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Abstract The N -soliton solutions of the (2+1)-dimensional B-type Kadomtsev-
Petviashvili-Korteweg de-Vries (BKP-KdV) equation are constructed through
the Hirota bilinear method. By inserting the velocity resonance conditions
into the soliton solutions, soliton molecule, breather molecule, breather-soliton
molecule, lump-soliton molecule and lump-breather molecule are presented.
The interaction of two soliton molecules, and the interaction between one soli-
ton molecule and breather are discussed and shown to be the elastic collisions.
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1. Introduction
The (2+1)-dimensional nonlinear B-type Kadomtsev-Petviashvili (BKP) equation
is given by (u ≡ u(x, y, t)) [22]

ut+uxxxxx−5(uxxy+

∫
uyydx)+15(uxuxx+uuxxx−uuy−ux

∫
uydx)+45u2ux = 0,

(1.1)
which can be used to describe weakly dispersive waves propagating in the quasi
media and fluid mechanics. Wazwaz used the simplified form of the Hirota method
to establish multiple soliton solutions for this equation [24]. By virtue of the bi-
nary Bell polynomial and the bilinear form, the N -soliton solutions, periodic wave
solutions and breather wave solutions were constructed in [5]. The bilinear form,
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Bäcklund transformation, Lax pair and multi-soliton solutions were constructed as
well as the propagation and interaction of the solitons were illustrated graphically
in [10]. The general lump waves, lumpoff and special rogue wave solutions were
derived in [20]. By means of the homoclinic breather limit method, its rogue waves
and homoclinic breather waves were investigated in [4]. Soliton molecules and some
novel interaction solutions were generated from the N -soliton solution by using a
new velocity resonance condition [29].

Further, one integrable nonlinear equation combining with another by using
the Galilei transformation will give rise to unexpected results. Hirota studied the
resonance of solitons in one-dimensional space theoretically for the Sawaka-Kotera-
Korteweg-de Vries (SK-KdV) equation with a nonvanishing boundary condition [7].
Wazwaz applied this technique to the generalized fifth-order Caudrey-Dodd-Gibbon
(CDG) and its Lax equations, and derived the multiple-soliton solutions for the
extended KdV-CDG and KdV-Lax equations [25]. Based on the bilinear differ-
ential operator extension method, a combined model of the generalized bilinear
Kadomtsev-Petviashvili (KP) and Boussinesq equations in terms of the function
f was proposed and the lump solutions were constructed [11]. By introducing
the velocity resonant mechanism, Lou established some new types of solutions in
the Sharma-Tasso-Olver-Burgers (STOB) equation, including the soliton (kink)
molecules, half periodic kink molecules and breathing soliton molecules [30]. In-
spired by the results of the Galilei transformation, by taking the transformation
u → u + c, u → u(x, y + at, t) and y + at → y successively on the following BKP
equation

ut+b[uxxxxx−5(uxxy+

∫
uyydx)+15(uxuxx+uuxxx−uuy−ux

∫
uydx)+45u2ux]=0, (1.2)

the so-called BKP-KdV system can be derived

ut + a(uxxx + 6uux) + b[uxxxxx − 5(uxxy +

∫
uyydx)

+ 15(uxuxx + uuxxx − uuy − ux

∫
uydx) + 45u2ux] = 0, (1.3)

where the constants a, b and c are arbitrary and c = a
15b .

For an integrable nonlinear system, to derive some molecules is one of hot
topics recently. From experiment observation in the dispersion-managed optical
fibers and numerical prediction in the Bose-Einstein condensates [6, 12, 13, 23],
the soliton molecules-the bound states of solitons, play an important role the-
oretically in the field of the integrable system. It was found that the velocity
resonance which is a new possible mechanism, was introduced to form soliton
molecules and asymmetric solitons for three (1+1)-dimensional fluid models [14].
For the combination of the KP3 and the KP4 (cKP3-4) equations, the soliton
molecules and the missing D’Alembert type solutions were found in [15]. The soli-
ton molecules, breather molecules and breather-soliton molecules were presented
for a (2+1)-dimensional fifth-order KdV equation [31]. Soliton molecules and novel
smooth positons for the complex modified Korteweg-de Vries (mKdV) equation
and the nonlinear Schrödinger (NLS) equation were obtained based on Darboux
transformation (DT) [26, 33]. For the integrable higher-order NLS equation, Xu
proved that the interactions among the dark soliton molecules are elastic [28]. The
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interactions of soliton molecules were proved to be nonelastic in two nonlocal Alice-
Bob Sawada-Kotera (ABSK) systems [34]. Soliton molecules and hybrid/mixed
solutions in (1+1)/(2+1)-dimensions, such as the fifth-order KdV equation, the
variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation, the
bidirectional Sawada-Kotera (bSK) equation, the extended modified Korteweg-de
Vries (mKdV) system and the modified Korteweg-de Vries-sine-Gordon (mKdV-sG)
equation were also investigated [2, 9, 21,32,35].

The present paper is organized as follows. In section 2, the N -soliton solutions of
the (2+1)-dimensional BKP-KdV equation (1.3) are firstly constructed through its
Hirota bilinear form. Then one soliton molecule, the breather and the lump solutions
are obtained successively for two-soliton solution. Interaction of one soliton molecule
and a line soliton, and soliton-breather molecule and lump-soliton molecule are
derived from three-soliton solution. Further, the elastic interaction between two
soliton molecules, one soliton molecule and the breather, the breather and a lump
soliton as well as the soliton molecule consisting of one soliton molecule and the
breather, the breather and a lump are presented from four-soliton solution. Figures
are depicted to demonstrate these dynamics features. In the last section, a brief
summary is given for this paper.

2. Soliton, breather and lump molecules in the (2+1)
-dimensional BKP-KdV equation

To study the soliton molecules and their related interaction solutions for the (2+1)-
dimensional BKP-KdV equation (1.3), we introduce the following transformation

uy = vx, u = 2(ln f)xx, v = 2(ln f)xy, (2.1)

where v and f are functions of variables x, y and t. Then the bilinear form of Eq.
(1.3) can be obtained

[DxDt + aD4
x + b(D6

x − 5D3
xDy − 5D2

y)]f · f = 0, (2.2)

where the Hirota D-operator is defined by [8]

Dm
x Dn

yD
l
t(f · g)

=(
∂

∂x
− ∂

∂x′ )
m(

∂

∂y
− ∂

∂y′
)n(

∂

∂t
− ∂

∂t′
)lf(x, y, t) · g(x′, y′, t′)|x′=x,y′=y,t′=t. (2.3)

Identically, the bilinear form (2.2) can be expressed by

ffxt − fxft + a(ffxxxx − 4fxfxxx + 3f2
xx) + b[ffxxxxxx − 6fxfxxxxx + 15fxxfxxxx

− 10f2
xxx − 5(ffxxxy − fxxxfy − 3fxfxxy + 3fxxfxy + ffyy − f2

y )] = 0. (2.4)

Hence, the N -soliton solutions which include the mixed solutions consisting of
soliton molecules, breathers and lumps of the (2+1)-dimensional BKP-KdV equa-
tion(1.3) can be given by [2, 32,35]

f =
∑
τ=0,1

exp(
N∑
i<j

τiτjAij +

N∑
i=1

τiξi), (2.5)
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where τ = (τ1, τ2, · · · , τN ), τ = 0, 1 means that each τi takes 0 or 1. Here, the
relations of these parameters are

ξi=kix+piy+qit+ηi, qi=−ak4i +b(k6i −5k3i pi−5p2i )

ki
(i=1, 2, · · · , N), (2.6)

eAij = aij

= −a(ki − kj)
4+b[(ki − kj)

6−5(ki−kj)
3(pi − pj)−5(pi−pj)

2]+(ki−kj)(qi−qj)

a(ki+kj)4+b[(ki+kj)6−5(ki+kj)3(pi+pj)−5(pi+pj)2]+(ki+kj)(qi+qj)

(i < j, i, j = 1, 2, · · · , N). (2.7)

In addition to the multiple line soliton solutions, Eqs. (2.1) and (2.5) possess
many kinds of resonant excitations [1,16]. In particular, one can derive the breather
solution through the restricted conditions ki = kj , pi = pj , ηi = ηj (i ̸= j) and
further the rational lump solution via the limit process ki → 0, pi → 0 and ηi → 0.

2.1. Soliton molecule, breather and lump solutions
For the two-soliton solution of Eq.(1.3), the auxiliary function can be expressed by

u = 2(ln f)xx, v = 2(ln f)xy, f = 1 + eξ1 + eξ2 + a12e
ξ1+ξ2 ,

ξi = kix+ piy + qit+ ηi, (i = 1, 2),
(2.8)

where the phase shift a12 is

a12 = −a(k1−k2)
4+b[(k1−k2)

6v−5(k1−vk2)
3(p1−p2)−5(p1−p2)

2]+(k1−k2)(q1−q2)
a(k1+k2)4+b[(k1+k2)6−5(k1+k2)3(p1+p2)−5(p1+p2)2]+(k1+k2)(q1+q2)

,
(2.9)

with the parameters

qi = −ak4i + b(k6i − 5k3i pi − 5p2i )

ki
, (i = 1, 2). (2.10)

Then we list three typical cases.
(1) The soliton molecule. To generate the nonsingular resonant excitation solu-

tion, the following velocity resonance condition need to be satisfied

k1
k2

=
p1
p2

=
q1
q2

, k1 ≠ |k2|, p1 ̸= |p2|. (2.11)

From Eq.(2.9) with (2.10), the specific parmeters’ relations in the soliton molecule
are derived

k1
p1

=
k2
p2

=
5b

a+ b(k21 + k22)
,

k1
q1

=
k2
q2

=
5b

(a+ bk21)
2 + bk22(2a+ 7bk21 + bk22)

,

a12 =
(k1 − k2)

2(2k21 − 5k1k2 + 2k22)

(k1 + k2)2(2k21 + 5k1k2 + 2k22)
. (2.12)

By taking the parameters as

a = b = k1 = 1, k2 =
2

5
, η1 = 0, η2 = 5, (2.13)
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the others are calculated as follows:

p1 =
54

125
, p2 =

108

625
, q1 =

3416

3125
, q2 =

6832

15625
, a12 =

2

147
. (2.14)

Then the soliton molecule structure for the (2+1)-dimensional BKP-KdV equation
(1.3) is constructed, in which two-line solitons possess identical velocities, but have
different heights and widths as shown in Fig. 1(a).

(2) The breather solution. The breather solution is usually expressed by the
hyperbolic and periodic functions, so two-line soliton solution should satisfy the
conjugate relation ξ1 = ξ2 [3, 27]. To this end, we take the parameters as the
following form

k1 = k2 = k + κi, p1 = p2 = ρ+ ϱi, η1 = η2 = ζ + ςi, (2.15)

(i is an imaginary unit). Hence, the other terms can be rewritten as

q1 = −a(k + κi)4 + b[(k + κi)6 − 5(k + κi)3(ρ+ ϱi)− 5(ρ+ ϱi)2]

k + κi
≡ Q1 +Q2i,

q2 = q1 = −a(k − κi)4 + b[(k − κi)6 − 5(k − κi)3(ρ− ϱi)− 5(ρ− ϱi)2]

k − κi

≡ Q1 −Q2i,

(2.16)

a12 =
−4aκ4 + b(16κ6 + 20κ3ϱ− 5ϱ2) +Q2κ

4ak4 + b(16k6 − 20k3ρ− 5ρ2) +Q1k
, (2.17)

which lead to the following form of the auxiliary function

f = 1 + 2 cos(ϕ)eφ + a12e
2φ, (2.18)

with
ϕ = κx+ ϱy +Q2t+ ς, φ = kx+ ρy +Q1t+ ζ. (2.19)

Figure 1(b) exhibits the breather structure for the solution u of Eq. (1.3) with the
parameters

k =
3

10
, κ = −2

5
, ρ =

1

5
, ϱ =

2

5
, a = b = 1, ζ = ς = 0. (2.20)

This kind of special solution contains trigonometric and exponential functions,
which describes the property of the breather structure. Figure 1(b) shows that
the periodicity moves along the propagation direction while the localization comes
along the straight line 3x

2 + y = 0 (t = 0).
(3) The lump soliton. The lump soliton is localized in all directions in the space

and its solution can be expressed by the rational function [17–19]. Based on the
long-wave limit idea of generating the lump solution, one can consider the following
parameters’ conditions:

ki = λiϵi, pi = liλiϵi, ηi = λi0ϵi, ϵi → 0 (i = 1, 2). (2.21)

Then the auxiliary function f is given by

f = θ1θ2 +B12, B12 = −6λ1λ2[2a− 5b(l1 + l2)]

5b(l1 − l2)2
,

θi = λi(x+ liy + 5bl2i t) + λi0 (i = 1, 2).

(2.22)
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By taking the complex parameters

l1 = l2 =
a2 + a6i

a1 + a5i
, λ1 = λ2 = a1 + a5i, λ10 = λ20 = a4 + a8i, (2.23)

the quadratic function is confirmed from Eq.(2.22)

f = (a1x+ a2y + a3t+ a4)
2 + (a5x+ a6y + a7t+ a8)

2 + a9, (2.24)

with

a3 =
5b(a1a

2
2 − a1a

2
6 + 2a2a5a6)

a21 + a25
, a7 =

5b(2a1a2a6 − a22a5 + a5a
2
6)

a21 + a25
,

a9 =
3(a21 + a25)

2[a(a21 + a25)− 5b(a1a2 + a5a6)]

5b(a1a6 − a2a5)2
. (2.25)

This means that the moving route and velocity of the lump are

x =
5b(a22 + a26)t

a21 + a25
+

a2a8 − a4a6
a1a6 − a2a5

, y = −10b(a1a2 + a5a6)t

a21 + a25
− a1a8 − a4a5

a1a6 − a2a5
, (2.26)

vx =
5b(a22 + a26)

a21 + a25
, vy = −10b(a1a2 + a5a6)

a21 + a25
. (2.27)

By choosing the parameters

a1 = −2, a2 = a5 = a = b = 1, a4 = a8 = 0, a6 = −4, (2.28)

the rational lump solution u of Eq. (1.3) through (2.8), (2.24) and (2.25) is expressed
by

u =
28(−175x2 + 420xy + 91y2 + 910xt− 9324yt+ 48209t2 + 375)

(35x2 − 84xy + 119y2 − 182xt− 1428yt+ 10115t2 + 75)2
, (2.29)

which is shown in Fig. 1(c). The maximum amplitude, the moving velocity and
the moving path of this lump are 28

15 ,
√
433 and y = 12

17x, respectively. Figure 1(c)
displays the three-dimensional structure of this lump with t = 0.

2.2. Soliton molecule-soliton interaction, soliton-breather mol-
ecule and soliton-lump molecule

When N = 3 in (2.5), the auxiliary function f is taken as

f = 1 + eξ1 + eξ2 + eξ3 + a12e
ξ1+ξ2 + a13e

ξ1+ξ3 + a23e
ξ2+ξ3 + a12a13a23e

ξ1+ξ2+ξ3 ,

ξi = kix+ piy + qit+ ηi (i = 1, 2, 3), (2.30)

with the phase shifts

aij = −a(ki−kj)
4+b[(ki−kj)

6−5(ki−kj)
3(pi−pj)−5(pi−pj)

2]+(ki−kj)(qi−qj)
a(ki+kj)4+b[(ki+kj)6−5(ki+kj)3(pi+pj)−5(pi+pj)2]+(ki+kj)(qi+qj)

,

(i < j, i, j = 1, 2, 3), (2.31)
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a) The soliton molecule with the parameters (2.12), (2.13) and (2.14) at t = 0. (b) The
breather with the parameters (2.16), (2.17) and (2.20) at t = 0. (c) The lump structure given by (2.29)
at t = 0. (d)-(f) are the corresponding density figures (a)-(c), respectively.

and the parameters

qi = −ak4i + b(k6i − 5k3i pi − 5p2i )

ki
, (i = 1, 2, 3). (2.32)

Three-soliton solution can be obtained by substituting Eq.(2.30) with Eqs.(2.31) and
(2.32) into the transformation (2.1) for the (2+1)-dimensional BKP-KdV equation
(1.3). In the following, we present three typical cases.

(1) Soliton molecule-soliton interaction. The interaction of one soliton molecule
and a line soliton can be produced from three-soliton solution. For this situation,
ki, pi and qi (i = 1, 2) satisfy the velocity resonant condition (2.11), but k3, p3
and q3 should not obey this ratio. For example, when taking the related parameters

a = b = k1 = p3 = 1, k2 =
2

5
, k3 = −3

5
, η1 = η3 = 0, η2 = 5, (2.33)

the others are calculated as

p1 =
54

125
, p2 =

108

625
, q1 =

3416

3125
, q2 =

6832

15625
, q3 = −58496

9375
,

a12 =
2

147
, a13 =

2113249

597199
, a23 =

1100569

664249
. (2.34)

Figure 2 depicts this interaction between one soliton molecule and a line soliton
under the condition (2.33) and (2.34) at the different time.

(2) Soliton-breather molecule. This type of molecule contains a line soliton
and a breather. For this purpose, the module resonant condition is defined as k1 =
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(a) (b) (c)

Figure 2. Interaction of one soliton molecule and a line soliton for the (2+1)-dimensional BKP-KdV
equation (1.3) with the parameters (2.33) and (2.34) at (a) t = −5, (b) t = 0 and (c) t = 5, respectively.

(a) (b) (c)

Figure 3. The soliton-breather molecule for the (2+1)-dimensional BKP-KdV equation (1.3) with the
parameters (2.36) and (2.37) at (a) t = −2, (b) t = 0 and (c) t = 2, respectively.

k2, p1 = p2, q1 = q2 and η1 = η2 in Eqs.(2.15) and (2.16), while the parameters a13
and a23 can be obtained from Eq. (2.31) and need to satisfy a13 = a23 ≡ m1+m2i,
then the auxiliary function f of Eq. (2.18) is derived

f=1+2 cos(ϕ)eφ+a12e
2φ+2[m1 cos(ϕ)−m2 sin(ϕ)]e

φ+ξ3 +a12(m
2
1+m2

2)e
2φ+ξ3 +eξ3 ,

(2.35)
where a12, ϕ and φ satisfy Eqs. (2.17), (2.19) and ξ3 = k3x+ p3y + q3t+ η3.

Figure 3 shows one molecule structure which exhibits a line soliton and a breather
at the different time with the velocity resonance conditions

k3
k

=
p3
ρ

=
q3
Q1

, k3 ̸= |k|, p3 ̸= |ρ|, (2.36)

where the parameters are taken as

a = b = 1, k =
3

10
, κ = −2

5
, ρ =

1

5
, ϱ =

2

5
, ζ = ς = 0, η3 = 40. (2.37)

(3) Soliton-lump molecule. From the three-soliton solution, we can construct a
molecule consisting of a line soliton and a lump through the long-wave limit idea.
When taking

ki = λiϵi, pi = liλiϵi, ηi = λi0ϵi, ϵi → 0 (i = 1, 2, 3), (2.38)
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(a) (b) (c)

Figure 4. The soliton-lump molecule in the (2+1)-dimensional BKP-KdV equation (1.3) with the
parameters (2.28) and (2.41) at (a) t = −1.2, (b) t = 0 and (c) t = 1.2, respectively.

the transformation function f of Eq. (2.30) is deduced

f = (θ1θ2 +B12)(1 + eξ3) + (C23θ1 + C13θ2 + C13C23)e
ξ3 , (2.39)

with
C13 = − 12aλ1k

3
3 + b[30λ1k

2
3(k

3
3 − p3)− 30λ1l1k

3
3]

3ak43 + b[5k23l
2
1 − 5k3l1(k33 + 2p3) + 5(k33 − p3)

2
]
,

C23 = − 12aλ2k
3
3 + b[30λ2k

2
3(k

3
3 − p3)− 30λ2l2k

3
3]

3ak43 + b[5k23l
2
2 − 5k3l2(k33 + 2p3) + 5(k33 − p3)

2
]
. (2.40)

Figure 4 shows one molecule consisting of a line soliton and a lump at the
different time with the parameters (2.28) and

k3 =
3

2
, p3 = −279− 3

√
5549

80
, q3 =

327− 9
√
5549

20
, η3 = −20. (2.41)

The corresponding moving velocity of this lump soliton is
√
433.

2.3. The interaction among soliton molecule, breather and
lump

The auxiliary function f of the four-soliton solution can be expressed as

f(x, y, t) =1+eξ1+eξ2+eξ3+eξ4+a12e
ξ1+ξ2+a13e

ξ1+ξ3+a14e
ξ1+ξ4+a23e

ξ2+ξ3

+ a24e
ξ2+ξ4 + a34e

ξ3+ξ4 + a12a13a23e
ξ1+ξ2+ξ3 + a23a24a34e

ξ2+ξ3+ξ4

+ a13a14a34e
ξ1+ξ3+ξ4a12a14a24e

ξ1+ξ2+ξ4

+ a12a13a14a23a24a34e
ξ1+ξ2+ξ3+ξ4 , (2.42)

with the phase shifts aij(i < j, i, j = 1, 2, 3, 4) and the parameters qi(i = 1, 2, 3, 4)
satisfying Eqs. (2.6) and (2.7). The four-soliton solution can be derived through
substituting Eq.(2.42) with Eqs.(2.6) and (2.7) into the transformation (2.1). Then
we list three typical cases.

(1) The interaction of two soliton molecules. When the parameters ki, pi and
qi (i = 1, 2) satisfy the velocity resonant condition (2.11), while kj , pj and qj
(j = 3, 4) also obey this ratio: k3

k4
= p3

p4
= q3

q4
, k3 ̸= |k4|, p3 ̸= |p4|, the structure of
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(a) (b) (c)

Figure 5. The elastic interaction between two soliton molecules in the (2+1)-dimensional BKP-KdV
equation (1.3) with the parameters (2.43) at (a) t = −2, (b) t = 0 and (c) t = 2, respectively.

two soliton molecules is generated from the four-soliton solution. Figure 5 shows this
structure in the (2+1)-dimensional BKP-KdV equation (1.3) with the parameters

a = b = k1 = 1, k2 = −2

5
, k3 = −5

6
, k4 =

17

10
η1 = η3 = 0, η2 = 2, η4 = 10.

(2.43)
In this case, we have k1

k3
= − 6

5 ,
p1

p3
= − 5832

10315 and q1
q3

= − 3794688
17965715 . This means

that their ratios are different and the collision of two soliton molecules occurs. From
Figure 5, one can see that their interactions among separated solitons are elastic,
that is, the heights and velocities of these wave peaks remain unchanged except for
the phase shifting after collisions.

(2) The interaction between one soliton molecule and one breather. For this
situation, the parameters ki, pi and qi (i = 1, 2) should satisfy the velocity resonant
conditions (2.11) and (2.12), while the complex conjugate relations ξ3 = ξ4, i.e.
k3 = k4 = k+ κi, p3 = p4 = ρ+ ϱi, η3 = η4 = ζ + ςi, and the ratio k

k1
= ρ

p1
= Q1

q1
,

q3 = q4 ≡ Q1 + Q2i need to be hold just as Eqs. (2.15)-(2.19). Figure 6 shows
the molecule consisting of one soliton molecule and one breather in the (2+1)-
dimensional BKP-KdV equation (1.3) where the parameters are chosen as

a = b = k1 = 1, k2 =
2

5
, k =

13

20
, κ =

6

5
, η1 = ζ = ς = 0, η2 = −3, (2.44)

and others are given by

p1=
54

125
, p2=

108

625
, q1=

3416

3125
, q2=

6832

15625
, ρ=

351

1250
, ϱ=−8583

5000
+
3
√
11301203

8000
.

(2.45)

In fact, there usually exists the elastic collision between soliton molecule and
breather. For instance, we choose the parameters κ = − 2

5 , η2 = 5 in Eq.(2.44)
with ρ = 1

5 , ϱ = 2
5 , then the ratio is k

k1
= 3

10 ̸= ρ
p1

= 25
54 . The elastic interaction

structure of one soliton molecule and one breather in the (2+1)-dimensional BKP-
KdV equation (1.3) can be generated from the four-soliton solution as shown in
Figure 7.
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(a) (b) (c)

Figure 6. The molecule consisting of one soliton molecule and one breather in the (2+1)-dimensional
BKP-KdV equation (1.3) with the parameter (2.44) and (2.45) at (a) t = −16, (b) t = 0 and (c) t = 16,
respectively.

(a) (b) (c)

Figure 7. The elastic interaction between one soliton molecule and one breather in the (2+1)-
dimensional BKP-KdV equation (1.3) with the parameter (2.44) and (2.45), but κ = − 2

5 , η2 = 5, ρ =
1
5 , ϱ = 2

5 at (a) t = −16, (b) t = 0 and (c) t = 16, respectively.

(a) (b) (c)

Figure 8. The molecule consisting of one breather and one lump in the (2+1)-dimensional BKP-KdV
equation (1.3) with the parameter (2.46), (2.47) and (2.48) at (a) t = − 1

2 , (b) t = 0 and (c) t = 1
2 ,

respectively.
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(a) (b) (c)

Figure 9. The elastic interaction between one breather and one lump in the (2+1)-dimensional BKP-
KdV equation (1.3) with the parameters (2.20) and (2.28) at (a) t = −2, (b) t = 0 and (c) t = 2,
respectively.

(3) The lump-breather molecule. Based on Eqs. (2.21), (2.23) and the complex
conjugate relation ξ3 = ξ4, i.e. k3 = k4 = k+κi, p3 = p4 = ρ+ϱi, η3 = η4 = ζ+ςi,
the transformation function of Eq.(2.42) is simplified as

f(x, y, t)=(θ1θ2 +B12)(1 + eξ3 + eξ4) + a34[(C23 + C24)θ1 + (C13 + C14)θ2

+θ1θ2+(C13+C14)(C23+C24)+B12]e
ξ3+ξ4+(C23θ1+C13θ2+C13C23)e

ξ3

+ (C24θ1 + C14θ2 + C14C24)e
ξ4 , (2.46)

with q4 = q3 ≡ Q1−Q2i, C14 = C23 and C24 = C13. Figure 8 displays the evolution
of a molecule consisting of one breather and one lump in the (2+1)-dimensional
BKP-KdV equation (1.3) where f is given by Eq.(2.46) and the parameters are
taken as

k = −4

5
, κ = 1, ρ =

1

2
, ϱ = −453

200
+

√
249103905

5000
, ζ = 5, ς = 0. (2.47)

Besides, the relation

5bk(a22 + a26)

a21 + a25
− 10bρ(a1a2 + a5a6)

a21 + a25
+Q1 = 0, (2.48)

should obey for the soliton molecule structure.
It is noted that when we take the parameters just as Eqs.(2.20) and (2.28),

Eq.(2.48) is not equal to zero and then the elastic interaction between one breather
and one lump appears as shown in Figure 9.

3. Summary
In conclusion, starting from the N -soliton solution and the velocity resonant condi-
tion, we present the soliton molecules and some related interaction solutions for the
(2+1)-dimensional BKP-KdV equation (1.3). From two-soliton solution, one soliton
molecule, one breather and one lump soliton are constructed successively (Figure
1). From three-soliton solution, the interaction solution of one soliton molecule and
one line soliton, the molecule consisting of one line soliton and one breather/lump
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soliton are established, respectively (Figures 2-4). Further, the elastic interaction
of two soliton molecules (Figure 5), the molecule consisting of one soliton molecule
and the breather (Figure 6), the lump-breather molecule (Figure 8) are presented
from four-soliton solution according to the velocity resonance, the module resonance
and the long-wave limit mechanisms. Abundant and vivid figures for these molecule
and their interaction are illustrated to demonstrate these dynamics features.
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