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STATIONARY DISTRIBUTION AND
CONTROL STRATEGY OF A STOCHASTIC

DENGUE MODEL WITH SPATIAL
DIFFUSION∗

Kangkang Chang1, Qimin Zhang1,† and Huaimin Yuan2

Abstract In this paper, we establish a dengue model, which is described
by the spatial diffusion and Brownian motion, and discuss the stationary dis-
tribution and optimal control of the stochastic dengue model. At first, we
show the existence of the global positive solution by constructing Lyapunov
function. The sufficient conditions are given for the existence and uniqueness
of stationary distribution of the positive solution. Subsequently, we intro-
duce the control strategy, namely, decrease the infected individual and spray
mosquito insecticides. The first order necessary conditions are derived for the
existence of optimal control by applying Pontryagins maximum principle. Fi-
nally, numerical simulations are introduced to confirm the analytical results.
The simulation results verified the existence of stationary distribution, and
there are certain differences in the solutions of the stationary distribution in
different spaces. The influence of different noise intensity on the stationary
distribution and the effect of different control strategy for stochastic dengue
fever.

Keywords Stationary distribution, control strategy, Stochastic dengue model,
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1. Introduction
As we all know, there is a long history of models for the spread of mosquito-borne
infection, including both spatial and stochastic models [1,6,7,13,14,21,25–27,30,31].
Dengue fever is an infectious disease transmitted by mosquitoes. The disease breaks
out in different areas almost every year. Since January 2020, some countries in the
world have successively broken out dengue fever epidemics of varying degrees, such
as Brazil, Singapore, Laos, Malaysia, Pakistan and India, as of 30 May, 558,767
dengue cases (including 357 deaths) had been confirmed in Brazil (International
Travel Health Advisory Network), by 17 August, Singapore had reported a total of
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25,053 suspected cases (including 20 deaths) (International Travel Health Advisory
Network) of dengue fever, Malaysia had 78,303 dengue cases (including 127 deaths)
as of 3 October (International Travel Health Advisory Network). From the above
data, we can see that dengue fever still poses a great threat to human public health.
Therefore, it is necessary to study the dynamic behavior of dengue virus and how
to control the spread of dengue disease.

Mathematical models have become an important tool in understanding the
transmission mechanisms of dengue epidemic. As far as we know there are dif-
ferent forms of dengue models, here we consider the following dengue model [3]:

dSH

dt = µhNH − µSH − βHb
NH+mSHIV ,

dIH
dt = βHb

NH+mSHIV − (µ+ γH)IH ,
dRH

dt = γHIH − µRH ,
dSV

dt = A− νSV − βV b
NH+mSV IH ,

dIV
dt = βV b

NH+mSV IH − νIV ,

SH > 0, IH > 0, RH > 0, SV > 0, IV > 0,

(1.1)

where SH(t), IH(t) and RH(t) represent the human population densities of suscep-
tible, infectious and recovery, at time t, respectively. NH is the human population
and NH = SH + IH + RH . SV (t) and IV (t) represent the mosquitoes population
densities of susceptible and infectious, respectively. m represents the densities of al-
ternative hosts. µh is the birth rate of human. Natural death rate of human is given
by µ. γH denotes the recovery rate of human. A represents the recruitment rate
of mosquitoes. ν is the nature death rate of mosquitoes. b is the mosquitoes biting
rate. βH denotes the transmission rate of dengue to the human from the mosquito.
βV represents the transmission rate of dengue to the mosquito from human.

About the system (1.1), a lot of work on dynamics behavior was discovered
[8, 23, 24, 29]. For example, Tridip Sardar et al. given a compartmental model of
dengue transmission with memory and analyzed the stability of equilibrium [23].
Jean Jules Tewa et al. [24] studied the stability analysis of disease-free and endemic
cases. Min Zhu et al. [29] considered a dengue fever with nonlocal incidence and free
boundaries, and proposed spatial-temporal risk index and analyzed the relationship
between different model variables according to the risk index. In order to reveal
the effect of stochastic noise, some scholars have introduced stochastic processes
based on Brownian motion into system (1.1). For instance, Wei Sun et al. [22]
introduced the stochastic perturbations into a deterministic compartmental model
for a dengue, and obtained that stochastic perturbation can improve the stability of
the disease-free equilibrium point. Q. Liu et al. [12] studied the dynamical behavior
of a stochastic SIR-SI dengue model. They obtained sufficient conditions for the
existence of an stationary distribution and extinction of the diseases.

Besides, when dengue breaks outbreak, it imposes a huge financial burden which
includes unemployment and medical expenses. Hence, from epidemiological and
economic point of view, how to control the spread of dengue fever is a meaningful
question. To solve these problems, the optimal control strategy is proposed. For
example, Ahmed Abdelrazec et al. [2] introduced larval populations into system
(1.1), and investigated the impact of limited public health resources on dengue
transmission and control. Helena Sofia Rodriguesa et al. [20] used vaccination as
control strategy, and showed the optimal control in two different ways. Helena Sofia
Rodrigues et al. [19] discussed mosquito population control strategies, and showed
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that the implementation of controls has a positive impact on reducing the number
of infected. However, references [2,19,20] used a single control strategy, and did not
consider the effects of space diffusion. As far as we know, the range of humans and
mosquitoes is not fixed, so the dengue virus can spread from one region to another
when humans and mosquitoes are in different spatial locations. Hence, it makes
sense to consider spatial diffusion.

Based on the above analysis, in this paper, we propose a new dengue model,
which is described by the spatial diffusion and Brownian motion, and analyze the
stationary distribution and optimal control of the model. Here, we adopt a mixed
control strategy, namely, treat the infected individual and spray mosquito insecti-
cides, and we compare the effects of different strategies for infected. The innovations
of this paper are: (1) we introduce spatial diffusion and Brownian motion into the
system (1.1), and the resulting model is an extension of the previous literature;
(2) we present the positive solution of stationary distribution for stochastic dengue
model with spatial diffusion; meanwhile, the sufficient conditions are given for the
existence and uniqueness of stationary distribution of the solution; (3) we analyze
how to control the dengue epidemic, namely, treat the infected individual and spray
mosquito insecticides. The necessary conditions for the effective control of dengue
model are derived.

The structure of the article is as follows. We propose a new model with the
spatial diffusion and Brownian motion and give the preliminary knowledge in next
Section. In Section 3, we first present the positive solution of stationary distribu-
tion. Then, the sufficient conditions are given for the existence and uniqueness of
stationary distribution of the solution to the dengue model. In Section 4, we analyze
the optimal control of system; the first order necessary conditions are derived for
the existence of optimal control by applying Pontryagins maximum principle. In
Section 5, numerical simulation is given to prove the theoretical results. In Section
6 concluding remarks are given.

2. Model and preliminary knowledge

In this section, we introduce the spatial diffusion and the Brownian motion into
system (1.1). In addition, in order to prove the latter theory, we give the preliminary
knowledge. Based on System (1.1), we first describe the following two cases:

(1) Due to the rapid development of modern means of transportation, such as
aircraft, high-speed rail, etc. This increases the rate of movement of people, which
increases the risk of contracting the virus, and also allows people who are already
infected to quickly carry the virus to another area.

(2) Although the distance of mosquitoes flying alone is relatively short, the
rapid development of transportation also creates convenient conditions for the cross-
regional transmission of mosquitoes.

Hence, in view of the spread of the infected area and the two conditions men-
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tioned above. We get the following model:

∂SH

∂t = d1△SH + µhNH − µSH − βHb
NH+mSHIV , x ∈ Ω, t > 0

∂IH
∂t = d2△IH + βHb

NH+mSHIV − (µ+ γH)IH , x ∈ Ω, t > 0
∂RH

∂t = d3△RH + γHIH − µRH , x ∈ Ω, t > 0
∂SV

∂t = d4△SV +A− νSV − βV b
NH+mSV IH , x ∈ Ω, t > 0

∂IV
∂t = d5△IV + βV b

NH+mSV IH − νIV , x ∈ Ω, t > 0

(2.1)

with boundary condition

∂SH
∂ν

=
∂IH
∂ν

=
∂RH
∂ν

=
∂SV
∂ν

=
∂IV
∂ν

= 0, x ∈ ∂Ω, t > 0, (2.2)

and initial condition

SH(x, 0) = SH,0(x), IH(x, 0) = IH,0(x), RH(x, 0) = RH,0(x),

SV (x, 0) = SV,0(x), IV (x, 0) = IV,0(x), x ∈ Ω.
(2.3)

SH(x, t), IH(x, t) and RH(x, t) represent the human population densities of suscep-
tible, infectious and recovery, at location x and time t. NH is the human population
and NH = SH + IH + RH . SV (x, t) and IV (x, t) represent the mosquitoes popu-
lation densities of susceptible and infectious, respectively. d1, d2, d3 represent the
diffusion coefficient of susceptible, infectious and recovery for human population,
respectively. d4, d5 denote the diffusion coefficient of susceptible and infectious for
mosquitoes population, respectively. Ω is a bounded domain with smooth bound-
ary.

The death of humans and mosquitoes can be influenced by external environ-
mental factors, such as outbreaks of disease and other accidents in humans. For
mosquitoes, sudden changes in the weather, such as a sudden drop in temperature or
high temperature and less rain can affect the survival rate of mosquito larvae, as well
as mosquito control also can affect the survival of mosquitoes. Hence, we assume the
death rate is a random process. Next, we introduce the Gaussian white noise ηi(t)
(with zero mean and unit covariance) and Brownian motion Bi(t) (in fact, white
noise is often defined as the informal derivative of a Brownian motion [10, Definition
11.6.3]), which has the following form:

µ = µ+ ξ1η1(t), ν = ν + ξ2η2(t) and dBi(t) = ηi(t)dt (i = 1, 2), (2.4)

ξi is the intensity of noise. Substituting (2.4) into system (2.1) implies the following
stochastic system

dSH = [d1△SH + µhNH − µSH − βHb
NH+mSHIV ]dt− ξ1(t)SHdB1(t),

dIH = [d2△IH + βHb
NH+mSHIV − γHIH − µIH ]dt− ξ1(t)IHdB1(t),

dRH = [d3△RH + γHIH − µRH ]dt− ξ1(t)RHdB1(t),

dSV = [d4△SV +A− νSV − βV b
NH+mSV IH ]dt− ξ2(t)SV dB2(t),

dIV = [d5△IV + βV b
NH+mSV IH − νIV ]dt− ξ2(t)IV dB2(t),

(2.5)

with boundary condition

∂SH
∂ν

=
∂IH
∂ν

=
∂RH
∂ν

=
∂SV
∂ν

=
∂IV
∂ν

= 0, x ∈ ∂Ω, t > 0,
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and initial condition

SH(x, 0) = SH,0(x), IH(x, 0) = IH,0(x), RH(x, 0) = RH,0(x),

SV (x, 0) = SV,0(x), IV (x, 0) = IV,0(x), x ∈ Ω.

Let B be a linear operator defined by

B



SH

IH

RH

SV

IV


=



d1△SH

d2△IH

d3△RH

d4△SV

d5△IV


. (2.6)

Then, we define a nonlinear operator C by

C



SH

IH

RH

SV

IV


=



µhNH − µSH − βHb
NH+mSHIV − ξ1(t)SHḂ1(t)

βHb
NH+mSHIV − γHIH − µIH − ξ1(t)IHḂ1(t)

γHIH − µRH − ξ1(t)RHḂ1(t)

A− νSV − βV b
NH+mSV IH − ξ2(t)SV Ḃ2(t)

βV b
NH+mSV IH − νIV − ξ2(t)IV Ḃ2(t)


. (2.7)

Let W(x, t) = (SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t))
T ; together with (2.6)

and (2.7), system (2.5) is rewritten as the following abstract Cauchy problem

d

dt
W(x, t) = BW(x, t) + CW(x, t). (2.8)

Let

V =H1(Ω)

={ϕ | ϕ ∈ L2(Ω),
∂ϕ

∂x
∈ L2(Ω), where ∂ϕ

∂x are generalized partial derivatives},

V
′
= H−1(Ω) is the dual space of V; we denote by ∥ · ∥ the norm in V, by ⟨·, ·⟩ the

duality product between V and V ′. Let (Ω,F , {Ft}t≥0, P ) be a complete probability
space, and Bi(t), (i = 1, 2) defined on (Ω,F , {Ft}t≥0, P ), R5

+ = (x1, x2, x3, x4, x5) ∈
R5, xi > 0, (i = 1, 2, 3, 4, 5). Next, we introduce a lemma that gives a criterion for
the existence of an ergodic stationary distribution to system (2.5).

Notation
g = sup

t→∞
g(t), g = inf

t→∞
g(t), (2.9)

here, g(t)is a continuous bounded function. In next section, we prove the stationary
distribution of system (2.5).
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3. Stationary distribution
In order to get the conclusion, we first give a lemma.

Lemma 3.1. For any initial data (SH,0, IH,0, RH,0, SV,0, IV,0), the solution W(x, t)
= (SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t)) of system (2.5), satisfies that

lim sup
t→∞

(SH(x, t) + IH(x, t) +RH(x, t) + SV (x, t) + IV (x, t)) <∞.

Proof. Let

N(t) =

∫
Ω

[SH(x, t) + IH(x, t) +RH(x, t) + SV (x, t) + IV (x, t)]dx,

by (2.5), we have

∂N(t)

∂t
=

∫
Ω

[
∂

∂t
SH(x, t) +

∂

∂t
IH(x, t) +

∂

∂t
RH(x, t) +

∂

∂t
SV (x, t) +

∂

∂t
IV (x, t)]dx

=

∫
Ω

[d1△SH + µhNH − µSH − βHb

NH +m
SHIV − ξ1(t)SHḂ1(t) + d2△IH

+
βHb

NH+m
SHIV −γHIH−µIH−ξ1(t)IHḂ1(t)+d3△RH+γHIH−µRH

− ξ1(t)RHḂ1(t) + d4△SV +A− νSV − βV b

NH +m
SV IH − ξ2(t)SV Ḃ2(t)

+ d5△IV +
βV b

NH +m
SV IH − νIV − ξ2(t)IV Ḃ2(t)]dx.

Next, we continue our process.
∂N(t)

∂t
≤d1

∫
∂Ω

(
∂

∂ν
SH(x, t))dx+ d2

∫
∂Ω

(
∂

∂ν
IH(x, t))dx+ d3

∫
∂Ω

(
∂

∂ν
RH(x, t))dx

+ d4

∫
∂Ω

(
∂

∂ν
SV (x, t))dx+ d5

∫
∂Ω

(
∂

∂ν
IV (x, t))dx

+

∫
Ω

(µhNH +A− µSH(x, t)− µIH(x, t)− µRH(x, t))− νSV (x, t)

− νIV (x, t)− ξ1(t)SHḂ1(t)− ξ1(t)IHḂ1(t)− ξ1(t)RHḂ1(t)

− ξ2(t)SV Ḃ2(t)− ξ2(t)IV Ḃ2(t))dx

≤(µhNH +A)|Ω| −BN(t)−
∫
Ω

(ξ1(t)SHḂ1(t) + ξ1(t)IHḂ1(t)

+ ξ1(t)RHḂ1(t) + ξ2(t)SV Ḃ2(t) + ξ2(t)IV Ḃ2(t))dx,

where |Ω| denotes the volume of Ω, B = min{µ, ν}. X(t) is the solution to the
following stochastic differential equation

dX(t) =[(µhNH +A)−BX(t)]dt−
∫
Ω

ξ1(s)SH(x, s)dxdB1(s)

−
∫
Ω

ξ1(s)IH(x, s)dxdB1(s)−
∫
Ω

ξ1(s)RH(x, s)dxdB1(s)

−
∫
Ω

ξ2(s)SV (x, s)dxdB2(s)−
∫
Ω

ξ2(s)IV (x, s)dxdB2(s),

X(0) =N(0).

(3.1)
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We get the solution to equation (3.1) in the following form

X(T ) =
µhNH +A

B
+ (X(0)− µhNH +A

B
)e−Bt + F (t),

where

F (t) =−
∫ t

0

e−B(t−s)
∫
Ω

ξ1(s)SH(x, s)dxdB1(s)

−
∫ t

0

e−B(t−s)
∫
Ω

ξ2(s)IH(x, s)dxdB1(s)

−
∫ t

0

e−B(t−s)
∫
Ω

ξ1(s)RH(x, s)dxdB1(s)

−
∫ t

0

e−B(t−s)
∫
Ω

ξ2(s)SV (x, s)dxdB2(s)

−
∫ t

0

e−B(t−s)
∫
Ω

ξ1(s)IV (x, s)dxdB2(s).

F(t) is a continuous local martingale with M(0) =0, a.s. On the basis of stochastic
comparison theorem, we obtain N(t) ≤ X(t), a.s.

Define X(t) = X(0) + G(t) − U(t) + F (t), G(t) = µhNH+A
B (1 − e−Bt) and

U(t) = X(0)(1− e−Bt). Obviously, G(t) and U(t) are continuous adapted increas-
ing processes on t ≥ 0 with G(0) =U(0) =0. In terms of the nonnegative semi-
martingale convergence theorem [15], we have limt→∞X(t) < ∞ a.s. Therefore,
lim supt→∞N(t) <∞, a.s. The proof is completed.

Next, we prove that there exists a unique positive solution of system (2.5).

Theorem 3.1. For any initial data (SH,0, IH,0, RH,0, SV,0, IV,0) > 0, there exists
a unique positive solution (SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t)) of system
(6) for t > 0 on Ω.

Proof. Since the coefficients of model (2.5) satisfy the local Lipschitz condition,
there is a unique local solution on t ∈ [0, τe), where τe is the explosion time. Let
l0 > 1 be sufficiently large for

1

l0
≤ min

0<t<τe
|W(x, t)| ≤ max

0<t<τe
|W(x, t)| ≤ l0,

For each integer l > l0, define the stopping time

τl = inf{t ∈ [0, τe] : min(SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t)) ≤
1

l
or max(SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t)) ≥ l}.

Let inf ∅ = ∞ (∅ represents the empty set). τl is increasing as l → ∞. Let
τ∞ = liml→∞ τl , then τ∞ < τe a.s. In the following, we need to show τ∞ = ∞ a.s.
Therefore, according to Itô¡¯s formula, we have

d(∥SH(x, t)∥2 + ∥IH(x, t)∥2 + ∥RH(x, t)∥2 + ∥Sv(x, t)∥2 + ∥Iv(x, t)∥2)

={2⟨SH(x, t), d1△SH + µhNH − µSH − βHb

NH +m
SHIV ⟩+ 2⟨IH(x, t), d2△IH



160 K. Chang, Q. Zhang & H. Yuan

+
βHb

NH +m
SHIV − γHIH − µIH⟩+ 2⟨RH(x, t), d3△RH + γHIH − µRH⟩

+ 2⟨SV (x, t), d4△SV +A− νSV − βV b

NH +m
SV IH⟩+ 2⟨IV (x, t), d5△IV

+
βV b

NH +m
SV IH−νIV ⟩+ξ21(t)∥SH(x, t)∥2+ξ21(t)∥IH(x, t)∥2+ξ21(t)∥RH(x, t)∥2

+ ξ22(t)∥SV (x, t)∥2 + ξ22(t)∥IV (x, t)∥2}dt+ 2⟨SH(x, t),−ξ1SH(x, t)dB1(t)⟩
+ 2⟨IH(x, t),−ξ1IH(x, t)dB1(t)⟩+ 2⟨RH(x, t),−ξ1RH(x, t)dB1(t)⟩+ 2⟨SV (x, t),
− ξ2SV (x, t)dB2(t)⟩+ 2⟨IV (x, t),−ξ2IV (x, t)dB2(t)⟩. (3.2)

Now, let l > l0 and T > 0; we can integrate both sides of (3.2) from 0 to τl ∧ T and
take expectations to get

E[∥SH(x, τl ∧ T )∥2 + ∥IH(x, τl ∧ T )∥2 + ∥RH(x, τl ∧ T )∥2 + ∥SV (x, τl ∧ T )∥2

+ ∥IV (x, τl ∧ T )∥2]− (∥SH,0∥2 + ∥IH,0∥2 + ∥RH,0∥2 + ∥SV,0∥2 + ∥IV,0∥2)

≤E
∫ τl∧T

0

{−2⟨∇SH(x, s), d1∇SH(x, s)⟩+ 2⟨µhNH , SH(x, s)⟩ − 2⟨∇IH(x, s),

d2IH(x, s)⟩+ 2⟨IH(x, s),
βHb

NH +m
SHIV ⟩ − 2⟨∇RH(x, s), d3∇RH(x, s)⟩

+ 2⟨Rh(x, s), γHIH⟩−2⟨∇SV (x, s), d4∇SV (x, s)⟩+2⟨SV (x, s), A⟩

− 2⟨∇IV (x, s), d5IV (x, s)⟩+ 2⟨IV (x, s),
βV b

NH +m
SV IH⟩+ ξ21∥SH(x, s)∥2

+ ξ21IH(x, s) + ξ21RH(x, s) + ξ22SV (x, s) + ξ22IV (x, s)}ds

≤E
∫ τl∧T

0

{−2d1λ0∥SH(x, s)∥2 + 2⟨µhNH , SH(x, s)⟩ − 2d2λ0∥IH(x, s)∥2

+ 2⟨IH(x, s),
βHb

NH +m
SHIV ⟩ − 2d3λ0∥Rh(x, s)∥2 + 2⟨Rh(x, s), γHIH⟩

− 2d4λ0∥SV (x, s)∥2 + 2⟨SV (x, s), A⟩ − 2d5λ0∥IV (x, s)∥2 + 2⟨IV (x, s),
βV b

NH +m
SV IH⟩+ ξ21∥SH(x, s)∥2 + ξ21∥IH(x, s)∥2 + ξ21∥RH(x, s)∥2

+ ξ22∥SV (x, s)∥2 + ξ22∥IV (x, s)∥2}ds,

where λ0 = infu∈H ∥∇u(x, s)∥2/∥u(x, s)∥2.

Then according to Lemma 3.1 and fundamental inequality, we have

E[∥SH(x, τl ∧ T )∥2 + ∥IH(x, τl ∧ T )∥2 + ∥RH(x, τl ∧ T )∥2 + ∥SV (x, τl ∧ T )∥2

+ ∥IV (x, τl ∧ T )∥2]

≤(∥SH,0∥2 + ∥IH,0∥2 + ∥RH,0∥2 + ∥SV,0∥2 + ∥IV,0∥2) + E

∫ τl∧T

0

{−2d1λ0

∥SH(x, s)∥2 + µ2
hN

2
H + ∥SH(x, s)∥2 − 2d2λ0∥IH(x, s)∥2 + ∥IH(x, s)∥2

+
β2
Hb

2

(NH +m)2
M2

1 ∥IV ∥2 − 2d3λ0∥Rh(x, s)∥2 + ∥Rh(x, s)∥2 + γ2H∥IH∥2 − 2d4

λ0∥SV (x, s)∥2+A2 + ∥SV (x, s)∥2−2d5λ0∥IV (x, s)∥2+∥IV (x, s)∥2+
β2
V b

2

(NH +m)2
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M2
1 ∥IH∥2+ξ21∥SH(x, s)∥2+ξ21IH(x, s)+ξ21RH(x, s)+ξ22SV (x, s)+ξ

2
2IV (x, s)}ds

≤M2 +M3E

∫ τl∧T

0

{∥SH(x, s)∥2 + ∥IH(x, s)∥2 + ∥RH(x, s)∥2 + ∥SV (x, s)∥2

+ ∥IV (x, s)∥2},

where

M2 =∥SH,0∥2 + ∥IH,0∥2 + ∥RH,0∥2 + ∥SV,0∥2 + ∥IV,0∥2 + (µ2
hN

2
H +A2)τl,

M3 =max{(1− 2d1λ0 + ξ21), (1− 2d2λ0 + γ2H + ξ21 +
β2
V b

2M2
1

(NH +m)2
), (1 + ξ21),

(1− 2d4λ0 + ξ22), (1− 2d5λ0 + ξ22 +
β2
V b

2M2
1

(NH +m)2
)}.

By the Gronwall inequality

E[∥SH(x, τl ∧ T )∥2 + ∥IH(x, τl ∧ T )∥2 + ∥RH(x, τl ∧ T )∥2

+ ∥SV (x, τl ∧ T )∥2 + ∥IV (x, τl ∧ T )∥2] ≤M2e
M3T .

(3.3)

By (3.3), l → ∞ means that

E[∥SH(x, T )∥2+∥IH(x, T )∥2+∥RH(x, T )∥2+∥SV (x, T )∥2+∥IV (x, T )∥2] ≤M2e
M3T .

Define

λl = inf
∥W(t)∥>l,0<t<∞

(∥SH(x, t)∥2 + ∥IH(x, t)∥2 + ∥RH(x, t)∥2

+ ∥SV (x, t)∥2 + ∥IV (x, t)∥2), for any l > l0.
(3.4)

Combine (3.3) and (3.4) to get

λlP (τl ≤ T ) ≤M2e
M3T .

Since liml→∞ λl = ∞, in the above inequality, let l → ∞, we can get P (τ∞ ≤ T ) =
0, namely,

P (τl ≥ T ) = 1.

This proof is completed. The above theorem represents the system (2.5) exists a
unique global solution. Next, we prove the boundness of the solution for system
(2.5).

Theorem 3.2. For any κ > 0, we have

max{E sup
0≤t≤T

∥SH(x, t)∥k, E sup
0≤t≤T

∥IH(x, t)∥k, E sup
0≤t≤T

∥RH(x, t)∥k,

E sup
0≤t≤T

∥SV (x, t)∥k, E sup
0≤t≤T

∥IV (x, t)∥k} ≤Mκ,

where Mκis a constant that depends on κ and the parameters in model (2.5).
The proof is shown in Appendix A.

Next, we give the sufficient conditions which are the existence and uniqueness
of stationary distribution of the solution to the dengue model.
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Definition 3.1 ( [11]). A stationary distribution for W(x, t), t ≥ 0, of Eq. (2.5)
is defined as a probability measure λ ∈ P (H) satisfying

λ(f) = λ(Ptf), t > 0,

here
λ(f) :=

∫
H
f(ψ)λ(dψ), Ptf(ψ) := Ef(W(x, t, ψ)), f ∈ Cb(H).

For λ1, λ2 ∈ P (H), define a metric on P (H) by

d(λ1, λ2) = sup
f∈A

|
∫
H
f(ψ)λ1(dψ)− f(φ)λ2(dφ)|,

where

A := {f : H → R, |f(ψ)− f(φ)| ≤ |ψ − φ|H, ψ, φ ∈ H and |f(·)| ≤ 1}.

P (H) is complete under the metric d(·, ·). Therefore, we have the following
lemma

Lemma 3.2. For any bounded subset B of H, m ≥ 1, we have

(i) lim
t→∞

sup
ψ,φ∈B

E∥W(x, t, ψ)−W(x, t, φ)∥mH = 0;

(ii) lim
t→∞

sup
ψ∈B

E∥W(x, t, ψ)∥mH <∞.

Proof. The Theorem 3.2 is equal to condition (ii) in Lemma 3.2; and the condition
(i) in Lemma 3.2 is proved in Theorem 3.3, hence, we are not prove.

Theorem 3.3. For system (2.5), if there is a constant η > 0, k > 1, such that
η + M5 > 0, then, there exists a unique stationary distribution λ ∈ P (H) for
W(x, t) = (SH(x, t), IH(x, t), RH(x, t), SV (x, t), IV (x, t)), t ≥ 0.

The proof is shown in Appendix B.
Above, we prove the existence and uniqueness of the stationary distribution of

the system (2.5). Next, considering the optimal control problem, we derive the
first order necessary conditions for the existence of optimal control by applying
Pontryagins maximum principle.

4. Optimal control problem
In this section, we show an optimal control problem of system (2.5) by implementing
both treatment for infected individuals and the spray insecticide for mosquito. We
aim to reduce the infected individuals, while keeping the cost to apply the control
at the minimum level. Next, we introduce the control variables.

(1) Reducing the number of dengue infected individuals. To increase awareness
and understanding of the disease and reduce the risk of infection by educating
people on prevention methods of dengue fever. We use u1 as the treatment control
of decrease dengue infection individuals.
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(2) Reducing the number of mosquito. In our daily life, we use insecticides or
repellents to kill mosquitoes. We use u2 as a control variable against the mosquito.
Thus, we study the following optimal control problem of system (2.5).



dSH = [d1△SH + µhNH − µSH − βHb

NH +m
SHIV ]dt− ξ1(t)SHdB1(t),

dIH = [d2△IH +
βHb

NH +m
SHIV − δ1u1IH − γHIH − µIH ]dt− ξ1(t)IHdB1(t),

dRH = [d3△RH + δ1u1IH + γHIH − µRH ]dt− ξ1(t)RHdB1(t),

dSV = [d4△SV +A− δ2u2SV − νSV − βV b

NH +m
SV IH ]dt− ξ2(t)SV dB2(t),

dIV = [d5△IV +
βV b

NH +m
SV IH − δ2u2IV − νIV ]dt− ξ2(t)IV dB2(t),

(4.1)
where δ1 and δ2 represent the effectiveness of control variable u1 and u2, repre-
sentably. Next, the objective function is as follows:

J(u1, u2) = E{
∫ T

0

∫
Ω

L(IH(x, t), u1(t), u2(t))dxdt+

∫
Ω

h(IH(x, T ))dx}, (4.2)

here, L(IH(x, t), u1, u2) = B1IH(x, t) + 1
2B2u

2
1 +

1
2B3u

2
2, h(IH(x, T )) is a function

of infective individual at terminal time T. Note that we only consider minimizing
the number of infected individuals. Bi, (i = 1, 2, 3) are weight for IH , u1 and u2.
Our goal is to point out an optimal control pair (u∗1, u

∗
2) such that

J(u∗1, u
∗
2) = min

u1,u2∈U
J(u1, u2),

where the control set U is considered as

U ={u1(x, t), u2(x, t) are Lebesgue measurable,
0 ≤ u1(x, t), u2(x, t) ≤ 1, t ∈ [0, T ]}.

(4.3)

Next using the results in [4, 28], the existence of the optimal control pair is given.

Theorem 4.1. There exists an optimal control pair (u∗1, u
∗
2), for J(u∗1, u

∗
2) =

minu1,u2∈U J(u1, u2).

Proof. The objective functional (4.2) is convex respect to the control variables
u1, u2 as the control and state variables are all nonnegative. The convexity and
closedness of the admissible control set U can also be indicated by the definition in
(4.3). Therefore, the optimal control is bounded and the necessary conditions for
the existence of the optimal control u∗1, u∗2 are satisfied. The theorem is proved.

Further, we figure out the optimal control, by constructing the Hamiltonian
function [28] and using Pontryagin’s maximum principle [18].

Theorem 4.2. There exist a first-order adjoint process (p(x, t), q(x, t)), satisfying
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the following adjoint equation:

dp1(x, t) =− {[d1△− µ− βHb

NH +m
IV ]p1(x, t) +

βHb

NH +m
IV p2(x, t)

− ξ1(t)q1(x, t)}dt+ q1(x, t)dB1(t),

dp2(x, t) =− {[d2△− δ1u1 − γH − µ]p2(x, t)−
βV b

NH +m
SV p4(t)(x, t)

+ [δ1u1 + γH ]p3(x, t) +
βV b

NH +m
SV p5(x, t)− ξ1(t)q2(x, t)

+B1}dt+ q2(x, t)dB1(t),

dp3(x, t) =− {[d3△− µ− (µ0]p3(x, t)− ξ1(t)q3(x, t)}dt+ q3(x, t)dB1(t),

dp4(x, t) =− {[d4△− δ2u2 − ν − βV b

NH +m
IH ]p4(x, t)

βV b

NH +m
IHp5(t)

− ξ2(t)q4(x, t)}dt+ q4(x, t)dB1(t),

dp5(x, t) =− {− βHb

NH +m
SHp1(x, t) +

βHb

NH +m
SHp2(x, t)− νp5(x, t)

(d5△− δ2u2)p5(x, t)− ξ2(t)q5(x, t)}dt+ q5(x, t)dB1(t),

p1(x, T ) =hSH
(SH(x, T )), p2(x, T ) = hIH (IH(x, T )), p3(x, T ) = hRH

(RH(x, T )),

p4(x, T ) =hSV
(SV (x, T )), p5(x, T ) = hIV (IV (x, T )).

(4.4)
Furthermore, the optimal control is given as follows:{

u∗1 = min{max{ (p2−p3)δ1IH
B2

, 0}, 1},
u∗2 = min{max{ δ2SV p4+δ2IV p5

B3
, 0}, 1}.

(4.5)

Proof. We define H as the Hamiltonian, and we can get equation (4.4) by di-
rect calculating. Moreover, The u∗1 and u∗2 are obtained by using the optimality
conditions ∂H

∂u1
= 0 and ∂H

∂u2
= 0, respectively. Hence, we have u1 = (p2−p3)δ1IH

B2
,

u2 = δ2SV p4+δ2IV p5
B3

.
According to control set (4.5), we obtain

u∗1 =



0, if (p2 − p3)δ1IH
B2

< 0,

(p2 − p3)δ1IH
B2

, if 0 ≤ (p2 − p3)δ1IH
B2

≤ 1,

1, if (p2 − p3)δ1IH
B2

> 1,

u∗2 =



0, if δ2SV p4 + δ2IV p5
B3

< 0,

δ2SV p4 + δ2IV p5
B3

, if 0 ≤ δ2SV p4 + δ2IV p5
B3

≤ 1,

1, if δ2SV p4 + δ2IV p5
B3

> 1.

Hence the optimal value of the functional can be obtained.



Stochastic dengue model 165

5. Numerical simulations
5.1. Numerical simulations of stationary distribution
In order to better understand our results, we present the numerical simulation in
this section. Based on the Milstein’s method [5], the discrete form of system (2.5)
is given as follows and give the algorithm process.

SH(i,j+1) =SH(i,j) + [d1
SH(i+1,j) − 2SH(i,j) + SH(i−1,j)

(△x)2
+ µhNH − µSH(i,j)

− βHb

NH +m
SH(i,j)IV (i,j)]△t− ξ1SH(i,j)ςj −

ξ21
2
S2
H(i,j)(ς

2
j − 1)△t,

IH(i,j+1) =IH(i,j) + [d2
IH(i+1,j) − 2IH(i,j) + IH(i−1,j)

(△x)2
+

βHb

NH +m
SH(i,j)IV (i,j)

− γHIH(i,j) − µIH(i,j)]△t− ξ1IH(i,j)ςj −
ξ21
2
I2H(i,j)(ς

2
j − 1)△t,

RH(i,j+1) =RH(i,j) + [d3
RH(i+1,j) − 2RH(i,j) +RH(i−1,j)

(△x)2
+ γHIH(i,j)

− µRH(i,j)]△t− ξ1RH(i,j)ςj −
ξ21
2
R2
H(i,j)(ς

2
j − 1)△t,

SV (i,j+1) =SV (i,j) + [d4
SV (i+1,j) − 2SV (i,j) + SV (i−1,j)

(△x)2
+A− νSV (i,j)

− βV b

NH +m
SV (i,j)IH(i,j)]△t− ξ2SV (i,j)ςj −

ξ22
2
S2
V (i,j)(ς

2
j − 1)△t,

IV (i,j+1) =IV (i,j) + [d5
IV (i+1,j) − 2IV (i,j) + IV (i−1,j)

(△x)2
+

βV b

NH +m
SV (i,j)IH(i,j)

− νIV (i,j)]△t− ξ2IV (i,j)ςj −
ξ22
2
I2V (i,j)(ς

2
j − 1)△t,

where ςj , (j = 1, 2, 3) are independent Gaussian random variables N(0, 1). The
parameter values are chosen as follows:
βH = 0.75 [16, 17], b = 0.5, NH +m = 55, µhNH = 14, µ = 0.125, βV = 0.5 [16, 17],
γH = 1.4 [9], A = 5, ν = 0.8 [9], ξ1 = 0.01, ξ2 = 0.01, d1 = 0.015, d2 = 0.020, d3 =
0.015, d4 = d5 = 0.01.

Next, we verify the existence of the stationary distribution from the perspec-
tive of numerical simulation. In figure 1, the left column shows the paths of
SH(x, t), IH(x, t), RH(x, t), SV (x, t) and IV (x, t) , respectively. We can see that
the existence of stationary distribution of the solution for system (2.5). The right
column displays the profile map of SH(x, t), IH(x, t), RH(x, t), SV (x, t) and IV (x, t).
The curves with different colors represent the changes in time in different spaces, and
we can see that there are certain differences in the solutions of the stationary distri-
bution in different spaces. In figure 2, we give the histograms of SH(x, t), IH(x, t),
RH(x, t), SV (x, t) and IV (x, t), respectively, we can know that there is a station-
ary distribution. In figure 3, we give the effect of different noise intensity for the
stationary distribution of system (2.5) depended on time; when ε = 0, we can see
amplitude of fluctuation is slight, but with the increase of ε, the amplitude of fluc-
tuation becomes larger and larger. Hence, we can conclude that the distribution
tends to be stable for lower intensity of volatility.
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Figure 1. The solutions are observed in system (2.5) under initial conditions (SH,0(x), IH,0(x), RH,0(x),
SV,0(x), IV,0(x)) = (33 + sin πx
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Figure 2. The histograms of SH , IH , RH , SV , IV
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Figure 3. The evolution of a single path of SH , IH , RH , SV , IV for different noise intensity

5.2. Numerical simulations of the optimal control
In this section, we compare the effects of different control intensity on dengue
transmission, and by using the Milsteins method [5] to discrete the system (4.1).
In Figures 4 and 5, we can see that infected individuals and mosquito populations
decrease when a control strategy is introduced; however, we can observe that the
number of individuals infected by humans and mosquitoes gradually decreases when
the two control strategies is introduced, and as the control is increased, the num-
ber of individuals infected by humans and mosquitoes has greatly decreased from
Figure 6.
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Figure 4. The effects of treating infected individuals
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Figure 5. The effects of mosquito control
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Figure 6. The effects of both control measures
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Figure 7. The graph for the two controls

6. Concluding remarks
Here, we proposed and analyzed a stochastic dengue model combine with spatial dif-
fusion. In the first part, we analyzed the stationary distribution of system (2.5). The
positive solution of stationary distribution is given by Theorem 3.1, the sufficient
conditions are obtained for the existence and uniqueness of stationary distribution
of the solution by virtue of Theorem 3.3. Subsequently, we introduced the control
strategy, namely, decrease the number of infected individual and spray mosquito
insecticides. The necessary conditions for the effective control of system (4.1) are
derived by applying Pontryagin’s maximum principle. We have considered the ef-
fects of different control strategy, when the two control strategies is introduced,
the number of infected individuals decreases sharply. Finally, it is still a problem
worth further discussion, because the system may be disturbed by other random
factors, such as impulsive perturbations, Markov switching, Lévy jumps, etc. We
will explore these issues in our future work.
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APPENDIX A: THE PROOF OF THEOREM 3.2
Proof. First, we consider κ > 1. By applying the Itô′s formula and taking ex-
ception, we have

E sup
0≤t≤T

∥SH(x, s)∥k + ∥IH(x, s)∥k + ∥RH(x, s)∥k + ∥SV (x, s)∥k + ∥IV (x, s)∥k]

− E sup
0≤t≤T

(∥SH,0∥k + ∥IH,0∥k + ∥RH,0∥k + ∥SV,0∥k + ∥IV,0∥k)

=E sup
0≤t≤T

∫ t

0

{κ∥SH(x, s)∥κ−2⟨SH(x, s), d1△SH + µhNH − µSH − βHb

NH +m
SHIV ⟩

+ κ∥IH(x, s)∥κ−2⟨IH(x, s), d2△IH +
βHb

NH +m
SHIV − γHIH − µIH⟩
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+ κ∥RH(x, s)∥κ−2⟨RH(x, s), d3△RH+γHIH−µRH⟩+κ∥SV (x, s)∥κ−2⟨SV (x, s),

d4△SV +A− νSV − βV b

NH +m
SV IH⟩+ κ∥IV (x, s)∥κ−2⟨IV (x, s), d5△IV

+
βV b

NH +m
SV IH − νIV ⟩+

1

2
k(k − 1)ξ21(s)∥SH(x, s)∥k + 1

2
k(k − 1)ξ21(s)

∥IH(x, s)∥k + 1

2
k(k − 1)ξ21(s)∥RH(x, s)∥k + 1

2
k(k − 1)ξ22(s)∥SV (x, s)∥k

+
1

2
k(k − 1)ξ22(s)∥IV (x, s)∥k}ds− E sup

0≤t≤T

∫ t

0

kξ1(s)∥SH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ1(s)∥IH(x, s)∥kdB1(s)− E sup
0≤t≤T

∫ t

0

ξ1(s)∥RH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ2(s)∥SV (x, s)∥kdB2(s)− E sup
0≤t≤T

∫ t

0

kξ2(s)∥IV (x, s)∥kdB2(s).

Let’s just zoom in and out for the above equality, and we get

E sup
0≤t≤T

∥SH(x, s)∥k + ∥IH(x, s)∥k + ∥RH(x, s)∥k + ∥SV (x, s)∥k + ∥IV (x, s)∥k]

− E sup
0≤t≤T

(∥SH,0∥k + ∥IH,0∥k + ∥RH,0∥k + ∥SV,0∥k + ∥IV,0∥k)

≤E
∫ t

0

{−κ∥SH(x, s)∥κ−2⟨∇SH(x, s), d1∇SH(x, s)⟩+ κ∥SH(x, s)∥κ−2

⟨µhNH , SH(x, s)⟩ − κ∥IH(x, s)∥κ−2⟨∇IH(x, s), d2IH(x, s)⟩+ κ∥IH(x, s)∥κ−2

⟨IH(x, s),
βHb

NH +m
SHIV ⟩ − κ∥RH(x, s)∥κ−2⟨∇RH(x, s), d3∇RH(x, s)⟩

+ κ∥RH(x, s)∥κ−2⟨Rh(x, s), γHIH⟩ − κ∥SV (x, s)∥κ−2⟨∇SV (x, s), d4∇SV (x, s)⟩
+ κ∥SV (x, s)∥κ−2⟨SV (x, s), A⟩ − κ∥IV (x, s)∥κ−2⟨∇IV (x, s), d5IV (x, s)⟩

+ κ∥IV (x, s)∥κ−2⟨IV (x, s),
βV b

NH +m
SV IH⟩+ 1

2
k(k − 1)ξ21∥SH(x, s)∥k

+
1

2
k(k − 1)ξ21∥IH(x, s)∥k + 1

2
k(k − 1)ξ21∥RH(x, s)∥k + 1

2
k(k − 1)ξ22∥SV (x, s)∥k

+
1

2
k(k − 1)ξ22∥IV (x, s)∥k}ds− E sup

0≤t≤T

∫ t

0

kξ1(s)∥SH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ1(s)∥IH(x, s)∥kdB1(s)− E sup
0≤t≤T

∫ t

0

ξ1(s)× ∥RH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ2(s)∥SV (x, s)∥kdB2(s)− E sup
0≤t≤T

∫ t

0

kξ2(s)∥IV (x, s)∥kdB2(s)

≤E
∫ t

0

{−kd1λ0∥SH(x, s)∥k + kµhNH∥SH(x, s)∥k−1 − kd2λ0∥IH(x, s)∥k

+ k
βHb

NH +m
M1∥IH(x, s)∥k−1∥IV (x, s)∥ − kd3λ0∥Rh(x, s)∥k

+ kγH∥Rh(x, s)∥k−1∥IH∥ − kd4λ0∥SV (x, s)∥k + kA∥SV (x, s)∥k−1

− kd5λ0∥IV (x, s)∥k + k
βV b

NH +m
M1∥IV ∥k−1∥IH∥+ 1

2
k(k − 1)ξ21∥SH(x, s)∥k
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+
1

2
k(k − 1)ξ21∥IH(x, s)∥k + 1

2
k(k − 1)ξ21∥RH(x, s)∥k + 1

2
k(k − 1)ξ22∥SV (x, s)∥k

+
1

2
k(k − 1)ξ22∥IV (x, s)∥k}ds− E sup

0≤t≤T

∫ t

0

kξ1(s)∥SH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ1(s)∥IH(x, s)∥kdB1(s)− E sup
0≤t≤T

∫ t

0

ξ1(s)∥RH(x, s)∥kdB1(s)

− E sup
0≤t≤T

∫ t

0

kξ2(s)∥SV (x, s)∥kdB2(s)− E sup
0≤t≤T

∫ t

0

kξ2(s)∥IV (x, s)∥kdB2(s).

Using the Young inequality and Burkholder-Davis-Gundy inequality, we have

E sup
0≤t≤T

∥SH(x, s)∥k + ∥IH(x, s)∥k + ∥RH(x, s)∥k + ∥SV (x, s)∥k + ∥IV (x, s)∥k]

≤E sup
0≤t≤T

(∥SH,0∥k+∥IH,0∥k+∥RH,0∥k+∥SV,0∥k+∥IV,0∥k)+E sup
0≤t≤T

∫ t

0

{µkhNk
H

+Ak + (−kd1λ0 + k − 1 +
1

2
k(k − 1)ξ21)∥SH(x, s)∥k + (−kd2λ0 + k − 1 + γkH

+
βkV b

kMk
1

(NH +m)k
+

1

2
k(k − 1)ξ21)∥IH(x, s)∥k + (−kd3λ0 + k − 1 +

1

2
k(k − 1)ξ21)

∥RH(x, s)∥k + (−kd4λ0 + k − 1 +
1

2
k(k − 1)ξ22)∥SV (x, s)∥k + (−kd5λ0 + k − 1

+
βkHb

kMk
1

(NH+m)k
+
1

2
k(k − 1)ξ22)∥IV (x, s)∥k}ds+E sup

0≤t≤T

∫ t

0

kξ1(s)∥SH(x, s)∥kdB1(s)

+ E sup
0≤t≤T

∫ t

0

kξ1(s)∥IH(x, s)∥kdB1(s) + E sup
0≤t≤T

∫ t

0

ξ1(s)∥RH(x, s)∥kdB1(s)

+ E sup
0≤t≤T

∫ t

0

kξ2(s)∥SV (x, s)∥kdB2(s) + E sup
0≤t≤T

∫ t

0

kξ2(s)∥IV (x, s)∥kdB2(s)

≤E sup
0≤t≤T

(∥SH,0∥k + ∥IH,0∥k + ∥RH,0∥k + ∥SV,0∥k + ∥IV,0∥k) + (µkhN
k
H +Ak)T

+M4E sup
0≤t≤T

∫ t

0

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ + ∥SV (x, s)∥κ

+ ∥IV (x, s)∥κ}ds+ E sup
0≤t≤T

∥SH(x, s)∥κ/2(
∫ t

0

κ2ξ21(s)∥SH(x, s)∥kds)1/2

+ E sup
0≤t≤T

∥IH(x, s)∥κ/2(
∫ t

0

κ2ξ21(s)× ∥IH(x, s)∥kds)1/2 + E sup
0≤t≤T

∥RH(x, s)∥κ/2

(

∫ t

0

κ2ξ21(s)∥RH(x, s)∥kds)1/2+E sup
0≤t≤T

∥SV (x, s)∥κ/2(
∫ t

0

κ2ξ22(s)∥SV (x, s)∥kds)1/2

+ E sup
0≤t≤T

∥IV (x, s)∥κ/2(
∫ t

0

κ2ξ22(s)∥IV (x, s)∥kds)1/2 + 2E

∫ t

0

k2(ξ21∥SH(x, s)∥k

+ ξ21∥IH(x, s)∥k + ξ21∥RH(x, s)∥k + ξ22∥SV (x, s)∥k + ξ22∥IV (x, s)∥k)ds
≤E sup

0≤t≤T
(∥SH,0∥k + ∥IH,0∥k + ∥RH,0∥k + ∥SV,0∥k + ∥IV,0∥k) + (µkhN

k
H +Ak)T

+M4E sup
0≤t≤T

∫ t

0

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ + ∥SV (x, s)∥κ
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+ ∥IV (x, s)∥κ}ds+
1

2
E sup

0≤t≤T
(∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ

+ ∥SV (x, s)∥κ + ∥IV (x, s)∥κ)
≤2E sup

0≤t≤T
(∥SH,0∥k + ∥IH,0∥k + ∥RH,0∥k + ∥SV,0∥k + ∥IV,0∥k) + 2(µkhN

k
H +Ak)T

+M4E sup
0≤t≤T

∫ t

0

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ

+ ∥Sv(x, s)∥κ + ∥IV (x, s)∥κ}ds,

where

M4 =max{−kd1λ0 + k − 1 +
1

2
k(k − 1)ξ21 ,−kd2λ0 + k − 1 + γkH +

βkV b
kMk

1

(NH +m)k

+
1

2
k(k − 1)ξ21 ,−kd3λ0+k−1+

1

2
k(k − 1)ξ21 ,−kd4λ0+k−1+

1

2
k(k − 1)ξ22 ,

− kd5λ0 + k − 1 +
βkHb

kMk
1

(NH +m)k
+

1

2
k(k − 1)ξ22}.

Based on the Gronwall inequality, we obtained

E sup
0≤t≤T

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ + ∥SH(x, s)∥κ + ∥IH(x, s)∥κ}

≤(2E(∥SH,0∥κ + ∥IH,0∥κ + ∥RH,0∥κ + ∥Sv,0∥κ + ∥IV,0∥κ)
+ 2(µkhN

k
H +Ak)T )e2M4T :=Mκ.

For 0 < κ < 1, based on the Cauchy-Schwartz inequality, we obtain

E sup
0≤t≤T

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ + ∥SV (x, s)∥κ + ∥IV (x, s)∥κ}

≤(E1
2

2−κ )1−κ/2{E( sup
0≤t≤T

{∥SH(x, s)∥κ + ∥IH(x, s)∥κ + ∥RH(x, s)∥κ + ∥SV (x, s)∥κ

+ ∥IV (x, s)∥κ}
κ
2 :=Mκ.

This proof is completed.

APPENDIX B: THE PROOF OF THEOREM 3.3
Proof. The Theorem 3.2 is equal to condition (ii) in Lemma 3.2. In order to
complete proof, we only need to verify that condition (i) is valid. Next, we consider
the difference of two mild solutions of (2.5) with distinct initial data ψ,φ ∈ Ω

e(x, t) =



e1(x, t, ψ, φ)

e2(x, t, ψ, φ)

e3(x, t, ψ, φ)

e4(x, t, ψ, φ)

e5(x, t, ψ, φ)


=



SH(x, t, ψ)− SH(x, t, φ)

IH(x, t, ψ)− IH(x, t, φ)

RH(x, t, ψ)−RH(x, t, φ)

SV (x, t, ψ)− SV (x, t, φ)

IV (x, t, ψ)− IV (x, t, φ)


, (6.1)
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with ∥e(x, t, ψ, φ)∥κ = ∥e1(x, t, ψ, φ)∥κ + ∥e2(x, t, ψ, φ)∥κ + ∥e3(x, t, ψ, φ)∥κ
+ ∥e4(x, t, ψ, φ)∥κ + ∥e5(x, t, ψ, φ)∥κ, By Lemma 3.1 and Itô′s formula, we have

d(eηt∥e(x, t, ψ, φ)∥κ)
=ηeηt∥e(x, t, ψ, φ)∥κdt+ eηt{κ∥e1(x, t, ψ, φ)∥κ−2⟨e1(x, t, ψ, φ), d1△e1(x, t, ψ, φ)

− µe1(x, t, ψ.φ)−
βHb

NH +m
(SH(x, t, ψ)IV (x, t, ψ)− SH(x, t, φ)IV (x, t, φ))⟩dt

+ κ∥e2(x, t, ψ, φ)∥κ−2⟨e2(x, t, ψ, φ), d2△e2(x, t, ψ, φ) +
βHb

NH +m
(SH(x, t, ψ)

IV (x, t, ψ)− SH(x, t, φ)IV (x, t, φ))− µe2(x.t, ψ, φ)⟩dt+ κ∥e3(x, t, ψ, φ)∥κ−2

⟨e3(x, t, ψ, φ), d3△e3(x, t, ψ, φ)− µe3(x, t, ψ, φ)⟩dt+ κ∥e4(x, t, ψ, φ)∥κ−2

⟨e4(x, t, ψ, φ), d4△e4(x, t, ψ, φ)− νe4(x, t, ψ, φ)−
βV b

NH +m
(SV (x, t, ψ)IH(x, t, ψ)

− SV (x, t, φ)IH(x, t, φ))⟩dt+ κ∥e5(x, t, ψ, φ)∥κ−2⟨e5(x, t, ψ, φ), d5△e5(x, t, ψ, φ)

+
βV b

NH +m
(SV (x, t, ψ)IH(x, t, ψ)− SV (x, t, φ)IH(x, t, φ))− νe5(x.t, ψ, φ)⟩dt

+
1

2
κ(κ− 1)ξ21(t)∥e1(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ21(t)∥e2(x, t, ψ, φ)∥kdt

+
1

2
κ(κ− 1)ξ21(t)∥e3(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ22(t)∥e4(x, t, ψ, φ)∥kdt

+
1

2
κ(κ− 1)ξ22(t)∥e5(x, t, ψ, φ)∥kdt+ κ∥e1(x, t, ψ, φ)∥κ−2⟨e1(x, t, ψ, φ),

− ξ1(t) · △e1(x, t, ψ, φ)dB1(t)⟩+ κ∥e2(x, t, ψ, φ)∥κ−2⟨e2(x, t, ψ, φ),
− ξ1(t)△e2(x, t, ψ, φ)dB1(t)⟩+ κ∥e3(x, t, ψ, φ)∥κ−2⟨e3(x, t, ψ, φ),
− ξ1(t)△e3(x, t, ψ, φ)dB1(t)⟩}+ κ∥e4(x, t, ψ, φ)∥κ−2⟨e4(x, t, ψ, φ),
− ξ2(t)△e4(x, t, ψ, φ)dB2(t)⟩+ κ∥e5(x, t, ψ, φ)∥κ−2⟨e5(x, t, ψ, φ),
− ξ2(t)△e5(x, t, ψ, φ)dB2(t)⟩.

Next, we have a further transformation to (SH(x, t, ψ)IV (x, t, ψ)−SH(x, t, φ)IV (x, t, φ))

and (SV (x, t, ψ)IH(x, t, ψ) − SV (x, t, φ)IH(x, t, φ)) by virtue of equality (6.1), and
get the following equality

d(eηt∥e(x, t, ψ, φ)∥κ)
=ηeηt∥e(x, t, ψ, φ)∥κdt+ eηt{κ∥e1(x, t, ψ, φ)∥κ−2⟨e1(x, t, ψ, φ), d1△e1(x, t, ψ, φ)

− µe1(x, t, ψ.φ)−
βHb

NH +m
(SH(x, t, ψ)e5(x, t, ψ, φ) + e1(x, t, ψ, φ)IV (x, t, φ))⟩dt

+ κ∥e2(x, t, ψ, φ)∥κ−2⟨e2(x, t, ψ, φ), d2△e2(x, t, ψ, φ) +
βHb

NH +m
(SH(x, t, ψ)

e5(x, t, ψ, φ) + e1(x, t, ψ, φ)IV (x, t, φ))− µe2(x.t, ψ, φ)⟩dt+ κ∥e3(x, t, ψ, φ)∥κ−2

⟨e3(x, t, ψ, φ), d3△e3(x, t, ψ, φ)− µe3(x, t, ψ, φ)⟩dt+ κ∥e4(x, t, ψ, φ)∥κ−2

⟨e4(x, t, ψ, φ), d4△e4(x, t, ψ, φ)− νe4(x, t, ψ, φ)−
βV b

NH +m
⟨SV (x, t, ψ)·

e2(x, t, ψ, φ) + e4(x, t, ψ, φ)IH(x, t, φ))⟩dt+ κ∥e5(x, t, ψ, φ)∥κ−2⟨e5(x, t, ψ, φ),

d5△e5(x, t, ψ, φ) +
βV b

NH +m
⟨SV (x, t, ψ)e2(x, t, ψ, φ) + e4(x, t, ψ, φ)IH(x, t, φ))
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− νe5(x.t, ψ, φ)⟩dt+
1

2
κ(κ− 1)ξ21(t)∥e1(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ21(t)

∥e2(x, t, ψ, φ)∥kdt+
1

2
κ(κ− 1)ξ21(t)∥e3(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ22(t)

∥e4(x, t, ψ, φ)∥kdt+
1

2
κ(κ− 1)ξ22(t)∥e5(x, t, ψ, φ)∥kdt+ κ∥e1(x, t, ψ, φ)∥κ−2

⟨e1(x, t, ψ, φ),−ξ1(t)△e1(x, t, ψ, φ)dB1(t)⟩+ κ∥e2(x, t, ψ, φ)∥κ−2⟨e2(x, t, ψ, φ),
− ξ1(t)△e2(x, t, ψ, φ)dB1(t)⟩+ κ∥e3(x, t, ψ, φ)∥κ−2⟨e3(x, t, ψ, φ),−ξ1(t)
△e3(x, t, ψ, φ)dB1(t)⟩}+ κ∥e4(x, t, ψ, φ)∥κ−2⟨e4(x, t, ψ, φ),−ξ2(t)△e4(x, t, ψ, φ)
dB2(t)⟩+ κ∥e5(x, t, ψ, φ)∥κ−2⟨e5(x, t, ψ, φ),−ξ2(t)△e5(x, t, ψ, φ)dB2(t)⟩.

Let’s just zoom in and out for the above equality, and we get

d(eηt∥e(x, t, ψ, φ)∥κ)
≤ηeηt∥e(x, t, ψ, φ)∥κdt+ κeηt{−∥e1(x, t, ψ, φ)∥k−2⟨∇e1(x, t, ψ, φ), d1∇e1(x, t, ψ, φ)⟩

−∥e2(x, t, ψ, φ)∥k−2⟨∇e2(x, t, ψ, φ), d2∇e2(x, t, ψ, φ)⟩+
βHb

NH+m
∥e2(x, t, ψ, φ)∥k−2

⟨e2(x, t, ψ, φ), SH(x, t, ψ)e5(x, t, ψ, φ)+e1(x, t, ψ, φ)IV (x, t, φ)⟩−∥e3(x, t, ψ, φ)∥k−2

⟨∇e3(x, t, ψ, φ), d3∇e3(x, t, ψ, φ)⟩ − ∥e4(x, t, ψ, φ)∥k−2⟨∇e4(x, t, ψ, φ), d4

∇e4(x, t, ψ, φ)⟩−∥e5(x, t, ψ, φ)∥k−2⟨∇e5(x, t, ψ, φ), d5∇e5(x, t, ψ, φ)⟩+
βV b

NH +m

∥e5(x, t, ψ, φ)∥k−2⟨e5(x, t, ψ, φ),SV (x, t, ψ)e2(x, t, ψ, φ)+e4(x, t, ψ, φ)IH(x, t, φ)⟩}dt

+
1

2
κ(κ− 1)ξ21(t)∥e1(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ21(t)∥e2(x, t, ψ, φ)∥kdt

+
1

2
κ(κ− 1)ξ21(t)∥e3(x, t, ψ, φ)∥Kdt+

1

2
κ(κ− 1)ξ22(t)∥e4(x, t, ψ, φ)∥kdt

+
1

2
κ(κ− 1)ξ22(t)∥e5(x, t, ψ, φ)∥kdt

≤ηeηt∥e(x, t, ψ, φ)∥κdt+ κeηt{−d1λ0∥e1(x, t, ψ, φ)∥k − d2λ0∥e2(x, t, ψ, φ)∥k

+
βHbM1

NH+m
∥e2(x, t, ψ, φ)∥k−1(∥e5(x, t, ψ, φ)∥+∥e1(x, t, ψ, φ)∥)−d3λ0∥e3(x, t, ψ, φ)∥k

− d4λ0∥e4(x, t, ψ, φ)∥k +
βV bM1

NH +m
∥e5(x, t, ψ, φ)∥k−1(∥e2(x, t, ψ, φ)∥

+ ∥e4(x, t, ψ, φ)∥)}dt+
1

2
κ(κ− 1)ξ21(t)∥e1(x, t, ψ, φ)∥kdt+

1

2
κ(κ− 1)ξ21(t)

∥e2(x, t, ψ, φ)∥kdt+
1

2
κ(κ− 1)ξ21(t)∥e3(x, t, ψ, φ)∥Kdt+

1

2
κ(κ− 1)ξ22(t)

∥e4(x, t, ψ, φ)∥kdt+
1

2
κ(κ− 1)ξ22(t)∥e5(x, t, ψ, φ)∥kdt.

Integrating on both sides of the above inequality and taking expectations, then,
applying the Young inequality, we get

E[eηt∥e(x, t, ψ, φ)∥κ]

≤∥e(x, 0, ψ, φ)∥κ + E

∫ t

0

eηs{η∥e(x, s, ψ, φ)∥κ + (−kd1λ0 +
(βHbM1)

k

(NH +m)k
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+
1

2
κ(κ− 1)ξ21)∥e1(x, t, ψ, φ)∥κ + (−kd2λ0 + 2k − 2 +

(βV bM1)
k

(NH +m)k
+

1

2
κ(κ− 1)ξ21)∥e2(x, t, ψ, φ)∥κ + (−kd3λ0 +

1

2
κ(κ− 1)ξ21)∥e3(x, t, ψ, φ)∥κ

+ (−kd4λ0 +
(βV bM1)

k

(NH +m)k
+

1

2
κ(κ− 1)ξ22)∥e4(x, t, ψ, φ)∥κ

+ (−kd5λ0 + 2k − 2 +
(βHbM1)

k

(NH +m)k
+

1

2
κ(κ− 1)ξ22)∥e5(x, t, ψ, φ)∥κ.

Next, we take the supremum on both sides of the above inequality

E sup
0≤t≤T

[eηt∥e(x, t, ψ, φ)∥κ]

≤∥e(x, 0, ψ, φ)∥κ + E sup
0≤t≤T

(η +M5)

∫ t

0

eηs∥e(x, s, ψ, φ)∥κds,
(6.2)

here

M5 =max{−kd1λ0 +
(βHbM1)

k

(NH +m)k
+

1

2
κ(κ− 1)ξ21 ,−kd2λ0 + 2k − 2 +

(βV bM1)
k

(NH +m)k

+
1

2
κ(κ− 1)ξ21 ,−kd3λ0 +

1

2
κ(κ− 1)ξ21 ,−kd4λ0 +

(βV bM1)
k

(NH +m)k
+

1

2
κ(κ− 1)ξ22 ,

− kd5λ0 + 2k − 2 +
(βHbM1)

k

(NH +m)k
+

1

2
κ(κ− 1)ξ22}.

Based on the Gronwall inequality, we obtain

∥e(x, t, ψ, φ)∥κ ≤ ∥e(x, 0, ψ, φ)∥κe−(η+M5)t,

thereby
lim
t→∞

E∥e(x, t, ψ, φ)∥κ = 0.

Therefore, condition (i) in Lemma 3.2 holds, thus existing a stationary distribution
for system (2.5). Next, we prove the uniqueness of stationary distribution, assume
that λ̄ is also a stationary distribution to W(x, t). There exists a constant M > 0,
we can get the following result

|λ(f)− λ̄(f)| ≤
∫
H×H

|Ptf(ψ)− Ptf(φ)|λ(dψ)λ̄(dφ) ≤Me−ηt,

when t→ ∞, we can get the uniqueness of stationary distribution.
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