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SENSITIVITY ANALYSIS OF PESTICIDE
DOSE ON PREDATOR-PREY SYSTEM WITH

A PREY REFUGE∗

Xiaoyu Hou1, Jingli Fu2 and Huidong Cheng1,†

Abstract A type of predator-prey model with refuge and nonlinear pulse
feedback control is established. First, we construct the Poincaré map of the
model and analyse its main properties. Then based on the Poincaré map,
we explore the existence, uniqueness and global stability of the order-1 pe-
riodic solution, and also the existence of order-k(k ≥2) periodic solutions of
the system. These theoretical analysis gives the relationship between pesticide
dosage and spraying cycle and economic threshold, and the relationship be-
tween the pesticide dose D and threshold ET . The results show that choosing
the appropriate spraying period and finding the corresponding pesticide dose
under the certain economic threshold can control the number of pests and the
healthy growth of crops could be controlled. Moreover, we study the influence
of refuge on population density. The results show that with the increase of
refuge intensity, the population of predators decreases or even becomes ex-
tinct. The parameter sensitivity analysis shows that the change of control
parameters and pesticide dosage is very sensitive to the critical condition of
the stability of the boundary periodic solution.

Keywords Impulsive semi-dynamic system, refuge, Poincaré map, periodic
solutions.
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1. Introduction
Pest management has always been an important subject of research, because once
pest management is not timely or the control measures are inappropriate, it will
bring immeasurable losses to agriculture and forestry [14, 44]. Generally, there are
three commonly used methods to control pests:

(a) chemical control that is to control pests by spraying insecticides. Although
this method is simple and effective, long-term use will cause damage to the
soil environment and increase the resistance of pests etc. [42].

(b) biological control that is to control pests by releasing natural enemies or
viruses of the pests. However, this method is only suitable for situations
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where there is a small amount of pests [3, 4].

(c) When the amount of pests is large, people often use the integrated pest
management (IPM) that is a combination of the chemical control and bi-
ological control. Evidences have shown it is more effective than the classic
methods [22,23,26].

Since the pests will be reduced instantaneously after applying comprehensive pest
management, the aforementioned management strategies can be mathematically
modelled by systems of impulse differential equations. Impulsive differential equa-
tions are widely used in biology, agriculture and medicine, which often used to
describe transient phenomena in nature [9, 11, 16, 19, 27, 29, 34, 35, 41]. Depend-
ing when “control” is applied, people proposed two types of impulsive differential
equations (IDEs): time impulse IDE, which is used to describe the periodic instan-
taneous change of the population; and state impulse IDE, which is often used to
study the instantaneous change of the population when the pest number or density
reaches a certain threshold [14,17,22,23,26,31,36–39].

To investigate models with a state impulse feedback control and IPM, the qual-
itative theory for impulsive semi-dynamical system has been developed [1, 27–29].
For example, Wei and Chen [32] established and proved the existence and stability
of the order 1 periodic solution. Tian et al. [10] studied the Holling II functional
response predator-prey system with state-dependent impulse control by defining
the successor function of the semi-continuous dynamical system, and extended a
new theoretical proof to obtain similar conclusions. Huang et al. [7] proposed a
state pulse mathematical model for pulse injection of insulin for type 1 and type
2 diabetes, and proved the existence and stability of the first-order periodic solu-
tion. Sun and his collaborators [24] proposed a chemostat model of maintaining
the biomass concentration below a certain threshold, and considered the existence
of order 1 and 2 periodic solutions. As shown in the aforementioned references,
the existence and local stability of the order 1 periodic solution, and even the ex-
istence of the order 2 periodic solution can be established by using the successor
function and Poincaré map due to the use of the linear impulse control or feedback
control [27, 28]. However, there are scenarios where models have more complicated
dynamics that need nonlinear control strategies, for example in the model to be for-
mulated in this study where a prey refuge will be considered in the prey-predator
model. It is known that the refuge plays an important role in affecting the dynamic
behavior of predator-prey population [2, 15, 30]. Prey can use a shelter to prevent
predation by natural enemies. In recent years, many scholars have studied the role
of refuge on populations [13, 21]. A Holling II prey-predator model with refuge
was studied in [43], where authors demonstrated the existence and stability of the
equilibrium point of the model, and also the existence of Hopf bifurcation and limit
cycle. Bhaskar, in [2] studied a diffusion predator-prey model with a prey refuge
and a type III response function, and considered the effects of the one-dimensional
and two-dimensional diffusion rates of the model system on the population. Ji et
al. [8] proposed a Holling II predator-prey model with a constant prey refuge and
a constant ratio of prey harvest.

In addition to the nonlinear impulse control strategy, the sensitivity analysis
of pesticide application intensity to pests and natural enemies requires further re-
search. To this end, we will develop a nonlinear impulse control model with prey
refuge to further study its dynamic properties by Poincaré map. The parameter
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sensitivity analysis of the model include (a) the sensitivity of parameters to the sta-
bility threshold of the boundary period solution, (b) the relationship between the
pest control period T , the threshold ET and the sprayed pesticide dose D, and (c)
the changing law of predator and prey population density as the proportion of prey
refuge changes. We outline our study as follows. In Section 2, we will formulate a
predator-prey model based on pulse feedback control. We define the Poincaré map
of the model and analyse its properties, such as the monotonicity, continuous and
discontinuous intervals, differentiability, fixed points and asymptote of the Poincaré
map in Section 3. Then it is followed by Section 4 where we discuss the existence,
uniqueness and global stability of the order-1 periodic solution of the model, and the
conditions for the existence of the order-k(k ≥ 2) periodic solution. In Sections 5.1
and 5.2, we investigate the impact of the prey refuge and numerically demonstrate
our results. We finally conclude our study in Section 6.

2. Model Formulation
In this section, based on the model formulated by [15], we will propose our model
under impulse control. Let x(t) and y(t) represent the densities of the prey and the
predator population at time t, respectively, g(x) the growth rate, ϕ(x) the functional
response. Then the general predator-prey model takes the following form as in [15]x′ = xg(x)− yϕ(x),

y′ = (pϕ(x)− c)y.
(2.1)

If further assume that the growth rate of the prey population takes the logistic
form, and the predator has a Holling II saturation functional response, system (2.1)
becomes 

x′ = rx(1− x

K
)− qxy

x+ a
,

y′ = b(
px

x+ a
− c)y,

(2.2)

where r is the internal growth rate of the prey population, K is the environmental
capacity, qxy

x+a denotes the Holling II functional response, p is the conversion rate
from prey to predator growth, c is the death rate of predators. All parameters
r,K, q, a, p, c are positive constants. If we further consider the refuge in prey that is
the prey is protected by the refuge, a predator-prey system with refuge effect takes
the following form 

x′ = rx(1− x

K
)− q(x− xr)y

(x− xr) + a
,

y′ = b(
p(x− xr)

(x− xr) + a
− c)y,

(2.3)

where xr denote the density of prey in the refuge. Generally, the refuge effect of the
prey population may be mathematically modelled by one of the following forms:

(a) The density of prey in the refuge is proportional to the existing density, that
is, xr = βx, (0 ≤ β ≤ 1);

(b) The density of prey in the refuge is constant, that is xr = γ.
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In this study, we consider the first case. Then system (2.3) becomes
x′ = (r(1− x

K
)− q(1− β)y

(1− β)x+ a
)x,

y′ = b(
p(1− β)x

(1− β)x+ a
− c)y.

(2.4)

Let x → Kx, y → rK
qy , t →

r
x+Aτ , and denote m = a

1−β , A = m
K , B = bp

r , C = c
p .

System (2.4) becomes x′ = ((1− x)(x+A)− y)x,

y′ = B(x− C(x+A))y,
(2.5)

which has 3 nonnegative equilibrium points, among them there are two boundary
equilibria O(0, 0) and P1(1, 0), and a unique interior equilibrium Qe(x

∗, y∗) that is
positive provided 1− C −AC > 0 with

x∗ =
AC

1− C
, y∗ =

A(1− C −AC)

(1− C)2
.

Reference [15] indicated that when Qe exists, a simple analysis shows that O(0, 0)
and P1(1, 0) are saddle points, and Qe is a weak focus. In what follows, unless
specified otherwise, we discuss the interior equilibrium Qe only.

It is known that if pests are not controlled they may cause immeasurable damage
to the biological population. Therefore, we propose to implement comprehensive
control strategy for model (2.5), and only when the density of pests population
reaches a critical density called economic threshold (ET), control is implemented:
the density of the prey population decreases by spraying chemicals and the density
of the predator population increase by releasing of natural enemies [25]. More
precisely, we will implement the nonlinear pulse control technique developed in [20,
25] where authors showed that limited resources could affect pest control, and they
also investigated that the nonlinear pulsed control may induce periodic solutions
with any period.

Based on the above discussion, we can have a schematic diagram as shown in
Figure 1. From the schematic diagram a prey-predator model concerning refuge
and the effects of pesticide doses takes the following form:

dx(t)

dt
= ((1− x)(x+A)− y)x

dy(t)

dt
= B(x− C(x+A))y

x(t) < ET,

x(t+) = H1(D)x(t)

y(t+) = H2(D)y(t) + τ

x(t) = ET.

(2.6)

Here H1(D) and H2(D) denote survival fractions of prey and predator population,
respectively, after applying dose D of pesticide and 0 ≤ H1(D),H2(D) ≤ 1. A
common assumption is that insecticides not only kill prey but also predators, but
with different kill rates:

H1(D) = e−k1D, H2(D) = e−k2D, 0 ≤ k1, k2 ≤ 1.
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Figure 1. Schematic diagram of the mathematical model.

τ ≥ 0 is the fixed number of natural enemies released at time t. We let x(t+) =
x+, y(t+) = y+ denote the density of prey and natural enemies after implementing
comprehensive control strategy at time t. In addition, x(0+) and y(0+) represent the
initial density of prey and natural enemies, respectively. Without loss of generality,
in this study, we assume that the initial density of the prey population is always
less than ET, that is x(0+) = x+

0 < ET, y(0+) = y+0 > 0 and ET < K.
To investigate the dynamics of (2.6), we will first construct the corresponding

Poincaré map, using the pulse points on the phase set and then study the accurate
domain of the Poincaré map. From biological view, we restrict study to region
R2

+ = {(x, y) : x ≥ 0, y ≥ 0} in the following section.

3. Poincaré Map and Its Properties
3.1. The domain of the Poincaré map
First, it is easy to see that model (2.5) have two isoclines, which are denoted by

L1 : x =
AC

1− C
; L2 : y = (1− x)(1 + x).

Then for the convenience of discussion, we define two lines as follow:

L3 = {(x, y) : x = e−k1DET, y ≥ 0}; L4 = {(x, y) : x = ET, y ≥ 0}.

Since 0 < ET < K, substituting x = ET into line L2, one yields the intersection
point of line L2 and line L4 ,denote the only intersect point by Q(ET, yET ). Then
denote the unique intersect point of L2 and L3 by H(e−k1DET, yH), where

yET = −ET 2 + (1−A)ET +A, yH = −(e−k1DET )2 + (1−A)e−k1DET +A.

In order to define the pulse semi-dynamic system of system (2.6), the exact pulse
set and phase set should be specified. Now based on the relative positions between
the threshold ET and the equilibrium point Qe(x

∗, y∗), we have the following two
cases:
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Case I: ET < x∗

In this case, L3 and L4 are located on the left side of the equilibrium point Qe.
Any solution starting from the line L3 will definitely reach line L4 after a finite
time by the vector fields of the model (2.6). Thus, the trajectory initiating from
the intersection of two lines L2 and L3, A+(e−k1DET, yH) ∈ L3 must intersect L4

at a point that is denoted by A11(ET, y11) (see Fig. 2(a)). Then the impulsive set
M1 for system (2.6) can be defined as follows:

M1 = {(x, y) ∈ R2 |x = ET, 0 ≤ y ≤ y11},

which is a closed subset of R2, see Fig. 2(a). Furthermore, define the continuous
function I as follow:

I : (ET, y) ∈ M1 → (x+, y+) = (e−k1DET, e−k2Dy + τ) ∈ R2.

So the corresponding phase set can be defined by

N1=I(M1) =
{
(x+, y+)

∣∣x+ = e−k1DET, τ ≤ y+ ≤ e−k2Dy11 + τ
}
.

Case II: ET > x∗

When ET > x∗, L4 is on the right side of equilibrium Qe, and L3 could be on the left
or right side equilibrium Qe. Since the vector fields of the system (2.6), any solution
starting from point (e−k1DET, y+0 ) with y+0 > 0 may experience infinitely many
pulses or will be free from impulsive effects which depends on the initial conditions.
Therefore, according to different situations, the exact domain of impulsive sets and
phase sets of the system (2.6) will be different under case II.

For example, if trajectory starting from point A+ intersects L4 at point A22(ET,
y22) (see Fig. 2(b)), then any solution initiating from (e−k1DET, y+0 ) with y+0 > 0
may experience infinitely many pulses. Thus the impulse set M2 for system (2.6)
can be determined as follows:

M2 = {(x, y) ∈ R2 |x = ET, 0 ≤ y ≤ y22}.

So the corresponding phase set can be defined by

N2=I(M2) =
{
(x+, y+)

∣∣x+ = e−k1DET, τ ≤ y+ ≤ e−k2Dy22 + τ
}
.

If there exists a trajectory Γs which tangents to the line L4 at point S(ET, ys)
and intersects the line L3 at two points, denoted by P1 = (e−k1DET, yP1

) and
P2 = (e−k1DET, yP2) with yP1 > yP2 (see Fig. 2(c),1(d)). Moreover, any solution
initiating from point (x+

0 , y
+
0 ) with yP2 < y+0 < yP1 will be free from impulsive

effects. Thus, We can infer the pulse set as follow:

M3 = {(x, y) ∈ R2 |x = ET, 0 ≤ y ≤ ys}.

So the corresponding phase set can be defined as

N3=I(M3) =
{
(x+, y+)

∣∣x+ = e−k1DET, τ ≤ y+ ≤ e−k2Dys + τ
}
.
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Figure 2. The domains of the phase and pulse sets in three cases, A = 1, B = 0.8, C = 0.2.
(a)k1 = 0.7, k2 = 0.3, D = 0.5, ET = 0.2, τ = 0.45.(b)k1 = 1.5, k2 = 0.3, D = 0.5, ET = 0.3,
τ = 0.45.(c)k1 = 1.5, k2 = 0.3, D = 0.5, ET = 0.4, τ = 0.45.(d)k1 = 1.5, k2 = 0.3, D = 0.5, ET = 0.4,
τ = 0.45.

3.2. The construction of Poincaré map
Based on the discussion in preceding section, we construct the Poincaré map, where
the phase sets are part of L3.

For case I, the trajectory from any one point H+
k (e−k1DET, y+k ) ∈ L3 on the

phase set must intersect with the straight line L4 at the point Hk+1(ET, yk+1).
Then, the value of y+k is only determined by yk+1 through Cauchy-Lipschitz theorem
, which will be denoted by yk+1

def
= g(y+k ) for the convenience of the following

discussion. Point Hk+1 on the impulse set L4 maps to point H+
k+1(e

−k1DET, y+k+1)

on L3 after a pulse. Therefore, based on the impulse function y(t+) = e−k2Dg(t)+τ
of system (2.6), y+k+1 = e−k2Dyk+1 + τ , and point H+

k+1 will be the initial point of
the next impulse function on the phase set.

Using the same fashion, we can define a similar Poincaré map for case II. Now
we can express the Poincaré map of system (2.6) as:

y+i+1 = e−k2Dg(y+i ) + τ = φ(y+i ). (3.1)

Next, we infer the expression of Poincaré map function φ and discuss its prop-
erties. Let P (x(t), y(t)) = ((1− x)(x+A)− y)x,

Q(x(t), y(t)) = B(x− C(x+A))y.
(3.2)
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System (2.6) can be rewritten as a scalar differential equation on the phase set:
dy

dx
=

Q

P
= ω(x, y),

y(e−k1DET ) = y+0 ,
(3.3)

which is restricted on region

Ω1 = {(x, y)|x > 0, y > 0, y < (1− x)(x+A)} .

Thus ω(x, y) is differentiable in the region Ω1. Let x+
0 =e−k1DET and y+0 =S, where

S ∈ N , S < yH , (x+
0 , y

+
0 ) ∈ Ω1. Then we can get

y(x) = y(x; e−k1DET, S)
def
= y(x, S), e−k1DET ≤ x ≤ ET, (3.4)

and from (3.3), we get

y(x, S) = S +

∫ x

e−k1DET

ω(S, y(s, S)) ds. (3.5)

Based on equations (3.1) and (3.3), the definition of Poincaré map φ as follow:

φ (S) = e−k2DETy(ET, S) + τ. (3.6)

Next, we discuss the properties of the Poincaré map φ.

Figure 3. The Poincaré map φ related to the impulsive point series y+
k in case I. The parameters fixed

as A = 1, B = 0.8, C = 0.2, k1 = 0.7, k2 = 0.3, D = 0.5, ET = 0.25. (a)τ = 0.15; (b)τ = 0.45.

3.3. The main properties of the Poincaré map
According to the mathematical model and expression of Poincaré map φ, we can
address some properties about Poincaré map φ.

Theorem 3.1. For case I, that is, when ET < x∗, the Poincaré map φ of system
(2.6) satisfies the following properties, which are illustrated by Fig.3:

i) The domain of φ is [0,+∞) and the range is [τ, φ(yH)] = [τ, e−k2Dy(e−k1DET,
yH)+ τ ]. In addition φ monotonically increases on [0, yH ] and monotonically
decreases on [yH ,+∞).
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Figure 4. The Poincaré map φ related to the impulsive point series y+
k in case II. The parameters fixed

as:A = 0.8, B = 0.8, C = 0.2, k1 = 0.7, k2 = 0.3, D = 0.5, ET = 0.25. (a) τ = 0.2; (b)τ = 0.45.

ii) φ is continuously differentiable.

iii) φ is concave on [0, yH).

iv) φ has a unique fixed point yf . Furthermore, when τ > 0 and φ(yH) < yH , yf ∈
(0, yH); while φ(yH) > yH we have yf ∈ (yH ,+∞).

v) φ has a horizontal asymptote y = τ as y+k → +∞.

Proof. (i) According to the vector field of system (2.6), the domain of φ is de-
fined on the interval [0,∞). Given two points A+

i (e
−k1DET, y+i ), A

+
j (e

−k1DET, y+j )

with y+i , y
+
j ∈ [0, yH ],y+i < y+j . According to the Cauchy-Lipschitz theorem, the

trajectories staring from two points A+
i and point A+

j will meet line L4 at points
Ai+1(ET, yi+1), Aj+1(ET, yj+1), where yi+1 < yj+1. After one time impulsive effect
reach the phase set, one yields φ(y+i ) = e−k2Dyi+1 + τ < e−k2Dyj+1 + τ = φ(y+j ).

Similarly, for any y+i , y
+
j ∈ [yH ,+∞) with y+i < y+j , the trajectories staring from

points A+
i and A+

j will first meet L3 at points (e−k1DET, y′i) and (e−k1DET, y′j) with
y′i > y′j and then reach L4 at points (ET, yi+1) and (ET, yj+1), where yi+1 > yj+1.
After impulsive effect, get an inequality relationship φ(y+i ) = e−k2Dyi+1 + τ >
e−k2Dyj+1 + τ = φ(y+j ).

Therefore, the Poincaré map φ is increasing on [0, yH ] and decreasing on [yH ,+∞),
and the range of φ is [τ, φ(yH)] = [τ, e−k2Dy(e−k1DET, yH) + τ ].

(ii) We can get that both P (x, y) and Q(x, y) functions are continuously dif-
ferentiable in the first quadrant in accordance with system (2.3). So by Cauchy
theorem and Lipschitz theorem with parameters, the φ is a continuously differen-
tiable function can be proved.

(iii) Form (3.5), we get

∂ω

∂y
=

Bx[x− C(x+A)][(1− x)(x+A)]

[((1− x)(x+A)− y)x]2
, (3.7)

∂2ω

∂2y
=

2Bx2[x− C(x+A)][(1− x)(x+A)]

[(1− x)(x+A)x]3
. (3.8)
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It is obvious that [(1 − x)(x + A) − y]x > 0 and x − C(x + A) < 0 when
0 < y < yθET with x < A

1−C , which indicate that the ∂ω/∂y < 0 holds, ∂2ω/∂2y < 0
also true for all 0 < y < yH .

Form the Cauchy-Lipschitz theorem with parameters has

∂y(x, S)

∂S
= exp[

∫ x

e−k1DET

∂

∂y
(
Q(z, y(z, S))

P (z, y(z, S))
)dz] > 0, (3.9)

and

∂2y(x, S)

∂S2
=

∂y(x, S)

∂S
·
∫ x

e−k1DET

∂2

∂y2
(
Q(z, y(z, S))

P (z, y(z, S))
)
∂y(x, S)

∂S
dz. (3.10)

Based on the above analysis, the inequality ∂2y(x, S)/∂S2 < 0 holds true. There-
fore, φ is monotonically increasing and concave for y < yH .

(iv) From (i), the φ monotonically increasing on [0, yH ] and monotonically de-
creasing on [yH ,+∞). Therefore, we discuss the existence of fixed point about φ in
two cases.

(a) When φ(yH) < yH , since φ(0) = τ > 0, there is at least one number yf
such that φ(yf ) = yf on [0, yH); Notice that φ is monotonically decrease on
[yH ,+∞) and φ(yH) < yH . We obtain φ has no fixed point on [yH ,+∞).
Thus, according to the property (ii) we can conclude that when φ(yH) < yH
the function φ has at least one fixed point.

(b) When φ(yH) ≥ yH , let φ(yA) > yA and φ(yA) = y+A , that is y+A > yA. Because
of φ monotonically decrease on [yH ,+∞), We have φ(y+A) < φ(yA) = y+A .
According to the above proof and the property (ii), φ has at least one point
yf on [yH ,+∞) such that φ(yf ) = yf . In addition, φ there is no fixed point
on [0, yH) because of φ(0) = τ > 0. Therefore, the φ has at least one fixed
point when φ(yH) ≥ yH .

In terms of the above discussion and the concavity property of φ, φ always has the
only fixed point yf .

(v) Denote the closure of the Ω1 as

Ω̄1 = {(x, y)|x > 0, y > 0, y ≤ (1−A)(x+A)} . (3.11)

Denote

L = y − (1− x)(x+A).

If the vector field will eventually reach the boundary Ω̄1 and following formula holds,
the Ω̄1 is an invariant set of system (2.6).

[(P (x, y), Q(x, y)) · (2x+A− 1, 1)]L=0 ≤ 0,

here · is the scalar product of two vectors, carry out calculations, then

V (x)|L=0
.
= (x(1− x)(x+A)− y) · (2x+A− 1) +B(x− C(x+A))y

= B(x− C(x+A))y < 0.

Since φ increasing on [0, yH ] and decreasing on [yH ,+∞), φ(y+0 ) is bounded for
any y+0 ∈ [0, yH ] and φ([yH ,+∞)) ⊂ φ([0, yET ]). Furthermore, any point on the
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phase set we always have dy
dx < 0, which leads to lim

y+
k →∞

g(y+k ) = 0. Therefore, we

get
lim

y+
k →∞

φ(y+k ) = lim
y+
k →∞

e−k2Dg(y+k ) + τ = τ.

Theorem 3.2. For case II, that is, when ET ≥ x∗, the trajectory ΓS intersects
the line L4 at point S(xs, ys) and the line L3 at two points P1(e

−k1DET, yP1
) and

P2(e
−k1DET, yP2

) respectively with yP1
> yP2

, we know the Poincaré map φ has the
following properties as illustrated in Figure 4:

i) The range of φ are [0, yP2 ]∪ [yP1 ,+∞). In addition φ monotonically increases
on [0, yP2 ] , monotonically decreases on [yP1 ,+∞).

ii) φ is continuously differentiable on [0, yP2
] ∪ [yP1

,+∞).
iii) When φ(yP1

) ≥ yP1
, there exists a point y∗f ∈ [yP1

,+∞) satisfies φ(y∗f ) = y∗f ;
when φ(yP1

) < yP1
, there is no fixed point y∗f ∈ (0, yP1

] satisfies φ(y∗f ) = y∗f .

Proof. (i) Firstly, we discuss the range of φ. Because Qe(x
∗, y∗) is balance point,

when ET ≥ x∗, the trajectory ΓS intersects the line L4 at point S(xs, ys) and
intersect the line L3 at two points P1(e

−k1DET, yP1
) and P2(e

−k1DET, yP2
) with

yP1
> yP2

. We take an arbitrary point, say A+
n (x

+
n , y

+
n ) on line L3. Then, if

y+n ∈ (0, yP2
] ∪ [yP1

,+∞), the point A+
n will reach point An+1(ET, yn+1) on the

impulse sets through impulsive effect; if y+n ∈ (yP2
, yP1

), then trajectory starting
from point A+

n have no intersect point with line x = ET . Therefore, the range of φ
are [0, yP2 ] ∪ [yP1 ,+∞).

Secondly, for any solution y+n1
, y+n2

∈ (0, yp2
] with y+n1

< y+n2
, we can get

g(x, y+n1
) < g(x, y+n2

), e−k1DET ≤ x ≤ ET,

according to the uniqueness of the solution of the differential equation. Through
the definition of Poincaré map, we get φ(y+n1

) < φ(y+n2
). So the φ is increasing on

[0, yP2 ].
When y+n1

, y+n2
∈ [yP1 ,+∞) with y+n1

<y+n2
, the trajectory staring from A+

n1
(e−k1D

ET, y+n1
) and A+

n2
(e−k1DET, y+n2

) will meet phase set at points A+
n11

(e−k1DET, y+n11
)

and A+
n21

(e−k1DET, y+n21
) with y+n11

> y+n21
. According to the uniqueness of the

solution of the differential equation, we can see φ(y+n1
) > φ(y+n2

). So the φ is
decreasing on [yP1

,+∞).
(ii) According to formula (11), we known ω(x, y) is continuously differentiable

in the first quadrant, and φ is continuously differentiable on [0, yP2
] ∪ [yP2

,+∞)
through the continuously differentiable theorem of differential equations.

(iii) According to the positional relationship between Poincaré φ(yP1
) and yP1

,
consider the following two cases:

(a)When φ(yP1
) ≥ yP1

, we suppose φ(yP1
) = yP ≥ yP1

. We known φ is de-
creasing on [yP1

,+∞), then φ(yP ) ≤ φ(yP1
) = yP , that is φ(yP ) ≤ yP . Thus,

there is a point y∗f ∈ [yP1
,+∞) satisfies φ(y∗f ) = y∗f on the basis of the contin-

uous differentiability of closed interval. (b)When φ(yP1) < yP1 , there is no fixed
point y∗f ∈ (0, yP1 ] satisfies φ(y∗f ) = y∗f . For any points y+n ∈ (0, yP1 ], the trajec-
tories starting from point A+

n (e
−k1DET, y+n ) first meet the pulse set M3 at point
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An+1(ET, yn+1) and then the point An+1(ET, yn+1) will pulse to the phase set N3

at point A+
n+1(e

−k1DET, y+n+1), which easy to get yn+1 < y+n < y+n+1. On account
of yn+1 ̸= y+n+1, there is no fixed point y∗f ∈ (0, yP1

] satisfies to φ(y∗f ) = y∗f .

4. Order-k Periodic Solutions
4.1. Boundary periodic solutions of system (2.6)
Assume that the predator population tends to extinction and also stop releasing
predators. Then the system (2.6) becomes to the following system:

dx(t)

dt
= rx(t)(1− x(t)

K
), x(t) < ET,

x(t+) = e−k1Dx(t), x(t) = ET.

(4.1)

In this scenario, we shall show that the system (2.6) has a boundary peri-
odic solution and investigate its stability. Solving equation (4.1) with initial value
x(0+) = e−k1DET yields

xT (t) =
e−k1DETK exp(rt)

K − e−k1DET + e−k1DET exp(rt)
. (4.2)

Then any solution of (2.6) from the initial point (xT (t), 0) will intersect with
the line L4 over time. Solving

ET =
e−k1DETK exp(rt)

K − e−k1DET + e−k1DET exp(rt)
,

for t and D:

t =
1

r
ln

K − e−k1DET

e−k1D(K − ET )

def
= T, D =

1

k1
ln

ET + erT (K − ET )

K
,

here T denotes the period of the boundary periodic solution, D denotes the insecti-
cide dose required to control the pest population density under ET , so the boundary
periodic solution of system (2.6) with a period of T becomes:xT (t) =

e−k1DETK exp(r(t− (k − 1)T ))

K − e−k1DET + e−k1DET exp(r(t− (k − 1)T ))
,

yT (t) = 0.

(4.3)

Theorem 4.1. If R0 < 1, then boundary periodic solution
(
xT (t) , 0

)
of system

(2.6) asymptotically stable, where the expression of R0 is

R0=

∣∣∣∣∣e−k1De−k2D(K − e−k1DET )

K−ET
exp

(∫ T

0

[
r−bc− 2rET

K
+

bp(1−β)ET

(1−β)ET+a

]
dt

)∣∣∣∣∣ .
(4.4)

Proof. By simple calculations, we get

P (x, y) = rx(1− x

K
)− q(1− β)xy

(1− β)x+ a
, Q(x, y) =

bp(1− β)xy

(1− β)x+ a
− bcy,
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α(x, y) = x(e−k1D − 1), β(x, y) = y(e−k2D − 1) + τ, ϕ(x, y) = x− ET,

(xT (T ), yT (T )) = (ET, 0), (xT (T+), yT (T+)) = (e−k1DET, 0).

Thus, we have

∂P

∂x
= r − 2rx

K
− aq(1− β)y

[(1− β)x+ a]2
,

∂Q

∂y
=

bp(1− β)x

(1− β)x+ a
− bc,

∂α

∂x
= e−k1D − 1,

∂β

∂y
= e−k2D − 1,

∂ϕ

∂x
= 1,

∂α

∂y
=

∂β

∂x
=

∂ϕ

∂y
= 0.

So

∆1 =
P+(

∂β
∂y

∂ϕ
∂x − ∂β

∂x
∂ϕ
∂y + ∂ϕ

∂x ) +Q+(
∂α
∂x

∂ϕ
∂y − ∂α

∂y
∂ϕ
∂x + ∂ϕ

∂y )

P ∂ϕ
∂x +Q∂ϕ

∂y

=
e−k1De−k2D(K − e−k1DET )

K − ET
.

Noticing

exp

(∫ T

0

[
∂P

∂x

(
xT (t), yT (t)

)
+

∂Q

∂y

(
xT (t), yT (t)

)]
dt

)

= exp

(∫ T

0

[
r − bc− 2rxT (t)

K
+

bp(1− β)xT (t)

(1− β)xT (t) + a

]
dt

)

we have

µ1 = ∆1 exp

(∫ T

0

[
∂P

∂x

(
xT (t), yT (t)

)
+

∂Q

∂y

(
xT (t), yT (t)

)]
dt

)

=
e−k1De−k2D(K − e−k1DET )

K − ET

× exp

(∫ T

0

[
r − bc− 2rxT (t)

K
+

bp(1− β)xT (t)

(1− β)xT (t) + a

]
dt

)
< 1

under condition (4.4). Hence by [40, Lemma 2.2] the periodic solution (xT (t), 0) is
asymptotically stable.

4.2. Existence and stability of order-k(k ≥ 1) periodic solu-
tions at τ > 0

From the definition of the Poincaré map, we know that the existence of the periodic
solution of the system (2.6) same as the existence of the fixed point of the corre-
sponding Poincaré map. The periodic solution of Poincaré map φ when τ > 0 are
discussed in this section. From Theorems 3.1 and 3.2 and references [5, 6, 18, 33],
system (2.6) at least exist one order-1 periodic solution, whose stability can be
determined by the following theorem.
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Theorem 4.2. The order-1 periodic solution (ξ(t), η(t)) is orbitally asymptotically
stable if and only if

∣∣∣∣e−k2De−k1D(r(1− e−k1DET
K )− q(1−β)(e−k2Dη0+τ)

a+(1−β)e−k1DET
)

r(1− ET
K )− q(1−β)η0

a+(1−β)ET

exp(

∫ T

0

U(t)dt)

∣∣∣∣ < 1, (4.5)

where

U (t) = r − bc− 2rξ(t)

K
+

bp(1− β)ξ(t)

(1− β)ξ(t) + a
.

Proof. We omit the proof details here since it similar to the proof of Theorem
4.1, except here we

∆1 =
P+(

∂β
∂y

∂ϕ
∂x − ∂β

∂x
∂ϕ
∂y + ∂ϕ

∂x ) +Q+(
∂α
∂x

∂ϕ
∂y − ∂α

∂y
∂ϕ
∂x + ∂ϕ

∂y )

P ∂ϕ
∂x +Q∂ϕ

∂y

=
e−k2De−k1D(r(1− e−k1DET

K )− q(1−β)(e−k2Dη0+τ)
a+(1−β)e−k1DET

)

r(1− ET
K )− q(1−β)η0

a+(1−β)ET

,

exp

(∫ T

0

[
∂P

∂x

(
xT (t), yT (t)

)
+

∂Q

∂y

(
xT (t), yT (t)

)]
dt

)

=exp

(∫ T

0

[
r − bc− 2rξ(t)

K
+

bp(1− β)ξ(t)

(1− β)ξ(t) + a

]
dt

)

and the Floquet multiplier

µ1 =∆1 exp

(∫ T

0

[
∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

]
dt

)

=
e−k2De−k1D(r(1− e−k1DET

K )− q(1−β)(e−k2Dη0+τ)
a+(1−β)e−k1DET

)

r(1− ET
K )− q(1−β)η0

a+(1−β)ET

exp

(∫ T

0

[
r − bc− 2rξ(t)

K
+

bp(1− β)ξ(t)

(1− β)ξ(t) + a

]
dt

)
.

Theorem 4.3. When ET < x∗, φ(yH) < yH , the system (2.6) admits a unique
order-1 periodic solution, which is globally asymptotically stable.

Proof. If φ(yH) < yH , Poincaré map φ has a unique fixed point yf on (0, yH)
form the property (iv) of Theorem 3.1,which implies the uniqueness of the order-1
solution. Next we prove the stability of the solution.

For trajectory starting from any point (e−k1DET, y+0 ), y+0 ∈ [0, yf ), that is
0 ≤ y+0 < yf . Because φ is monotonically increase in [0, yf ), then after a pulse
effect, it is obtained y+0 < φ(y+0 ) < φ(yf ) = yf . After another pulse effect, then
y+0 < φ(y+0 ) < φ2(y+0 ) < φ2(yf ) = yf , once again, φ(y+0 ) < φ2(y+0 ) < φ3(y+0 ) < yf .
Sequentially after n times of pulse effect, φ(y+0 ) < φ2(y+0 ) < · · · < φn(y+0 ) <
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yf . When n → +∞, there is φ(y+0 ) < φ2(y+0 ) < · · · < φn(y+0 ) < · · · < yf .
Because the sequence {φn(y+0 )} is monotonically increasing and bounded, we can
only get limn→+∞φn(y+0 ) existence, can’t claim that limn→+∞φn(y+0 ) = yf . Next
we will prove limn→+∞φn(y+0 ) = yf , which can be proven by contradiction as
follow. Set limn→+∞φn(y+0 ) = y∗, that is, we will prove y∗ = yf . Otherwise,we
setlimn→+∞φn(y+0 ) = y∗,y∗ < yf . Then we have y∗ < φ(y∗) < φ(yf ) = yf .
After n times pulse effect, y∗ < φ(y∗) < φ2(y∗) < · · · < φn(y∗) < yf . This is
contradict to the fact that limn→+∞φn(y+0 ) = y∗ . So we obtain y∗ = yf and
limn→+∞φn(y+0 ) = y∗. Then, by [23, Section 6] we know the solution is stable.

Similarly we can prove the case of y+0 > yf . This completes the proof.
Next we show the existence of order-2 periodic solution and its stability by using

the definitions in [23, Section 6].

Theorem 4.4. When ET < x∗, φ(yH) > yH , φ2(yH) ≥ yH , system (2.6) either
has a stable order-1 periodic solution or a stable order-2 periodic solution.

Proof. From Theorem 3.1, if φ does not has fixed points on [0, yH ], then will
exist a positive constant i such that y+i ≤ yH and y+i+1 ≥ yH . Noticing y+i+1 =

φ
(
y+i
)
≤ φ (yH), we get y+i+1 ∈ [yH , φ (yH)]. Since φ is decreasing on [yH ,+∞)

for any y+1 > yH , y+2 = φ
(
y+1
)
≤ φ (yH) through one Poincaré map. And then

y+i+1 ∈ [yH , φ (yH)] holds for all i ≥ 2.
Furthermore, φ is monotonically decreasing on [yH , φ(yH)), and φ2 is monoton-

ically increasing on [yH , φ(yH)) so that

φ ([yH , φ (yH)])=
[
φ2 (yH) , φ (yH)

]
⊂ [yH , φ (yH)] .

Next, we discuss the existence of the periodic solution. If there is y+0 ∈ [yH , φ (yH)],
the conclusion is clearly established. Thus, without loss of generality, we assume
that for any y+0 ∈ [yH , φ (yH)] we have y+1 = φ

(
y+0
)
̸= y+0 and y+2 = φ2

(
y+0
)
̸= y+0 .

Then, we have the following cases.

(I) If yH ≤ y+2 < y+0 < y+1 ≤ φ (yH), then y+3 = φ
(
y+2
)
> φ

(
y+0
)
= y+1 , y+4 =

φ
(
y+3
)
< φ

(
y+1
)
= y+2 . It can be obtained by mathematical induction that

yH ≤ · · · < y+2n+2 < y+2n < · · · < y+2 < y+0

< y+1 < · · · < y+2n−1 < y+2n+1 < · · · ≤ φ (yH) .

(II) If yH ≤ y+0 < y+2 < y+1 ≤ φ (yH), then y+1 = φ
(
y+0
)
> φ

(
y+2
)
= y+3 > y+2 =

φ
(
y+1
)
, y+2 = φ

(
y+1
)
< φ

(
y+3
)
= y+4 < y+3 = φ

(
y+2
)
< y+1 , i.e. it can be

obtained by mathematical induction that

yH ≤ y+0 < y+2 < · · · < y+2n < y+2n+2

< · · · < y+2n+1 < y+2n−1 < · · · < y+1 ≤ φ (yH) .

(III) yH ≤ y+1 < y+2 < y+0 ≤ φ (yH). In the same way as case II, we can obtain

yH ≤ y+1 < · · · < y+2n−1 < y+2n+1

< · · · < y+2n+2 < y+2n < · · · < y+2 < y+0 ≤ φ (yH) .

(IV) yH ≤ y+1 < y+0 < y+2 ≤ φ (yH). By using the same method as case I, we can
obtain

yH ≤ · · · < y+2n+1 < y+2n−1 < · · · < y+1 < y+0
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< y+2 < · · · < y+2n < y+2n+2 < · · · ≤ φ (yH) .

On the hand, for case (II), φ2n
(
y+0
)
= y+2n monotonically increasing, however,

φ2n+1
(
v+0
)
= y+2n+1 monotonically decreasing; on the other hand, for case (III),

φ2n
(
y+0
)
= y+2n is monotonically decreasing and φ2n+1

(
y+0
)
= y+2n+1 is monotoni-

cally increasing. It is obvious that for case (II) and case (III) there either exists a
unique fixed point yf such that

lim
n→∞

y+2n = lim
n→∞

y+2n+1 = yf , yf ∈ [yH , φ (yH)] ,

or exists two distinct values yf1 and yf2 and yf1 ̸= yf2 such that

lim
n→∞

y+2n = yf1 , yf1 ∈ [yH , φ (yH)] ,

lim
n→∞

y+2n+1 = yf2 , yf2 ∈ [yH , φ (yH)] .

While for cases (I) and (IV), only the later case can be true.

Theorem 4.5. The system (2.6) admits an order-3 periodic solution if φ(yH) > yH ,
φ2(yH) < y+m, where

y+m = min{y+ : φ(y+) = yH}.

Proof. If φ(yH) > yH , from Theorem 3.1, we know that there is a point yf in
(yH , φ (yH)),

φ(yf ) = yf , yf ∈ (yH , φ (yH))

because the Poincaré map φ is continuous on closed intervals [0, yf ], and

φ(0) = τ, φ(yf ) = yf ,

according to the intermediate value theorem, there exists y+m ∈ (0, yf ), and φ(y+m) =
yH .

Furthermore
φ3(y+m) = φ2(yH) < y+m.

Thus,
φ3(y+m)− y+m < 0

and
φ3(0) = φ2(τ) = τ > 0.

Owing to the existence theorem of zero point on closed intervals, at least one
value of ỹ+ make

φ3(ỹ+) = ỹ+,

which implying that the system (2.6) has an order-3 periodic solution.

Remark 4.1. When φ(yH) > yH , φk−1(yH) < y+m, using the same fashion, we can
prove that system (2.6) admits an order-k periodic solution.
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5. Numerical Simulation and Discussion
5.1. The impact of the prey refuge on population density
In order to better understand the impact of prey refuge on population density in the
system (2.4), we discuss the impact of the prey refuge on prey population density
and predator population density. Reference [15] indicated that the system (2.4) has
a globally asymptotically stable equilibrium point Pe(xe, ye) with

xe =
ca

(bp− c)(1− β)
, ye =

rabp

qK
(
K(bp− c)(1− β)− ca

((bp− c)(1− β))2
).

In order to explore the impact of the prey refuge on population density, the
relationship between xe and ye relative to β needs to be explored. It is observed
that xe and ye are continuous functions about β, β ∈ (0, 1− ac

K(bp−c) ]. We compute
the derivative along xe and ye with respect to β, that is

dxe

dβ
=

ca

(bp− c)(1− β)2
> 0,

dye
dβ

=
rabp

qK
(
K(bp− c)(1− β)− 2ac

(bp− c)2(1− β)3
).

When bp − c > 0, we know that dxe

dβ > 0, suggesting xe increases with β, i.e.,
increasing the amount of refuges β can increase prey density. For dye

dβ , after a
simple calculation, we can know that:

1) when 0 < β ≤ 1 − 2ac
K(bp−c) , then dye

dβ > 0, which can know that ye is a strictly
increasing function on β ∈ [0, 1− 2ac

K(bp−c) );

2) when 1 − 2ac
K(bp−c) < β < 1 − ac

K(bp−c) , then ye is a strictly decreasing function
on β ∈ (1− 2ac

K(bp−c) , 1−
ac

K(bp−c) );

3) when β = 1 − 2ac
K(bp−c) ,the predator species reaches its upper bound, and when

β = 1− ac
K(bp−c) , the predator species goes to extinction.

Figure 5. The density of prey xe and predator ye in system (2.4)as the refuge β changes. Here r = 0.2,
a = 1, b = 0.8, p = 0.6, q = 0.6, and c = 0.45.
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Fig. 5 demonstrates how prey refuge affects the density of predator and prey
population. On one hand, increasing the amount of refuge (i.e.,as β increase) can
increase prey density (Fig. 5(a)); on the other hand, the population of predators
first increases and then decreases, and there is an upper bound at β = 1− 2ac

K(bp−c)

(Fig. 5(b)). It also indicates that the refuge is important in the continued survival
and extinction of the predator population. When β ≥ 1− 2ac

K(bp−c) , overmuch prey
hide in the refuge, the predator population cannot get enough food, which leads to
the extinction of the population; when β < 1 − 2ac

K(bp−c) , two species can coexist
well.

5.2. Numerical simulation
In this section we numerically illustrate our findings in preceding sections.

Figure 6. State pulse feedback control strategy of system (2.6), A = 1, B = 0.8, C = 0.2, ET = 0.24,
k1 = 0.7, k2 = 0.3, D = 0.5, τ = 0.45.

Figure 7. The order-2 periodic solution of system (2.6). A = 0.8, B = 0.98, C = 0.174, ET = 0.25,
k1 = 0.7, k2 = 0.3, D = 0.5, τ = 0.45.

In Fig. 6 and Fig. 7, the red line represents the system trajectory without pulses,
and the green line represents the system trajectory with pulses, which suggests that
the existence of the periodic solution due to the control strategy: order-1 periodic
solution (Fig. 6) and order-2 periodic solution (Fig. 7) of the Poincaré map. The
green line is the motion trajectory of the order-1 periodic solution in Fig. 6(a) , and
the blue line is the motion trajectory of the order-2 periodic solution in Fig. 7(a).

Fig.6(b) and Fig.6(c) represent the change of the densities of predator and prey
with time t under the condition of order-1 periodic solution in Fig.6 (a) respectively.
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The density changes of predator and prey with time t are shown in Fig.7(b) and
Fig.7(c) respectively under the condition of order-2 periodic solution in Fig.7(a).

Figure 8. Periodic solutions in the case of Fig.4a and Fig.4b, respectively. A = 0.8, B = 0.8,
C = 0.2, k1 = 0.7, k2 = 0.3, D = 0.5, ET = 0.25. (a) τ = 0.2; (b)τ = 0.45.

Figure 9. The path curve of system (2.6) starting from different initial points. A = 1,
B = 0.8, C = 0.2, ET = 0.25, k1 = 0.7, k2 = 0.3, D = 0.5, τ = 0.45.

Fig. 8(a) and fig. 8(b) show the existence of the order-1 periodic solution
under the conditions of Fig. 4(a) and Fig. 4(b) respectively. Fig. 8(a) shows
that there is no order-1 periodic solution, and fig. 8(b) proves that there is order-1
periodic solution. From Fig. 9, we can observed that all trajectories converge to
the same order-1 periodic solution, although the trajectories start at different initial
points, which proves that the order-1 periodic solution of the system (2.6) is globally
asymptotically stable.

According to Section 4, if enemy goes extinct, that is y(t) = 0, and pest arrive
at the economic threshold, that is x = ET , after simple calculation, we can see two
expressions about the boundary periodic solution and insecticide dosage. Then we
discuss the key parameters that affect the pesticide dose D. By giving appropriate
parameters in the numerical simulation, we know that when the threshold ET
decreases, the pesticide dose D must increase (Fig. 10(a)). Moreover, when the
T of chemical control increases, so the dose D must increase (Fig. 10(b)). In the
biological sense, the time interval for chemical control period T is increasing, then
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Figure 10. The effects of key parameters on the dose D of chemical control, and the
parameters are fixed as:(a)r = 0.4, k1 = 0.4, T = 6, K = 92; (b)r = 1.4, k1 = 0.4,
ET = 35, K = 92.

Figure 11. The effects of control parameters on the threshold condition R0. (a)k1 = 0.5,
k2 = 0.2, K = 92, b = 0.3, p = 0.2, β = 0.2, a = 0.3:(a)ET = 35 and c = 0.6; (b)D = 0.5
and c = 0.3.

pests live in an environment with pesticide concentrations that are not harmful to
themselves, which will lead to the rapid mass reproduction of pest populations, so
we must increase the dosage of spraying pesticides. Therefore, in actual agricultural
production, the required pesticide dose D should consider both threshold ET and
control period T .

Through threshold condition (4.4), we want to know whether a single chemical
control can make the boundary periodic solution stable. R0 < 1 denote single chem-
ical control of dose D can the conclusion holds. But when R0 ≥ 1, the conclusion
does not hold. Therefore, We need to know that how the dose D and the threshold
ET affect the threshold conditions of R0. To explore these, we conducted numerical
simulations in Fig. 11. Fig. 11(a) shows that a large dose of D can control the pest
density under ET . In fig. 11(b), we get R0 < 1 with a relative small ET , while
when ET reachs a certain leave, then R0 ≥ 1 . It reveals that a smaller value of ET
is more helpful for pest control for a fixed parameter r . In addition, when R0 ≥ 1,
the boundary periodic solution is unstable, which indicates that chemical control
alone can not control pests well under the threshold. Moreover, repeated use of
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pesticides will lead to pest resistance to pesticides. Therefore, releasing natural
enemies as a biological control method combined with chemical control can make
pest control measures more reasonable and effective.

6. Conclusion
In this study we proposed and studied a Holling II prey-predator system incorpo-
rating both prey refuge and effect of pesticide dose. First, we constructed a Poincaré
map of system (2.6), and discussed the main properties, which are monotonicity,
continuous and discontinuous interval, differentiability, fixed point and asymptote.
Furthermore, the existence and global asymptotic stability of the order-1 periodic
solution of the global dynamics about system have been further studied, and the
existence of the k(k ≥ 2) periodic solution was proved. Secondly, we perform a
parameter sensitivity analysis on the stability of the boundary periodic solution.
The results indicate that dose D is inversely proportional to the threshold ET , but
proportional to the chemical control time T . Therefore, the threshold ET and pe-
riod T should be considered when spraying the pesticide dose D. At the same time,
we gave sensitivity analysis to the parameters in R0 threshold condition. Analy-
sis shows that when the parameter r is larger, for the purpose of the stability of
the system, that is, R0 < 1, the pesticide dose D needs to be increased accord-
ingly; its corresponding economic threshold ET is smaller, so as to keep R0 < 1.
In addition, the relationship between shelter intensity β and population was also
studied. The results show that the density of prey increases with the increase of
shelter strength β, but β increases to a certain extent, the predator population will
eventually become extinct.
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