.3) implies
that

λ|ξ|2 ≤ ξTD(S, I, k)ξ ≤ λ−1|ξ|2,

where λ = min{λ̂, λ̌−1}. We have therefore verified condition (b) in Lemma (2.1).
Earlier we have proved that the first two conditions of the lemma are established,

now we mainly prove whether the condition (c) is established. Now our focus is on
the proof of innovation in condition (c). By the Itô’s formula and system (1.2), we
have

L(− lnS) = −µ(l)S0

S
+ r

n∑
i=1

βi(l)Ii + µ(l) +
σ2
1(l)

2
,
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L(− ln I1) = −r(l)

n∑
i=1

βi(l)Ii

I1
S + µ(l) + γ1(l) +

σ2
2(l)
2

= −r(l)β1(l)S − r(l)S

n∑
i=2

βi(l)Ii

I1
+ µ(l) + γ1(l) +

σ2
2(l)
2 ,

L(− ln Ii) = −γi−1(l)Ii−1

Ii
+ µ(l) + γi(l) +

σ2
i+1(l)

2
. 2 ≤ i ≤ n.

Then we define:

V̂ (S1, S2, . . . , Sn, I, l) = M [− ln I1 −
∑n

i=1 ai lnS −
∑n

i=2

∑i
j=2 cji ln Ij + ω(l)

+ ř
µ̂

∑n
i=1

∑n
j=2 aiβ̌j(

∑n
k=2 Ik)]−

∑n
i=1 ln Ii − lnS

+(
∑n

i=1 Ii + S)1+θ

=: M [V1 + ω(l) + V2] + V3 + V4,

with

cji =
(
∑L

l=1 πl
i+1
√

rβiµS0
∏i

j=2 γj−1(l))
i+1

∑L
l=1 πl(µ(l)+

σ2
1(l)

2 )
∑L

l=1 πl(µ(l)+γj(l)+
σ2
j+1

(l)

2 )
∏i

j=2

∑L
l=1 πl(µ(l)+γj(l)+

σ2
j+1

(l)

2 )

,

where i = 2, 3, . . . , n, j = 2, 3, . . . , i;

a1 =
(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)
2 )2

,

ai =
(
∑L

l=1 πl

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )2

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )
,

where i = 2, 3, . . . , n, and M and theta are positive constants satisfying the following
inequalities, respectively

C1 + fu +

n∑
i=2

gui −M(µ+ γ1 +
σ2
2

2
)(Rs

0 − 1) < −2, (4.4)

ρ := µ̂− θ

2
(σ̌2

1

∨
· · ·

∨
σ̌2
n+1) > 0, (4.5)

and ω(t) determined by the following proof. Thus we have:

LV1 ≤− r(l)β1(l)S − r(l)S

∑n
i=2 βi(l)Ii

I1
+ µ(l) + γ1(l) +

σ2
2(l)

2
+

n∑
i=1

ai(−
µ(l)S0

S

+ r(l)

n∑
j=1

βj(l)Ij + µ(l) +
σ2
1(l)

2
) +

n∑
i=2

i∑
j=2

cji(−
γj−1(l)Ij−1

Ij
+ µ(l)

+ γj(l) +
σ2
j+1(l)

2
)
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=− r(l)β1(l)S − a1
µ(l)S0

S
+ a1(µ(l) +

σ2
1(l)

2
)−

n∑
i=2

(r(l)S
βi(l)Ii
I1

+

i∑
j=2

cji
γj−1(l)Ij−1

Ij
+ ai

µ(l)S0

S
) +

n∑
i=2

ai(µ(l) +
σ2
1(l)

2
)

+

n∑
i=2

i∑
j=2

cji(µ(l) + γj(l) +
σ2
j+1(l)

2
)

+ (µ(l) + γ1(l) +
σ2
2(l)

2
) +

n∑
i=1

air(l)

n∑
j=1

βj(l)Ij

≤− 2(r(l)β1(l)µ(l)S
0a1)

1
2 + a1(µ(l) +

σ2
1(l)

2
)−

n∑
i=2

[(i+ 1)(r(l)βi(l)µ(l)S
0ai

×
i∏

j=2

γj−1(l)cji)
1

i+1 − ai(µ(l) +
σ2
1(l)

2
)−

i∑
j=2

cji(µ(l) + γj(l) +
σ2
j+1(l)

2
)]

+ (µ(l) + γ1(l) +
σ2
2(l)

2
) +

n∑
i=1

air(l)

n∑
j=1

βj(l)Ij

:=R̄0(l) +

n∑
i=1

air(l)

n∑
j=1

βj(l)Ij .

Let(w(1), w(2), . . . , w(L))T be the solution of the following Poisson system

Γw =

L∑
h=1

πhR̄0(h)



1

1

...

1


− R̄0, (4.6)

where R̄0 = (R̄0(1), R̄0(2), . . . , R̄0(L))
T then

L∑
h=1

γlhw(h) + R̄0(l) =

L∑
h=1

πhR̄0(h), l = 1, 2, . . . , L.

By cji, a1, ai, i = 2, . . . , n, j = 2, 3, . . . , i we obtain:

a1

L∑
l=1

πl(µ(l) +
σ2
1(l)

2
) =

(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

,

cji

L∑
l=1

πl(µ(l) + γj(l) +
σ2
j+1(l)

2
)

=ai

L∑
l=1

πl(µ(l) +
σ2
1(l)

2
)

=
(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )
.
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Then we get

LV1 ≤− 2
(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

+
(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

−
n∑

i=2

[
(i+ 1)

(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )

+ i
(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )

]

+

L∑
l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
) +

n∑
i=1

aiř

n∑
j=1

β̌jIj

=−
[ (∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

+

n∑
i=2

(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )

]

+

L∑
l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
) +

n∑
i=1

aiř

n∑
j=1

β̌jIj

=

L∑
l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
)(Rs

0 − 1) +

n∑
i=1

aiř

n∑
j=1

β̌jIj ,

LV2 ≤ ř

µ̂

n∑
i=1

n∑
j=2

aiβ̌j(γ̌1I1 − µ̂

n∑
k=2

Ik)

≤ ř

µ̂

n∑
i=1

n∑
j=2

aiβ̌j γ̌1I1 − ř

n∑
i=1

n∑
j=2

aiβ̌jIj ,

LV3 ≤ − µ̂S0

S
+ ř

n∑
i=1

β̌iIi + µ̌+
σ̌2
1

2
−

n∑
i=2

γ̂i−1Ii−1

Ii
+

n∑
i=2

(µ̌+ γ̌i +
σ̌2
i+1

2
),

LV4 ≤(θ + 1)(S +

n∑
i=1

Ii)
θ[µ̌S0 − µ̂(S +

n∑
i=1

Ii)− γ̂nIn] +
θ

2
(θ + 1)(S +

n∑
i=1

Ii)
θ−1

× (σ̌2
1S

2 +

n∑
i=1

σ̌2
i+1I

2
i )

≤µ̌S0(θ + 1)(S +

n∑
i=1

Ii)
θ − (θ + 1)[µ̂− θ

2
(σ̌2

1

∨
· · ·

∨
σ̌2
n+1)](S +

n∑
i=1

Ii)
θ+1

≤A− θ + 1

2
ρ(S +

n∑
i=1

Ii)
θ+1

≤A− θ + 1

2
ρ(Sθ+1 +

n∑
i=1

Iθ+1
i ),
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where A = sup(S,I1,...,In)∈Rn+1
+

{
− θ+1

2 ρ(S+
∑n

i=1 Ii)
θ+1+µ̌S0(θ+1)(S+

∑n
i=1 Ii)

θ
}

.
Therefore

LV ≤ −M
∑L

l=1 πl(µ(l) + γ1(l) +
σ2
2(l)
2 )(Rs

0 − 1) +M
∑n

i=1 aiř(β̌1 +
∑n

j=2
β̌j γ̌1

µ̂ )I1

− µ̂S0

S −
∑n

i=2
γ̂i−1Ii−1

Ii
− θ+1

2 ρ(Sθ+1 +
∑n

i=1 I
θ+1
i ) + ř

∑n
i=1 β̌iIi + µ̌+

σ̌2
1

2

+
∑n

i=2(µ̌+ γ̌i +
σ̌2
i+1

2 ) +A

:= f(S) +
∑n

i=2 gi(Ii) + h(I1)−
∑n

i=2
γi−1Ii−1

Ii
+ C1,

in which

C1 = µ̌+
σ̌2
1

2
+

n∑
i=2

(µ̌+ γ̌i +
σ̌2
i+1

2
) +A,

f(S) = − µ̂S0

S
− θ + 1

2
ρSθ+1,

gi(Ii) = −θ + 1

2
ρIθ+1

i + řβ̌iIi, i = 2, . . . , n,

and
h(I1) = −M

∑L
l=1 πl(µ(l) + γ1(l) +

σ2
2(l)
2 )(Rs

0 − 1)

+M
∑n

i=1 aiř(β̌1 +
∑n

j=2
β̌j γ̌1

µ̂ )I1 − θ+1
2 ρIθ+1

1 + řβ̌1I1.

Next, our main task is to construct a compact subset D such that (b) in Lemma
2.1 holds. Consider the following bounded subset

D =
{
ε1 ≤ S ≤ 1

ε1
, εi ≤ Ii ≤

1

εi
, i = 2, . . . , n

}
,

where εi, i = 1, . . . , n + 1 are sufficiently small positive constants satisfying the
following inequalities

C1 +

n∑
i=2

gui + hu − µ̂S0

ε1
< −1, (4.7)

C1 + fu +

n∑
i=2

gui −M [

L∑
l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
)(Rs

0 − 1)

+

n∑
i=1

aiř(β̌1 +

n∑
j=2

β̌j γ̌1
µ̂

)ε2] + řβ̌1ε2 < −1,

(4.8)

C1 + fu +

n∑
i=2

gui + hu −
n∑

i=2

γ̂i−1

ε
< −1, i = 2, . . . , n, (4.9)

C1 −
θ + 1

2
ρεθ+1

1 < −1, (4.10)

C2 + fu +

n∑
i=2

gui − θ + 1

4
ρεθ+1

2 < −1 (4.11)

Ci + fu + hu − θ + 1

4
ρεθ+1

i < −1, i = 3, . . . , n+ 1, (4.12)
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and εi = εi, i = 1, . . . , n+ 1, where inequality (4.8) can be derived from (4.4), and
the constants Ci, i = 2, . . . , n+ 1 will be determined later. Then

Rn+1/D = Dc
1

⋃
Dc

1

⋃
· · ·

⋃
Dc

2n+2,

with

Dc
1 =

{
(S, I1, . . . , In) ∈ Rn+1

+ |0 < S < ε1

}
,

Dc
2 =

{
(S, I1, . . . , In) ∈ Rn+1

+ |0 < I1 < ε2

}
Dc

i+1 =
{
(S, I1, . . . , In) ∈ Rn+1

+ |Ii−1 > εi−1, 0 < Ii < εi

}
, i = 2, . . . , n,

Dc
n+2 =

{
(S, I1, . . . , In) ∈ Rn+1

+ |S >
1

ε1

}
,

Dc
n+3 =

{
(S, I1, . . . , In) ∈ Rn+1

+ |I1 >
1

ε2

}
Dc

n+2+i =
{
(S, I1, . . . , In) ∈ Rn+1

+ |Ii >
1

εi

}
, i = 2, . . . , n.

Next, we will prove condition (b) in Lemma 2.1.
Case 1: If (S, I1, . . . , In) ∈ Dc

1, (4.7) implies that

LV ≤ C1 +

n∑
i=2

gui + hu − µ̂S0

ε1
< −1.

Case 2: If (S, I1, . . . , In) ∈ Dc
2, (4.8) we obtain that

LV ≤C1 + fu +

n∑
i=2

gui −M [

L∑
l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
)(Rs

0 − 1)

+

n∑
i=1

aiř(β̌1 +

n∑
j=2

β̌j γ̌1
µ̂

)ε2] + řβ̌1ε2

<− 1.

Case 3: If (S, I1, . . . , In) ∈ Dc
i+1, i = 2, . . . , n, it follows that

LV ≤ C1 + fu +

n∑
i=2

gui + hu −
n∑

i=2

γ̂i−1εi
εi+1

, i = 2, . . . , n,

Choosing εi = εi, i = 2, . . . , n+ 1, combining (4.9), yields

LV ≤ C1 + fu +

n∑
i=2

gui + hu −
n∑

i=2

γ̂i−1

ε
< −1, i = 2, . . . , n.

Case 4: If (S, I1, . . . , In) ∈ Dc
n+2, (4.10) implies that

LV ≤ C1 −
θ + 1

2
ρ

1

εθ+1
1

< −1.
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Case 5: If (S, I1, . . . , In) ∈ Dc
n+3, we have

LV ≤ C2 + fu +

n∑
i=2

gui − θ + 1

4
ρ

1

εθ+1
2

< −1,

which follows from (4.11), where

C2 = sup
I1∈(0,+∞)

{
− θ + 1

4
ρIθ+1

1 −M
[ L∑

l=1

πl(µ(l) + γ1(l) +
σ2
2(l)

2
)(Rs

0 − 1)

+

n∑
i=1

aiř(β̌1 +

n∑
j=2

β̌j γ̌1
µ̂

)I1

]
+ rβ1I1

}
< ∞.

Case 6: If (S, I1, . . . , In) ∈ Dc
n+2+i, it follows that

LV ≤ Ci + fu + hu − θ + 1

4
ρ

1

εθ+1
i

< −1, i = 3, . . . , n+ 1,

where

Ci = sup
I1∈(0,+∞)

{
− θ + 1

4
ρIθ+1

i + rβiIi

}
< ∞, i = 3, . . . , n+ 1,

which together with (4.12) implies that

LV ≤ −1.

Synthesize the above proof results, we get the following conclusion

LV ≤ −1, (S, I1, . . . , In) ∈ Rn+1/D,

which implies that (b) in Lemma 2.1 is verified.

5. Extinction
Infectious diseases are an important factor threatening human survival, therefore,
the elimination of infectious diseases as soon as possible is of great significance to the
survival and development of human beings. Next, our main task is how to adjust the
dynamics of infectious diseases so that infectious diseases can be eliminated as soon
as possible. In this section, we shall give sufficient conditions for the extinction of
HIV infection in the stochastic model (1.4). Firstly, we will give a lemma as follows.

Consider the following first-order linear stochastic differential equation under
regime switching

dZ(t) = µ(r(t))(S0 − Z(t))dt+ σ1(r(t))Z(t)dB(t), (5.1)

with initial value Z(0) = S(0). Then equation (5.1) has a unique stationary dis-
tribution υ(·, ·) which is ergodic. Let ρ(t) = logZ(t) and the C2−function V (ρ, l)
takes the following form:

V (ρ, l) = eρ − 1− ρ.
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Using Itô’s formula to Eq.(5.1) results in

LV (ρ, l) = µ(l)(S0 − eρ)− µ(l)
eρ (S0 − eρ) + 1

2σ
2
1(l)

= µ(l)S0 − µ(l)eρ − µ(l)S0

eρ + µ(l) + 1
2σ

2
1(l)

≤ −µ̂eρ − µ̂S0

eρ + (S0 + 1)µ̌+ 1
2 σ̌1

2

=: Φ(ρ).

Obviously, Φ(ρ) → −∞, as ρ → −∞; Φ(ρ) → −∞, as ρ → +∞. Take ε > 0
small enough and let U = [log ε, log 1

ε ], and we have LV (ρ, l) < −1, ρ ∈ R+\U . In
addition, the intensity of the white noise on nutrient σ2

1(l) > 0. Thus the conditions
in Lemma 2.2 are satisfied, (5.1) has a unique stationary distribution υ(·, ·) which
is ergodic.

Integrating the both sides of Eq.(5.1) from 0 to t, we have

Z(t)− Z(0) =

∫ t

0

µ(r(s))(S0 − Z(s))ds+

∫ t

0

σ1(r(s))Z(s)dB(s). (5.2)

Taking the expectation on the both sides of (5.2), one can observe that

E[Z(t)]− E[Z(0)] =

∫ t

0

E[µ(r(s))(S0 − Z(s))]ds

= S0

∫ t

0

µ(r(s))ds−
∫ t

0

E[µ(r(s))Z(s)]ds.

(5.3)

Then
E[Z(t)]

dt
= S0E[µ(r(s))]− E[µ(r(s))Z(s)] ≤ S0µ̌− µ̂E[Z(s)].

Therefore lim supt→∞ E[Z(t)] ≤ S0µ̌
µ̂ , which means E[Z(t)] is bounded. Using the

dominated convergence theorem, it follows from (5.3) that

0 = lim
t→∞

E[Z(t)]− E[Z(0)]

t

= S0 lim
t→∞

1

t

∫ t

0

µ(r(s))ds− lim
t→∞

1

t

∫ t

0

E[µ(r(s))Z(s)]ds

= S0
L∑

l=1

πlµ(l)−
L∑

l=1

πlµ(l)

∫
R+

Zν(dZ, k).

According to the comparison theorem we get

S(t) ≤ Z(t), t > t0.

Theorem 5.1. Let (S(t), I1(t), . . . , In(t)) be the positive solution of system (1.4).
Then for almost ω ∈ Ω, we obtain

lim sup
t→∞

1

t
ln{

n−1∑
i=1

[
β̌i

µ̂+ γ̂i
+

n∑
j=i+1

β̌jqj
(µ̂+ γ̂j)qi

]Ii +
β̌n

µ̂+ γ̂n
In ≤ m a.s., (5.4)
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where q1 = 1, qi =
∏i−1

j=1
γ̌j

γ̂j+µ̂ , i = 2, . . . , n and

R̃0 =

n∑
i=1

řβ̌iqiS
0

γ̂i + µ̂
,

m =(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
R̃0

S0
(
β̌1

a1

∨
· · ·

∨ β̌n

an
)

L∑
l=1

πl

∫
R+

Zν(dZ, k)

− R̃0(
β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1

and ai = β̌i

µ̂+γ̂i
+

∑n
j=i+1

β̌jqj
(µ̂+γ̂j)qi

, i = 1, . . . , n − 1, an = β̌n

µ̂+γ̂n
. Particularly, if

m < 0, then the disease Ii, i = 1, . . . , n will go to extinction exponentially with
probability one, i.e.,

lim sup
t→∞

ln Ii
t

< 0, i = 1, . . . , n a.s.

Furthermore, S(t) admits a unique ergodic stationary distribution ν(·, ·).

Proof. Define a C2-function V : Rn
+ → R+ as follows:

V (I1, . . . , In) =

n∑
i=1

aiIi,

where ai =
β̌i

µ̂+γ̂i
+

∑n
j=i+1

β̌jqj
µ̂+γ̂j

, i = 1, . . . , n− 1, an = β̌n

µ̂+γ̂n
. Thus we can obtain

β̌i + ai+1γ̌i = ai(µ̂+ γ̂i) i = 1, . . . , n. (5.5)

Applying the Itô’s formula to lnV gives

d(lnV ) = L(lnV )dt+
1

V
[

n∑
i=1

aiσi+1(l)IidBi+1(t)].

Here,

L(lnV ) ≤ a1
V

[ř

n∑
i=1

β̌iIiS−(µ̂+γ̂1)I1]+
1

V

n∑
i=2

ai[γ̌i−1Ii−1−(µ̂+γ̂i)Ii]−
∑n

i=1 a
2
i σ̂

2
i+1I

2
i

2V 2
.

On the other hand, we obtain

V 2 = (

n∑
i=1

aiσ̂i+1Ii
1

σ̂i+1
)2 ≤ (

n∑
i=1

a2i σ̂
2
i+1I

2
i )(

n∑
i=1

1

σ̂2
i+1

), (5.6)

and by (5.5), we can obtain

a1
V

[ř

n∑
i=1

β̌iIiS − (µ̂+ γ̂1)I1] +
1

V

n∑
i=2

ai[γ̌i−1Ii−1 − (µ̂+ γ̂i)Ii]
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=
1

V
[řa1

n∑
i=1

β̌iIiS − a1(µ̂+ γ̂1)I1 +

n−1∑
i=2

ai+1γ̌iIi −
n∑

i=2

ai(µ̂+ γ̂i)Ii]

=
1

V
[řa1

n∑
i=1

β̌iIiS − a1(µ̂+ γ̂1)I1 + a2γ̂1I1 +

n−1∑
i=2

ai+1γ̌iIi −
n−1∑
i=2

ai(µ̂+ γ̂i)Ii

− an(µ̂+ γ̂n)In]

≤ 1

V
[řa1

n∑
i=1

β̌iIi(Z − S0) + řa1

n∑
i=1

β̌iIiS
0 −

n∑
i=1

β̌iIi]

=
1

V
(R̃0 − 1)

n∑
i=1

β̌iIi +
1

V
řa1

n∑
i=1

β̌iIi(Z − S0)

=
1

V
(R̃0 − 1)

n∑
i=1

β̌i

ai
aiIi +

R̃0

S0

n∑
i=1

aiIi(Z − S0)

V

β̌i

ai

≤ 1

V
(R̃0 − 1)

n∑
i=1

aiIi(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1

+
1

V
(R̃0 − 1)

n∑
i=1

aiIi(
β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
Z

S0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)

≤(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
Z

S0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
). (5.7)

In view of (5.6) and (5.7), one can see that

L(lnV ) ≤(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
Z

S0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1.

Consequently, we get

d(lnV ) ≤[(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
Z

S0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1]dt

+
1

V
[

n∑
i=1

aiσi+1(l)IidBi+1(t)].

(5.8)
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Integrating (5.8) from 0 to t and then dividing by t on the both sides lead to

lnV (t)

t
≤ lnV (0)

t
+ (R̃0 − 1)(

β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1

+ (R̃0 − 1)(
β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+

∫ t

0
Zdt

tS0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1

+
1

t

∫ t

0

∑n
i=1 aiσi+1(l)IidBi+1(t)

V

≤ lnV (0)

t
+ (R̃0 − 1)(

β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1

+ (R̃0 − 1)(
β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+

∫ t

0
Z(r(s))ds

tS0
R̃0(

β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)

− (2

n∑
i=1

1

σ̂2
i+1

)−1 +
M(t)

t
,

(5.9)
where M(t) =

∫ t

0

∑n
i=1 aiσi+1(l)IidBi+1(t)

V which is a local martingale whose quadratic
variation is ⟨M(t),M(t)⟩t =

∫ t

0
(
∑n

i=1 aiσi+1(l)Ii
V )2ds ≤ (

∑n
i=1 σ̌

2
i+1)t. By using the

strong law of large numbers [24] yields

lim
t→∞

M(t)

t
= 0 a.s. (5.10)

Taking the superior limit on the both sides of (5.9) and combining with (5.10) yield

lim sup
t→∞

lnV (t)

t

≤(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+
R̃0

S0
(
β̌1

a1

∨
· · ·

∨ β̌n

an
)

L∑
l=1

πl

∫
R+

Zν(dZ, k)−R̃0(
β̌1

a1

∧
· · ·

∧ β̌n

an
)−(2

n∑
i=1

1

σ̂2
i+1

)−1

:=m a.s.,

which is the required assertion (7.1). Moreover, if m < 0, one can easily conclude
that

lim sup
t→∞

ln Ii
t

< 0, i = 1, . . . , n a.s.,

which indicates that limt→∞ Ii = 0, i = 1, . . . , n. In other words, the disease
Ii, i = 1, . . . , n will tend to zero exponentially with probability one. Through
system (1.4) and (1.1)’s equations expression, we can easily analyze that when
limt→∞ I(t) = 0 a.s., in that way limt→∞ A(t) = 0 a.s. This completes the proof.
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6. Simulation
In this section, we will test our theory conclusion by the Milstein’s Higher Order
Method in [8] to obtain the following discretization transformation of system (1.2).

Sj+1 =Sj + [µ(S0 − Sj)− r

n∑
i=1

βiIi,jSj ]△t+ σ1Sj

√
△t+

σ2
1Sj

2
(ε1,j△t−△t),

I1,j+1 =I1,j+[r

n∑
i=1

βiIi,jSj−(µ+γ1)I1,j ]△t+σ2I1,j
√

△t+
σ2
2I1,j
2

(ε2,j△t−△t),

Ii,j+1 =Ii,j+[γi−1Ii−1,j−(γi+µ)Ii,j ]△t+σi+1Ii,j
√
△t+

σ2
i+1Ii,j

2
(εi+1,j△t−△t),

2 ≤ i ≤ n,

where the time increment △t > 0, σ2
i > 0(i = 1, 2, . . . , n + 1) are the intensities of

the white noise, εi,j(i = 1, 2, . . . , n+1) are independent Gaussian random variables
which follow the distribution N(0, 1). First we consider the situation of system (1.2)
with constant coefficients when n = 4. Its corresponding deterministic model (1.1)
for parametric values are given by [10]:

Table 1. The parameter values.
Parameter Interpretation Value
γi Progression rates by group (13.0, 0.177, 0.177, 0.333)
βi Relative infection rate (1.9, 0.019, 0.019, 0.19)
r Partner acquisition rate 5 partners/year
µ Total removal rate 0.07 yr1
S0 Normalized infection-free equilibrium 1
R0 Reproductive number 3.9

Here we choose σ1 = 0.3, σ2 = 0.2, σ3 = 0.1, σ4 = 0.2 and σ5 = 0.2 respectively.
Thus we obtain:

Case1

dS(t) = [0.07(1.5− S(t))−5(1.9I1(t)+0.019I2(t)+0.019I3(t)+0.19I4(t))S(t)]dt

+ 0.3S(t)dB1(t),

dI1(t) =[5(1.9I1(t)+0.019I2(t)+0.019I3(t)+0.19I4(t))S(t)−(0.07+13)I1(t)]dt

+ 0.2I1(t)dB2(t),

dI2(t) =[13I1(t)− (0.0.07 + 0.177)I2(t)]dt+ 0.2I2(t)dB3(t),

dI3(t) =[0.177I1(t)− (0.0.07 + 0.177)I3(t)]dt+ 0.1I2(t)dB4(t),

dI4(t) =[0.177I1(t)− (0.0.07 + 0.333)I4(t)]dt+ 0.2I2(t)dB3(t).

According to the condition of deterministic model, we can obtain that system (1.2)
has a unique stationary distribution π(·) and it has the ergodic property when
the solution (S(t), I1(t), I2(t), I3(t), I4(t)) of system (1.1) with any initial value
(S(0), I1(0), I2(0), I3(0), I4(0)) = (0.7, 0.3, 0.3, 0.3, 0.3) ∈ R5

+. That is to say, the
disease will prevail. Using the Milstein’s Higher Order Method, we give the simu-
lations shown in Fig.2 to support our results.
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Figure 2. (S(t), I1(t), I2(t), I3(t), I4(t)) has ergodic property. The pictures on the right are the density
functions of system (1.1) for σ1 = 0.3, σ2 = 0.2, σ3 = 0.1, σ4 = 0.2 and σ5 = 0.2. We employ the
Milstein’s Higher Order Method with initial value (S(0), I1(0), I2(0), I3(0), I4(0)) = (0.3, 0.7, 0.3).

Table 2. The parameter values.
Parameter Interpretation Value
γi Progression rates by group (13.0, 0.23553, 0.23553, 0.47)
βi Relative infection rate (0.87, 0.0196, 0.0196, 0.1802)
r Partner acquisition rate 5 partners/year
µ Total removal rate 0.07 yr1
S0 Normalized infection-free equilibrium 1
R0 Reproductive number 1.88

If the corresponding deterministic model (1.1) for parametric values are given
by [6]:

Here we choose σ1 = 0.8, σ2 = 0.9, σ3 = 0.9, σ4 = 0.9 and σ5 = 0.9 respectively.
Thus we obtain:

Case2

dS(t)=[0.07(1−S(t))−5(0.87I1(t)+0.0196I2(t)+0.0196I3(t)+0.1802I4(t))S(t)]dt

+ 0.8S(t)dB1(t),

dI1(t)=[5(0.87I1(t)+0.0196I2(t)+0.0196I3(t)+0.1802I4(t))S(t)

− (0.07+13)I1(t)]dt+ 0.9I1(t)dB2(t),

dI2(t)=[13I1(t)− (0.007 + 0.25553)I2(t)]dt+ 0.9I2(t)dB3(t),

dI3(t)=[0.25553I1(t)− (0.007 + 0.25553)I3(t)]dt+ 0.9I2(t)dB4(t),

dI4(t)=[0.25553I1(t)− (0.007 + 0.47)I4(t)]dt+ 0.9I2(t)dB3(t).

According to the condition of deterministic model, we can obtain that I1(t), I2(t),
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I3(t) and I4(t) will tends to zero exponentially with probability one. That is to say,
the disease will die out. Using the Milstein’s Higher Order Method, we give the
simulations shown in Fig.3 to support our results.
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Figure 3. I1(t)) I2(t), I3(t) and I4(t) will tends to zero exponentially with probability one. The pictures
on the right are the density functions of system (1.1) for σ1 = 0.8, σ2 = 0.9, σ3 = 0.9, σ4 = 0.9 and
σ5 = 0.9. We use the Milstein’s Higher Order Method with initial value (S(0), I1(0), I2(0), I3(0), I4(0)) =
(0.7, 0.3, 0.3, 0.3, 0.3).

Then we consider persistence and stationary distribution of system(1.4), when
n = 4. Let the generator of the Markov chain γij be

Γ =

−0.1 0.1

0.3 −0.3

 ,

in which γij is a right-continuous Markov chain taking value in M = {1, 2}. By
solving the linear equation (2.3) we obtain the unique stationary (probability) dis-
tribution

π = (π1, π2) = (0.75, 0.25).

We can get the SDE (1.4) as the result of the following forms switching from Case1
to Case2 according to the movement of the Markovian chain. Compute

Rs
0 :=

(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

∑L
l=1 πl(µ(l) + γ1(l) +

σ2
2(l)
2 )

+

n∑
i=2

(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )
∑L

l=1 πl(µ(l) + γ1(l) +
σ2
2(l)
2 )

≈ 2.626 > 1.
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Therefore by condition of Theorems (4.1), as the result of Markovian switch-
ing, the solution (S(t), I1(t), I2(t), I3(t), I4(t)) of system (1.4) with initial value
(S(0), I1(0), I2(t), I3(0), I4(0)) = (0.7, 0.3, 0.3, 0.3, 0.3) ∈ R5

+. System (1.4) switch-
ing from Case1 to Case2, and the disease will prevail. Using the Milstein’s Higher
Order Method, we give the simulations shown in Fig.4 Fig.5 Fig.6 and Fig.7 to
support our results.

Figure 4. (S(t), I1(t), I2(t), I3(t), I4(t)) is positive recurrence. The pictures on the left are Marko-
vian chain. The pictures on the right are the density functions of system (1.4) for l ∈ M = {1, 2}.
We employ the Milstein’s Higher Order Method with initial value (S(0), I1(0), I2(0), I3(0), I4(0)) =
(0.7, 0.3, 0.3, 0.3, 0.3).

Finally we consider extinction of system(1.4), when n = 4. Let the white noise
exchange to σ1 = (13.5, 14), σ2 = (14, 14.5), σ3 = (14, 14.5), σ4 = (14, 14.5) and
σ5 = (14, 14.5) respectively.

We can get the SDE (1.4) as the result of the following forms switching from
Case1 to Case2 according to the movement of the Markovian chain.

As lim supt→∞ E[Z(t)] ≤ S0µ̌
µ̂ we can compute

m ≤(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1

+ R̃0(
β̌1

a1

∨
· · ·

∨ β̌n

an
)− R̃0(

β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1 ≈ −2.782 < 0.

Therefore by condition of Theorems (5.1), we can obtain that I1(t), I2(t), I3(t)
and I4(t) will tends to zero exponentially with probability one. That is to say,
the disease will die out. Using the Milstein’s Higher Order Method, we give the
simulations shown in Fig.8 to support our results.
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Figure 5. Computer simulation of a single path of (S(t), I1(t), I2(t), I3(t), I4(t)) for the SDE model
(1.4) with intial condition (0.7, 0.3, 0.3, 0.3, 0.3).

Figure 6. Computer simulation of 1000 pathes of (S(t), I1(t), I2(t), I3(t), I4(t)) for the SDE model
(1.4).

7. Conclusion
In previous articles, we have studied a simple three-dimensional stochastic SP infec-
tious disease model, but the infectious disease model in real life is very complicated,
and there are many situations. Therefore in this paper, we further extended from
studying 3D SP models to studying multidimensional SP models. In this multi-
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Figure 7. This picture is the 95% confidence intervals from 1000 stochastic simulations.

Figure 8. I1(t), I2(t), I3(t) and I4(t) will tends to zero exponentially with probability one. The
pictures on the left are Markovian chain. The pictures on the right are the density functions of sys-
tem (1.4) for l ∈ M = {1, 2}. We employ the Milstein’s Higher Order Method with initial value
(S(0), I1(0), I2(0), I3(0), I4(0)) = (0.7, 0.3, 0.3, 0.3, 0.3).

dimensional SP epidemic model, improved the problems of the classic SP model,
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we further consider the interference of white noise and telegraph noise on the SP
stochastic epidemic model. Discussing the nature of the solution to the random-
ized SP infectious disease model is an important part of studying the dynamics of
infectious diseases.Therefore, in the first part of the article, we have proved and
calculated that the solution of the HIV SP random infectious disease model we
studied has existence and uniqueness meanwhile it is global. Next we have studied
the long-term behavior of our randomized SP epidemic model. We established con-
ditions for extinction and persistence of disease which both are sufficient but not
necessary. We also have proved that the SP model (1.4) has an ergodic stationary
distribution. About the persistence of the model, in the fourth part of the article,
we talked about the conditions under which the disease persists and whether the
disease continues to develop. In other words, we explored the long-term behavior of
this disease. The results of the discussion in the fourth section indicate the disease
is bounded, that is, the disease will be endemic and cannot spread to the entire
susceptible population or to extinction. The most concerned is the conditions for
the extinction of infectious diseases, we discuss the sufficient conditions for the ex-
tinction of infectious diseases in the fifth part of the article, this means that the
disease cannot spread or become endemic disease.

In this article we also found some very interesting conclusions, that is the be-
havior of a stochastic system has a certain relationship with the behavior of each
equations in the system. About the persistence of the system, we have found that
if all the conditions in Theorem 4.1 are satisfied, then all the equations in (1.4) is
stochastically permanent, respectively. Hence according to theorem 4.1 we can get
the conclusion that if every individual equations are stochastically permanent, then
as the result of Markovian switching, the overall behavior, i.e. SDE (1.4), remains
stochastically permanent. The same reason, if Theorem 5.1’s conditions are both
satisfied, for some l ∈ M, then every individual equations in (1.4) are extinctive.
Hence Theorem 5.1 shows that if every individual equations are extinctive, then
as the result of Markovian switching, the overall behavior of SDE (1.4) remains
extinctive.

However, Theorems 4.1 and 5.1 provide more interesting results that if some
individual equations in (1.4) are random permanent while some are extinctive, again
as the result of Markovian switching, the overall behavior of SDE (1.4) may be
stochastically permanent or extinctive, depending on the sign of the stationary
distribution (π1, . . . , πL) of the Markov chain ξ(t).

Above mentioned conclusion shows that the stationary distribution (π1, . . . , πL)
of the Markov chain ξ(t) plays an important role in determining extinction or per-
sistence of the infectious disease in the population. We have come to the clear
conditions for the extinction or persistence of this infectious disease:

(1) Let (S(t), I1(t), . . . , In(t)) be the positive solution of system (1.4). Then for
almost ω ∈ Ω, we obtain

lim sup
t→∞

1

t
ln{

n−1∑
i=1

[
β̌i

µ̂+ γ̂i
+

n∑
j=i+1

β̌jqj
(µ̂+ γ̂j)qi

]Ii +
β̌n

µ̂+ γ̂n
In ≤ m a.s., (7.1)

where qi =
∏i−1

j=1
γ̌j

γ̂j+µ̂ , i = 2, . . . , n and R̃0 =

n∑
i=1

řβ̌iqiS
0

γ̂i + µ̂
,

m =(R̃0 − 1)(
β̌1

a1

∧
· · ·

∧ β̌n

an
)ER̃0≤1 + (R̃0 − 1)(

β̌1

a1

∨
· · ·

∨ β̌n

an
)ER̃0>1
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+
R̃0

S0
(
β̌1

a1

∨
· · ·

∨ β̌n

an
)

L∑
l=1

πl

∫
R+

Zν(dZ, k)

− R̃0(
β̌1

a1

∧
· · ·

∧ β̌n

an
)− (2

n∑
i=1

1

σ̂2
i+1

)−1

and ai = β̌i

µ̂+γ̂i
+

∑n
j=i+1

β̌jqj
(µ̂+γ̂j)qi

, i = 1, . . . , n − 1, an = β̌n

µ̂+γ̂n
. Particularly, if

m < 0, then the disease Ii, i = 1, . . . , n will go to extinction exponentially with
probability one, i.e.,

lim sup
t→∞

ln Ii
t

< 0, i = 1, . . . , n a.s.,

Furthermore, S(t) admits a unique ergodic stationary distribution ν(·, ·).
(2) Assume that Rs

0 > 1, then system (1.4) has a unique stationary distribution
π(·) and it has the ergodic property.

Let (S(t), I1(t), . . . , In(t), ξ(t)) be the solution of system (1.4) with initial value
(S(0), I1(0), . . . , In(0), ξ(0)) ∈ Rn+1

+ ×M. Assume that Rs
0 > 1, where

Rs
0 :=

(
∑L

l=1 πl

√
r(l)β1(l)µ(l)S0)2∑L

l=1 πl(µ(l) +
σ2
1(l)(l)
2 )

∑L
l=1 πl(µ(l) + γ1(l) +

σ2
2(l)
2 )

+
n∑

i=2

(
∑L

l=1 πl
i+1

√
r(l)βi(l)µ(l)S0

∏i
j=2 γj−1(l))

i+1∑L
l=1 πl(µ(l) +

σ2
1(l)
2 )

∏i
j=2

∑L
l=1 πl(µ(l) + γj(l) +

σ2
j+1(l)

2 )
∑L

l=1 πl(µ(l) + γ1(l) +
σ2
2(l)
2 )

,

then (S(t), I1(t), . . . , In(t), ξ(t)) is persistence and has an ergodic stationary distri-
bution.

Finally, this paper is only a first step in introducing switching regime into an SP
epidemic model. In the course of our future study and research we will introduce
white and color noises into more realistic SP epidemic models, and use the con-
clusions of these random infectious disease mathematical models to solve practical
problems.
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