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A GENERAL DECAY RESULT FOR A VON
KARMAN EQUATION WITH MEMORY AND
ACOUSTIC BOUNDARY CONDITIONS*

Sun-Hye Park®f

Abstract We study a viscoelastic von Karman equation of memory type with
acoustic boundary conditions. Utilizing some properties of convex functions
and the perturbed energy method, we build a general decay result when the
kernel function k is a very general type. This work extends and complements
some previous decay results of solutions for von von Karman equations.
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1. Introduction

In this work, we are concerned with a von Karman equation with memory and
acoustic boundary conditions

t
gy — alug + A%y — / k(t — s)A%u(s)ds = [u,v] in Q x (0,00), (1.1)
0

A2y = —[u,u] in Q x (0, 00), (1.2)
ov
v—a—OOH 082 x (0, 00), (1.3)
0
u= 8—3 =0on Iy x (0,00), (1.4)
t
Byu — Bl(/ k(t — s)u(s)ds) —0on Ty x (0,00), (1.5)
0
t
Bau — a% - BQ(/ k(t — s)u(s)ds) = —r(z)y: on I'; x (0,00), (1.6)
ov 0
ur + p()ye + q(z)y = 0 on T'y x (0, 00), (1.7)
u(0) = uo, ut(0) =wuy in Q, y(0) =yo on I'y, (1.8)

where 2 C R? is a bounded domain with sufficiently smooth boundary 9Q, ToUI'; =
0Q, ToNTy = 0, meas(Ty) > 0, meas(I'y) > 0, z = (x1,22) € QU IQ, and
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v = (v1,v2) is the outward unit normal vector on 0€2, the von Karman bracket [-, ]
is defined as

[90, (b] = Payxzq ¢w2w2 + (pwzw2¢w1w1 - 2(paslasz¢a:19:2>

0A¢

Bip=A¢+ (1—p)Bi19, 52¢:W+(1—u)@

or ’

here 4 is Poisson’s ratio with 0 < p < %,

Bigp = 2V1V2¢m1mz - V12¢1212 - V%‘vamcu

Bygp = (V% - V22)¢$1’»82 + V1V2(¢’»82’»82 - stlxl)'

And, the thickness « of the plate is positive, r > 0,p > pg > 0,¢q > 0 are essentially
bounded, and the kernel k£ : [0,00) — (0,00) is a non-increasing differentiable
function with 1 — [;* k(s)ds := [ > 0. The von Karman equations (1.1)-(1.8) model
a nonlinear elastic plate by describing the transversal displacement u and the Airy-
stress function v . Von Karman equation also arises in many applications such as
bifurcation theory, shells, and etc.

One of the main concern in the study of viscoelastic problems is to establish more
general and explicit decay rates of solutions by imposing minimal assumptions on
the kernel function k. And many stability results have been established [4,8,16-18,
21]. For instance, Messaoudi [16] showed decay estimates of exponential type for
viscoelastic wave equations when k fulfills

K'(t) < —C(t)k(t), (1.9)

where ( is positive, differentiable, and non-increasing. Messaoudi and Al-Khulaifi
[17] proved a decay result of general type for a quasilinear viscoelastic wave equation
when

K (t) < =C(t)kI(1), (1.10)

here 1 < ¢ < % And then, a question ‘Can the range of parameter ¢ be expanded
from 1 < ¢ < % tol < g < 27 was raised. Pursued the ideas introduced by
Lasiecka and Tataru [13] and Jin etc [11], Mustafa [21] answered for the question. He
obtained more generalized and explicit decay rates for viscoelastic wave equations
by endowing the following new assumption

k(1) < —C(OK(k(1)), (L.11)

where K is an increasing convex function meeting some conditions. He explained
that (1.10) with 1 < ¢ < 2 is only a special case of (1.11). For the recent articles
associated with the assumption (1.11), we mention the works [9,10,14,15]. In the
present article, we are interested in a new general decay estimate of solutions to
the viscoelastic von Karman system (1.1)-(1.8). For physical application of acoustic
boundary conditions, we refer [2,3]. We also cite [7,12,22,28,29] and references
therein for works involving such boundary conditions. Many authors discussed on
the stability for von Karman systems with dissipative effects [5,6,19,20,23,25-27].
Among those, the authors of [19,20, 23] derived exponential decay results when k
has the property (1.9) with ((¢) = (. Park etc [26] established a decay result of
exponential type to problem (1.1)-(1.8) when k satisfies (1.9) and [} k(s)ds < 3.
Park [25] showed an arbitrary energy estimate for a von Karman equation with
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Dirichlet boundary condition. Based on these articles, we extend and complement
the result of [26] under the condition (1.11).

Here is the outline of this paper. In section 2, we give some materials such as
notations, hypothesis, and auxiliary formulas. In section 3, we derive a general
decay result by utilizing some properties of convex functions and the multiplier
method.

2. Preliminaries
We let

V={pcH (Q):¢=00nTy}, W={¢€H2(Q):¢:%:OOHF0},

ov
(0,6) = /Q o(@)o(@)dz, [|ol = (¢, ),

and

(0, d)r, = / o(@)$(@)dT, o2, = (9 @)r-

From now on, if there is no ambiguity, we omit the variables ¢ and z. || - || x denotes
the norm of a Banach space X. The bilinear form b(-,-) is defined by

b(QO, ¢) = (pﬂflﬂ?l ¢r11:1 +90932I2 ¢m21’2 +N(§0x1x1 ¢x2x2 +§0x2r2 ¢I1$1 ) +2(1 _M)(pl‘lxz ¢I1I2 .

(2.1)
For (p,¢) € (H*(Q)NW) x W, we know
2 o
(A gD)QSd.I‘ = b(@v ¢)d.13 - (Bl% F)Iﬁ + (BQ(p: ¢)F1' (22)
Q Q v
Due to Ty # 0, it is well known ( [5]) that
Cl||¢|ﬁ{2(9) < /Qb(qﬁ,qﬁ)d:v < CQ||¢H%[2(Q) for some ¢y, co > 0. (2.3)
Let C,, Cpr, and C, be the imbedding constants with
el <, [ blo)da, IIgll, < Cpr, [ W),
@ @ (2.4)

IVl < C. [ W )i, Ve W
From (2.1), it is seen (see [26])

| bl ddde < Sl oy + g6l for al 5> 0,
which gives

5
/Q by, d)dx <6 /Q b(p, p)dx + 575 /Q b(¢, ¢)dx for all § > 0. (2.5)
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Based on the arguments of [19, 22, 27], we get the existence result. For every
(ug,u1,y0) € (HHQ) NW) x (H3(Q) N W) x L%(T), there exists a solution (u,y)
of problem (1.1)-(1.8) verifying

u€ L0, T; H{(Q)NW), us € L>=(0,T; H*(Q)N'V),

riy e Lo(0,T; L*(Ty)), r2y’ € L*(0,T; L*(Ty)).

Now, we endow some hypothesis on k£ to derive our desired decay result.
(A) We assume that the kernel k verifies

K'(t) < —C(t)K(k(t)) forallt >0, (2.6)
where K : (0,00) — (0,00) is a C'-function, which is either linear or strictly

increasing and strictly convex C2-function on (0, ¢, € < k(0), K(0) = K'(0) = 0,
and ( is positive, differentiable, and non-increasing.

Some examples of the function k satisfying (A) are provided by Mustafa [21].

3. A general decay result

Throughout this work, we set

(KDp)(t) = / k(t = s)llo(t) — ¢(s)|[*ds,

(kO0?p) / E(t—s / b(p s o(t) — p(s))dzds,
and ,
hs(t) = Bk(t) — K/ (t) and Cj = i :ﬂgds.

Let the energy of the solution to (1.1)-(1.8) as

1 t
B(t) =5 {Iludll? + ol Vu|* + (1—/ k(s)ds)/b(u,u)dx
2 , 0 Q (3.1)
+ S llAv| + (kD) + || v/rayl [z,

Taking the inner product (1.1) with u, in L?*(Q), applying (1.2)-(1.8), and taking
advantage of relation

t
// k‘(t—s)b(u(s),ut)dsdac:—gd (kO0?u) / k(s ds /bu udx
aJo

Ly [ b uyde + 2 (k 00°u), (3.2)
2 Q

we get ( [26])

E'(t) = —||v/rpyellE, — /buudx+ —k'00%u < 0. (3.3)
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As in [21,26], we define
L(t) = ME(t) + M1 9(t) + Mo ¥ (t),

1
(1) = (ur,u) + a(Vur, Vu) + S [Vrpyllr, + (wry)r,

¢ ¢
U(t) = —/ E(t — s)(u(t) — u(s), u)ds — a/ E(t — s)(Vu(t) — Vu(s), Vu,)ds
0 0
Lemma 3.1. For every f >0 and v > 0, it fulfills
l
¥(0) < sl + o[Vl = (5=7) | bl w)da = |12

5co I H Hoo
+ 3lC 5(hs00%u) — [|v/rayll}, + %H yel |2, - (3.4)

Proof. From (1.1)-(1.8), one sees ( [26])
/(1) = llul* + ol Vel ~ (1~ /0 F(s)ds) /Qb(u,u)dx — [|Av|?
+/0 k(t—s)/ﬂb(u(s)—u() Wdads + 2w, ry)r, — ||Fayl2. - (3.5)

Applying (2.3) and Holder inequality, we get

/Qb(/o k(t — s)(u(t) — t(s))ds,/o k(t — s)(u(t) — u(s))ds)dx

< e ; k(t = s)(u(t) — u(s))ds|[72 o)

<ea( [ as) [ hate =)t~ ulo) o

CQCﬁ

< (hs00%u). (3.6)

C1

Utilizing (2.5) and (3.6), we have

/ kit —s) / bu(s) — u(t), u)dwdz

<5 b(u,u dx—|—8616/ / (u(s )—u(t)d&/o k(t—s)(u(s)—u(t)ds)dx
<6 [ blu,u)dz + 5?3(’;6 (hs00%u). (3.7)
Q 1
By (2.4),

C I go
2, run)e, < 2lrlellole e, <7 [ ot e+ L2 o)
Q

Combining (3.7)-(3.8) with (3.5) and putting § = £, we get (3.4). O



22 S.-H. Park

Lemma 3.2. For every >0 and 0 <n < 1, it holds
t t
w(0) < ~a [ ks = n)IVasll? = ([ k)~ )l + e,
0 0
C+Cp)
n
Proof. By (1.1)-(1.8), we find ( [26])

+ (hg00%u) + 217/ b(u,u)dx for some C > 0. (3.9
Q

t t

V() =— a(/ok(s)ds)||vut||% (/()Z(s)ds) g |2 — (ryt,/ok(tfs)(u(t)fu(s))ds)rl

_ (/Ot k(t — s)(u(t) — u(s))ds, [um]) - (/Ot K (t — s)(u(t) — u(s))ds, ut)
~of / Wt $)(Valt) — Vu(s))ds, Vi)

0

+ /Q b(/o k(t — s)(u(t) — u(s))ds,/o k(t — s)(u(t) — u(s))ds)dz

t t
+1—/ksds/kt—s/buut—us ))dxds
/k: ) lhuel P o /k )ds ) |Vut||2+ZD (3.10)

For every n > 0,

2
WHSWWMH+L4*H Bt — s)(ut) — u(s))ds| 2,
T 2 S
< nllyl 12, + I || / dS / /hg (t — s)(u(t) — u(s))?dsdl
0 5 r
rl|< . C C
< nllysllf, + ||||4717M(h5|:|82u)

and

1 D2| < allull g2 (e |[vllw2.0o n)ll/ k(t = s)(u(t) — u(s))ds]|

< QHUHWM’(Q’,/ b(u, w)da/Cg(hsTlu)

2||U|\w CsC,

2,00(Q) ' BYp 2
< b(u,u)dx + hs 0o
nL< ) L (00 ),

here the Karman bracket property ||[u,v]|| < allul|g2(q)l|v]|lw2) (see p. 270
in [6]) and (2.3) are applied. Recalling k' = 8k — hg, we get

D3l < nllwl P+ 1| [ = s)(a(t) — u(s))asl P
< allul+ 5 (1 ot = )(u(®) — u(s)asl
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+81| [hle = s)(ult) — u(s))ds| )

< nllud 2 + %{ ( / t hi(s)ds ) (haDhu) + B2Cs (hgDu) |

(B(1—=1) +k(0))C, B*CsCy
2n 2n

< nlfuel]* + (hs00%u) + (hp00?u)

and

| Da| < na[Vu|[* + (hs00%u) +  (hsD0u).

a(B(1 = 1) +k(0)Cs af*CsCy
2n 2

Noting (3.6) and (3.7) with 6 =7 , we observe

|Ds| < c2Cp
ncy

(h00%u) for 0 <n <1

and

50205
8c3 (
c1n

D6l <0 [ b uds + 220 (ha o).
Q
These inequalities of D;(1 <14 < 6) and (3.10) complete the proof. O

Lemma 3.3. Set f(t) / k(s)ds. Then, the following function
/ / flt—ys) u(s))dsdx

= 2 a- U, u x—l 2u
=(t) < (1+2%)(1 D) | blusupda — 5 (kT0%). (3.11)

[I]

verifies

Proof. Direct calculation and (2.5) with ¢ = 32 2 supply

='(t) = f(0 / (u, u)dx —/ / (t—s) u(s))dsdx
_ /O k(s)ds /Q b(u(t), u(t))dz — / ﬂ/0 F(t—8)b(u(t) —u(s), u(t)—u(s))dsdz
7/ /tk(ts)b(u,u)dsde/ /tk' t — s)b(u(t),u(s) — u(t))dsdzx
/k ds/buudx—k[l82 /k ds/buu
72/9/0 k(t — s)b(u(t), u(s) — u(t))dsdx
< (/took(s)ds—i—%/tk (s) ds / b(u, u)dz — (1 - 46%)(1@6%)

:—%(/{582@ 1_|_7 /bu u)d
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Lemma 3.4. Fort > t* = k~1(e), it fulfills

1
L'(t) < 7k00%u — [Ju|[* — o[ Vur||* = || Av]l* = |lv/7ayllz,

)
2+ 75)1-1) /Q b(u,u)dx. (3.12)

2ct
Moreover, the energy E(t) is equivalent to L(t).

Proof. From (3.3), (3.4), (3.9), and ¥ = Bk — hg,

M M Myl||r||2.C
/(6) < =5 b00) | b+ 22 (k00%) - (Mpo— by - =Gy g

f{Mg (/Otk:(s)dsn)Ml}oz||Vut||2{M2 (/Otk(s)dsn)Ml}HutHQ

l
~{an (5 =7) —208an} [ ptuu)de = 20180l = 201 Fa i,

7{% _ 5MicCp M>C(1+Cp)
2 4c3l n

}(hﬂmvu).

The assumption (A) ensures the existence of t* > 0 with k(t*) = e. Selecting v = £,

n= ﬁ and denoting k* = fo s)ds, we read

Mﬁ

1 4My|r||2C
2/ <22 (ko) - (Mm—f——ﬁﬂﬁﬁﬂi)mﬁl

1 l
. 1 « 1
Mok —i—Ml}aHVutHQ {Mgk —Z—Ml}\|ut|\2

{
{4f_£}/bmex—MMAMF—MN¢WW%
-{

4
M 4M2 4M2C  5Mjcs «
i - v > t*. (3.
1 4 C’@( ; + Py )}(th u) fort >t*. (3.13)

Once M, > 1 is fixed so that

Myl 5
2L (2 —) - 14
1 2>(+2c§( 2 (8.14)
we choose My > 0 with
l
Mok* — 7 =M > 1. (3.15)
Since [2122((:)) <k(s), by the arguments of [21], limg_,o+ SCp=limg_, o+ fooﬁ]; ©]
0. So, there exists 0 < By < 1 such that
1
BCs < — for B8 < Bo. (3.16)
S+ 572)
1
Now, we pick 8 = 557 M and M > 0 appropriately large to get
1 I 4M o M 4CM?
B=—— < By, Mpy— Muxf— 250, (3.17)

2M 4 l 4 l



Decay result for a von Karman equation 25

From (3.16), we also observe that

88

Adapting (3.14), (3.15), (3.17), (3.18) to (3.13), the inequality (3.12) is proved.
Furthermore, the equivalence L(t) ~ E(t) can be proved as Lemma 3.1 of [26]. O

= 0. (3.18)

M (502M1 4CM22)
B

4 4¢3 I

M 1 M
4 4 4

M
4

Theorem 3.1. Under the assumption (A), it holds

E(t) < CoK 1 (w /,:1(6) ((s)ds) fort>1t*,

where w > 0, Cy > 0, and

K(s) = / %,(T)df. (3.19)

Proof. When K is linear, the proof can be found in [26]. Thus, we only consider
for the case of K is nonlinear by applying the ideas of [14,21,24]. The continuity
of k and ¢ with respect to ¢t provides the existence of c3,cs > 0 satisfying

3 < CH)K(k(t)) < ey fortel0,t*].

Moreover,
K (t) < —COE k() < —c3 < —%k(t) for t € [0, t"]. (3.20)
The estimate L/() in (3.12) guarantees
L'(t) < —pE(t) + Z(kD(’)Qu), (3.21)

where p = min{2, 2(1 — 1)(2 + 25—%)} This, (3.20), and (3.3) give
L'(t) < —pE(t) + Z(kma%)
——oB0+5 | " ko) () = u(t = 5).u(t) ~ (e = 5))deds
/ /b )= u(t— 8), u(t) — u(t — s))dwds

IN

403

—pE(t) — 5k(0) / K (s / b(u(t) —u(t — s),u(t) — u(t — s))dzds
5 t
+Z /t k(s) /Q b(u(t) — u(t — s),u(t) — u(t — s))dxds

< —p(0) - 3 (o) 1)
—1—3 /t k(s) /Q b(u(t) — u(t — s),u(t) — u(t — s))dzds
<—oE(0) - 30 m(0)
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+§ /t*‘ k(s) /Q b(u(t) — u(t — s),u(t) — u(t — s))dzds, t > t*.
Setting
P =)+ 2D g
263
we get
F/(t) < ~pB() + / k(s) /Q b(u(t) — u(t — 5),u(t) — ut — s))dzds for ¢ > £*

(3.22)
On the other hand, (3.11) and (3.12) gives

(L) +E() < —i(kma%) = Muel[* = al[Vue|[* = [|Av]]* — [|v/rayllE,
—(1- l)/Qb(u,u)dx

< - min{%, 2(1 — D)}E(), (3.23)

/;E(s)ds< m1n{2, }/ (s))ds

L) + u(t*)
~ min{1,2(1-0)}

and hence

for all t > t*.

Thus, we obtain

0< /OOO E(s)ds = /Ot* E(s)ds + /tt E(s)ds < . (3.24)

—m/ / t) —u(t —s),u(t) —u(t — s))dzds

Next, we put

and .
x(t) :=— /* K'(s) A b(u(t) — u(t — s),u(t) — u(t — s))dzds.
Thanks to (3.24), we ctan select 0 < m < 1 such that
I(t) <1 fort>t". (3.25)
Moreover, (3.3) implies
x(t) < —(K'00%u)(t) < —2E'(t). (3.26)

Applying (A), the formula K (Aw) < /\K( ) for 0 < A <1andw € (0,¢€], Jensen’s
inequality, and the fact m f:* (s) Jq blu(t) —u(t — s),u(t) —u(t — s))dzds < €, we
infer

1

x(t) = T /t* Tk (s)m ; b(u(t) — u(t — s),u(t) — u(t — s))dzds
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> ;)/t m/ ) —u(t —s),u(t) — u(t — s))dxds

/t jK(I‘(t)k(s))m /Q b(u(t) — u(t — s), u(t) — u(t — s))dads
K(m /t k(s) / b(u(t) — u(t — s),u(t) — u(t — s))dxds)
/ / bu(t) —ult — ), ut) — u(t — s))dwds),  (3:27)

where K is an extension of K, which is strictly increasing and strictly convex C?
on (0,00). Thus,

/tt k(s) /Q b(u(t) — u(t — s),u(t) — u(t — s))dxds < if—l (mx(t))'

m

Substituting this into (3.22), we find

F/(t) < —pE(t) + —& (”zg)

- 4m
On the other hand, the convex function K has the properties

) for ¢ > t*. (3.28)

wz < K*(w) + K(2) for w,z >0 (3.29)
and
K*(w) = w(K') Y w) - K((K")"Y(w)) forw >0, (3.30)

where K* is the conjugate function of K (see [1]).
_ B

Let 0 < 6 < min{e, 4me(O)} E(t) ET and ¢5 > 0. Since K (s) > 0,

f//(s) > 0, E'(t) <0, and K(0) = F/(O) 0, we find from (3.28), (3.29), and
(3.30) that

(K (0)F (1) + s Bt

]
R0 ® ("

< K (GEW)EW) + K (6 )““"E/

< —pK (6E(t))E ()+fK( ) (f

< —pK'(0E(t))E <>+i€6<) K (6€(1)) + Et>) Fel)

_ _BO)K GEW)EWD + 45:25( K (0E(t)) + Zg((t)) +esE(1),  (3.31)

where we used 0E(t) < € in the last equality. Considering (3.31) and (3.26), we have
— 5
[co{F e F@) + B0} + 5B ()]
5x(t)

< PBO)()K (OE()E W) + 2 C(EW K 00+ 0 tesc()B'(1)+ 2 B/ (1)
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IN

—pE0)C(H) K" (0 (1))E(t) + %C(t)f(t)ff'(%(t)) +esC(H) E'(t)

<) (pB(O0) ~ D) K (6 ()E)

= —c6C(t)Ko(E(t)) for t > t*, (3.32)

IN

where ¢ = pE(0) — 2% and

4m

Ko(s) = sK'(0s). (3.33)
We also note
erB(t) < CO{ R (0EO)F (1) + esB(1) ) + gE(t) < esE(1).

Finally, setting

CO{E 0£®)F (1) + s B(1) } + 3E(Q)
L(t) = = E0) , (3.34)

we see that

L)< EW) < 1. (3.35)
Because K is increasing on (0, 1], we deduce from (3.32), (3.34), and (3.35)

L(t) < —coC(t)Ko(L(t)) for t > ¥, (3.36)

where cg = - E( 5 Integrating this over (t*,¢) and employing the integration by
substitution, we get

t 0L(t")
L'(s) _ _ 1
/t* coC(s)ds < / Ko(L(9)) ds / s )) ds = /M(t) sK’(s)dS

¢ 1
< /M(t) K )ds = K(0L(1)), (3.37)

here K is the function defined in (3.19). Owing to K is strictly decreasing on (0, €],
we conclude, for some w > 0,

L(t) < =K~ ( jC(s)ds) for t > t*.

%\'—‘

This completes the proof. O
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