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DYNAMICS OF A DELAYED
PREDATOR-PREY MODEL WITH

CONSTANT-YIELD PREY HARVESTING∗

Dongpo Hu1, Ying Zhang1, Zhaowen Zheng1 and Ming Liu1,†

Abstract In this paper, we study a delayed predator-prey model of Holling
and Leslie type with constant-yield prey harvesting, in which two types of
delays caused by maturation time of prey and the gestation time of preda-
tor are considered. We mainly investigate the local dynamics of the model
with emphasis on the impact of delays. The stability of equilibrium and the
existence conditions of Hopf bifurcation are discussed. First, based on the
different values of delays, five cases of Hopf bifurcation are studied in detail.
The critical values of Hopf bifurcation for each case are presented. In addition,
we explore the properties of Hopf bifurcation. The direction of Hopf bifurca-
tion and the stability of periodic solutions by using the normal form theory
and central manifold theorem are determined. The qualitative analyses have
demonstrated that the values of time delays can affect the stability of equilib-
rium and induce small amplitude period oscillations of population densities.
Numerical simulations are carried out for illustrating the theoretical results.
Meanwhile, we further investigate the effects of delay on the period of peri-
odic solutions and the influence of the harvesting term on the stability of the
equilibrium with time delays.
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1. Introduction
The predator-prey model is a basic and important model to describe the relationship
between the predator population and the prey population in natural phenomena [9].
Due to the complexity and diversity of the interaction between predator and their
prey, the predator-prey models have been continuously investigated by many schol-
ars in the last three decades [6,20,21,40,47]. Both the continuous-time predator-prey
models described by ordinary differential equations and the discrete-time predator-
prey models described by difference equations are often used to better understand
and reveal the predation mechanisms by studying the dynamical properties of these
models. The time-fractional derivative also has extensive applications in describing
the predator-prey interaction [13,14]. The question of how the dynamical behaviors,
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such as stability, bifurcation, chaos phenomenon and spatiotemporal patterns, are
influenced by the system parameters may naturally arise [26]. Boudjema et al. [2]
investigated the Turing-Hopf bifurcation in a Gauss-type predator-prey model with
cross-diffusion. Djilali [8] dealt with a predator-prey model with a spatial diffusion,
a linear mortality and a herd behavior. The global stability of boundary equilibrium
and the local stability of the positive equilibrium are studied. Recently, Djilali [10]
also investigated the Hopf and Turing-Hopf bifurcations of a predator-prey model
with the presence of herd behavior and spatial diffusion subject to the homoge-
neous Neumann boundary condition. Some results on spatiotemporal patterns and
competition of predator-prey models can be found in [11,12,41].

In our daily life, there is an increasing exploitation of biological populations
in predator-prey system due to the growing human needs for more food and re-
sources [34]. The harvesting is a common technique used for the exploitation of
biological and it leaves a strong influence on the dynamics of biological resources.
About one-half of the endangered mammals and one-third of the endangered birds
of the world are threatened by overharvesting [32]. In practice, the harvesting activ-
ity of human beings play a key role in the outcomes of population evolutions [33].
The exploitation of biological, the management of renewable resources, and the
harvesting of species are commonly experienced by human in fishery, forestry and
wildlife management [4, 21]. From the perspective of economic benefits and long
term development, all human activities should be carried out under the premise
of sustainable development of resources. Therefore, the scientific exploitation and
management of resources is a topic of interest to biologists and economists [44]. The
governments should make policies to avoid overexploitation to protect the sustain-
able development of species and to maximize profits of commercial harvesting [39].
For example, in China, starting from 2020, the fishing ban will be observed in 332
conservation areas in the Yangtze River basin, which will also be expanded to all
natural waterways of the river and its major tributaries for 10 years starting from
Jan 1, 2021. Xiao et al. [48] discussed a ratio-dependent predator-prey model when
the prey is continuously being harvested at a nonzero constant rate, and observed
numerous kinds of bifurcation as the values of parameters vary. Lv et al. [36] pro-
posed and investigated a predator-prey model with selective nonlinear harvesting
for the prey and predator. They founded that the existence of nonlinear harvesting
makes the dynamics of the proposed model more complicated, including hetero-
clinic and homoclinic orbits, bistability, Bogdanov-Takens bifurcation, subcritical
and supercritical Hopf bifurcation. Some other authors also studied the dynamics
of predator-prey models with nonzero constant-yield harvesting [31, 35] and with
constant proportion harvesting [27].

In [25], the authors have studied the following predator-prey system of Holling
and Leslie type with constant-yield prey harvesting

ẋ = rx
(
1− x

K

)
− mxy

c+ x
−H,

ẏ = qy
(
1− py

x

)
,

(1.1)

where x and y are densities of prey and predator at time t, respectively. r and
K stand for the intrinsic growth rate and the environmental carrying capacity of
the prey, respectively. The predator consumes the prey according to mx

c+x which is
the Holling type-II functional response with half-saturation constant c and grows
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logistically with intrinsic growth q and the environmental carrying capacity pro-
portional to the prey density. The parameter p is the number of prey required
to support one predator at equilibrium when y equals x

p [17]. H is the constant-
yield prey harvesting. All the parameters r,K,m, c,H, q, p are positive constants.
In [17–19], the authors considered model (1.1) with no harvesting, i.e., H = 0.
They investigated the relationship between local and global stability of the unique
positive equilibrium, the conditions of multiple limit cycles and uniqueness of limit
cycle. When H > 0, various kinds of bifurcations, such as Hopf bifurcation, re-
pelling and attracting Bogdanov-Takens bifurcations of codimensions 2 and 3, were
founded and investigated in [25]. The constant-yield prey harvesting H makes it
more challenging and difficult to study the dynamics compared to the model with
no harvesting since the equation for the interior equilibria is order three.

In addition to the constant-yield prey harvesting have a greater impact on the
dynamics of model (1.1), in fact, time delay will also have a significant impact on the
dynamics of model (1.1). Time delay has been proved to be an unavoidable factor
in biological systems [3, 24, 30, 37, 45]. Any model of species dynamics without
delays is an approximation at best [29]. Most natural and manmade processes
[42], such as medicine, chemistry, physics, engineering, economics, involve time
delays. There are two main reasons contributing to the delays in predator-prey
models. One is the time of gestation, and the other one is the time of maturation
[22]. Other factors that may cause time delays include the capturing, incubation,
traveling time, digestion and energy conversion for predators, etc. [33]. Meanwhile,
it reflects complexity in such models by showing stability transition phenomenon
for equilibria, occurrence of Hopf-bifurcation, chaotic oscillations and extinction
dynamics [38]. Djilali [7] dealt with the effect of the shape of herd behavior in a
diffusive predator-prey model with time delay. The results shown that the delay
can lead to the instability of interior equilibrium state and the existence of Hopf
bifurcation. Huang et al. [23] investigated an issue of bifurcation control for a novel
incommensurate fractional-order predator-prey system with time delay. It is shown
that the time delay can heavily effect the dynamics of the model. Du et al. [15]
considered the dynamics of a modified Leslie-Gower predator-prey system with two
delays and diffusion and found that the two delays can induce complex dynamics
near the double Hopf bifurcation point, including the existence of quasi-periodic
solutions on a 2-torus, quasi-periodic solutions on a 3-torus, and strange attractors.
For model (1.1), there are also time delays which are ignored by us, hence, some
hidden dynamics have not been found yet.

Inspired by the work mentioned-above, the purpose of the present paper is fur-
ther to study the dynamics of model (1.1) with the time delays. We incorporate
two time delays into model (1.1) as follows

ẋ = rx
(
1− x

K

)
− mx(t− τ1)y

c+ x(t− τ1)
−H,

ẏ = qy

(
1− py(t− τ2)

x

)
,

(1.2)

where τ1 stands for the delay of maturation time of prey and τ2 represents the delay
of gestation time of predator. It is obvious that the time delays make model (1.1)
more complicated. We will mainly discuss the effects of the time delays of model
(1.2).



Dynamics of a delayed predator-prey model 305

The present paper is organized as follows. In the present section, a predator-
prey model with two time delays is formulated. In Sect. 2, the local stability of
equilibria and the existence of Hopf bifurcation of model (1.2) are given by discussing
the different cases of time delays. In Sect. 3, the direction of Hopf bifurcation and
the stability of bifurcating periodic solutions are discussed by applying the normal
form theory and the center manifold reduction for retarded functional differential
equations (RFDEs) developed by Hassard et al. [16]. In Sect. 4, some numerical
simulations are given for confirming the qualitative results. Meanwhile, we further
investigate the effects of delay on the period of periodic solutions and the influence
of the harvesting term on the stability of the equilibrium with time delays. A
conclusion is given in Sect. 5.

2. Stability of equilibria and existence of Hopf bi-
furcation

For easy mathematical analysis one can reduce the number of parameters in system
(1.2) by introducing new dimensionless variables. For simplicity we rescale (1.2) by
using

t̄ = rt, x̄ =
x

K
, ȳ =

my

rK
,

and drop the bars, then model (1.2) takes the form
ẋ = x(1− x)− x(t− τ1)y

a+ x(t− τ1)
− h,

ẏ = y

(
δ − βy(t− τ2)

x

)
,

(2.1)

where a = c
K , δ = q

r , h = H
rK and β = pq

m are positive constants. Let f(x) =
x

a+x , g(x) = 1
x and E(x∗, y∗) be a nontrivial equilibrium point of model (2.1).

Then we transform the equilibrium to the origin by the following transformation

x̄(t) = x(t)− x∗, ȳ(t) = y(t)− y∗. (2.2)

Taylor expanding f(x̄ + x∗) and g(x̄ + x∗) about x = x∗, we rewrite model (2.1)
and again for simplicity denote x̄(t), ȳ(t) as x(t), y(t), respectively, then

ẋ = (1− 2x∗)x− x∗

a+ x∗
y − x2 − (y + y∗)

∞∑
i=1

1

i!
f (i)(x∗)xi(t− τ1),

ẏ = δy − β [yy(t− τ2) + y∗y(t− τ2) + y∗y] g(x∗)

− β
[
yy(t− τ2) + y∗(y + y(t− τ2)) + y∗2

] ∞∑
i=1

1

i!
g(i)(x∗)xi,

(2.3)

then model (2.3) have an equilibrium at the origin, where f (i)(x∗) and g(i)(x∗)
denote the ith derivative of f(x) and g(x) evaluated at x∗, respectively. Model
(2.3) linearized about the origin is given by

ẋ = (1− 2x∗)x− ay∗

(a+ x∗)2
x(t− τ1)−

x∗

a+ x∗
y,

ẏ = δy +
βy∗2

x∗2
x− βy∗

x∗
(y(t− τ2) + y) .

(2.4)
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Defining a matrix A

A =

1− 2x∗ − ay∗

(a+x∗)2 e
−λτ1 − x∗

a+x∗

βy∗2

x∗2 δ − βy∗

x∗ − βy∗

x∗ e
−λτ2

 , (2.5)

the characteristic equation of model (2.3) at the origin is given by

λ2+κ1λ+κ2λe
−λτ1 +κ3λe

−λτ2 +κ4e
−λτ1 +κ5e

−λτ2 +κ6e
−λ(τ1+τ2)+κ7 = 0, (2.6)

where

κ1=2x∗−1−δ+ βy∗

x∗
, κ2=

ay∗

(a+ x∗)2
, κ3=

βy∗

x∗
, κ4=

βay∗2

x∗(a+x∗)2
− δay∗

(a+x∗)2
,

κ5=2βy∗− βy∗

x∗
, κ6=

βay∗2

x∗(a+x∗)2
, κ7=(1−2x∗)δ+βy∗

(
2− 1

x∗

)
+

βy∗2

x∗(a+x∗)
.

(2.7)

According to the transformation (2.2), in order to obtain the stability of equi-
libria and existence of Hopf bifurcation of model (2.1), we only need to discuss the
corresponding properties of model (2.3). Based on the different values of τ1 and τ2,
we consider the following five cases.
Case 1. τ1 = τ2 = 0. Then the characteristic equation (2.6) becomes

λ2 + (κ1 + κ2 + κ3)λ+ (κ4 + κ5 + κ6 + κ7) = 0. (2.8)

Under the Hurwitz criterion, we can obtain the result as follows.

Lemma 2.1. If κi(i = 1, 2, · · · , 7) which are defined by (2.7) satisfying the condi-
tions

(H1) κ1 + κ2 + κ3 > 0, κ4 + κ5 + κ6 + κ7 > 0,

then all roots of (2.8) have negative real parts. Therefore, the equilibrium (0, 0) of
model (2.3) is asymptotically stable. That is, the equilibrium E(x∗, y∗) of model
(2.1) is locally asymptotically stable.

Next, we will consider the effects of the positive time delay(s) on the stability
of equilibrium (0, 0) of model (2.3). Since the roots of characteristic equation (2.6)
depend continuously on time delay(s), a change of time delay(s) will lead to a change
of the roots of characteristic equation (2.6). If there is a critical value of τ1 or τ2
which makes the roots of equation (2.6) have zero real parts, then the stability of
the equilibrium (0, 0) of model (2.3) will switch at this critical value; that is, the
stability of the positive equilibrium E(x∗, y∗) of model (2.1) will change. In what
follows, we will investigate the critical values of τ1 and τ2.
Case 2. τ1 > 0, τ2 = 0. Then characteristic equation (2.6) becomes

λ2 + (κ1 + κ3)λ+ κ2λe
−λτ1 + (κ4 + κ6) e

−λτ1 + (κ5 + κ7) = 0. (2.9)

Thus λ = iϑ1(ϑ1 > 0) is a root of (2.9) if and only if ϑ1 satisfies the following
equation

− ϑ21 + i (κ1 + κ3)ϑ1 + iκ2ϑ1 [cos(ϑ1τ1)− i sin(ϑ1τ1)]

+ (κ4 + κ6) [cos(ϑ1τ1)− i sin(ϑ1τ1)] + κ5 + κ7 = 0.
(2.10)
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Separating the real and imaginary parts of (2.10), we can get{
κ2ϑ1 sin(ϑ1τ1) + (κ4 + κ6) cos(ϑ1τ1) = ϑ21 − κ5 − κ7,

(κ4 + κ6) sin(ϑ1τ1)− κ2ϑ1 cos(ϑ1τ1) = (κ1 + κ3)ϑ1.

Then 
sin(ϑ1τ1) =

(κ1 + κ3)(κ4 + κ6)ϑ1 + κ2ϑ1(ϑ
2
1 − κ5 − κ7)

κ22ϑ
2
1 + (κ4 + κ6)2

,

cos(ϑ1τ1) =
(κ4 + κ6)

(
ϑ21 − κ5 − κ7

)
− κ2(κ1 + κ3)ϑ

2
1

κ22ϑ
2
1 + (κ4 + κ6)2

,

(2.11)

using sin2(ϑ1τ1) + cos2(ϑ1τ1) = 1, we have

ϑ41 + p1ϑ
2
1 + p2 = 0, (2.12)

where

p1 = (κ1 + κ3)
2 − κ22 − 2(κ5 + κ7), p2 = (κ5 + κ7)

2 − (κ4 + κ6)
2.

Setting v1 = ϑ21, (2.12) changes into

v21 + p1v1 + p2 = 0. (2.13)

Lemma 2.2. For (2.13), we have the following conclusions:

(1) When ∆1 = p21 − 4p2 < 0, (2.13) has no positive roots;
(2) When ∆1 = p21 − 4p2 ≥ 0, (2.13) has positive root(s) if p2 < 0 or p2 ≥ 0 and

p1 < 0.

Suppose that (2.13) has two positive roots, denoted v11 and v12 , respectively.
Thus (2.12) has corresponding two positive roots denoted ϑ11 =

√
v11 and ϑ12 =√

v12 , respectively. Then ±iϑ1n(n = 1, 2) are two pairs of pure imaginary roots of
(2.9). Substituting ϑ1n into (2.11), we have

τ
(j)
1n

=
1

ϑ1n

{
arccos

[
(κ4 + κ6)

(
ϑ21n − κ5 − κ7

)
− κ2 (κ1 + κ3)ϑ

2
1n

κ22ϑ
2
1n

+ (κ4 + κ6)2

]
+ 2jπ

}
,

where n = 1, 2; j = 0, 1, 2, · · · . Furthermore, we define

τ10 = min
{
τ
(j)
1n

∣∣n = 1, 2; j = 0, 1, 2, · · ·
}
.

Let λ(τ1) = α(τ1) + iϑ1(τ1) be a root of (2.9) with α(τ
(j)
1n

) = 0, ϑ1(τ (j)1n
) = ϑ1n

near τ1 = τ
(j)
1n

. In what follows, we will investigate the transversality conditions.

Lemma 2.3. Assume that the condition

(H2) 2ϑ21n + p1 > 0

is hold, then
[
d(Reλ(τ1))

dτ1

]
τ1=τ

(j)
1n

> 0(n = 1, 2; j = 0, 1, 2, · · · ).
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Proof. We computer the derivative of λ with respect to τ1 in (2.9)[
dλ(τ1)

dτ1

]−1

=
(2λ+ κ1 + κ3)e

λτ1

λ(κ2λ+ κ4 + κ6)
+

κ2
λ(κ2λ+ κ4 + κ6)

− τ1
λ
. (2.14)

Substitute τ1 = τ
(j)
1n

into (2.14) and notice that λ(τ (j)1n
) = iϑ1n , we have[

d(Reλ(τ1))

dτ1

]−1

τ1=τ
(j)
1n

= Re

[
(2λ+ κ1 + κ3)e

λτ1

λ(κ2λ+ κ4 + κ6)

]
τ1=τ

(j)
1n

+Re

[
κ2

λ(κ2λ+ κ4 + κ6)

]
τ1=τ

(j)
1n

=
1

M1
{(κ4 + κ6)ϑ1n [2ϑ1n cos(ϑ1nτ1) + (κ1 + κ3) sin(ϑ1nτ1)]

+ κ2ϑ
2
1n [2ϑ1n sin(ϑ1nτ1)− (κ1 + κ3) cos(ϑ1nτ1)]− κ22ϑ

2
1n

}
=

1

M1

{
2ϑ21n [κ2ϑ1n sin(ϑ1nτ1) + (κ4 + κ6) cos(ϑ1nτ1)]

+ (κ1 + κ3)ϑ1n [(κ4 + κ6) sin(ϑ1nτ1)− κ2ϑ1n cos(ϑ1nτ1)]− κ22ϑ
2
1n

}
=

1

M1

[
2ϑ21n(ϑ

2
1n − κ5 − κ7) + (κ1 + κ3)ϑ1n(κ1 + κ3)ϑ1n − κ22ϑ

2
1n

]
=
ϑ21n
M1

(
2ϑ21n + p1

)
,

where M1 = ϑ21n
[
κ22ϑ

2
1n + (κ4 + κ6)

2
]
> 0. Hence, if 2ϑ21n + p1 > 0, we have[

d(Reλ(τ1))
dτ1

]−1

τ1=τ
(j)
1n

> 0, that is,
[
d(Reλ(τ1))

dτ1

]
τ1=τ

(j)
1n

> 0 (n = 1, 2; j = 0, 1, 2, · · · ).

Theorem 2.1. If the parameters of model (2.1) satisfy the condition (H1), then

(i) When ∆1 = p21 − 4p2 < 0, all the roots of (2.9) have negative real parts, then
the equilibrium E(x∗, y∗) of model (2.1) is asymptotically stable when τ1 ≥ 0.

(ii) When ∆1 = p21−4p2 ≥ 0, if p2 < 0 or p2 ≥ 0 and p1 < 0, then the equilibrium
E(x∗, y∗) is asymptotically stable when τ1 ∈ [0, τ10) and is unstable when
τ1 ≥ τ10 ;

(iii) If the above conditions (ii) and (H2) hold, model (2.1) will undergo a Hopf
bifurcation at the equilibrium E(x∗, y∗) when τ1 crosses through each critical
values τ (j)1n

(n = 1, 2; j = 0, 1, 2, · · · ).

Case 3. τ1 = 0,τ2 > 0. Then characteristic equation (2.6) becomes

λ2 + (κ1 + κ2)λ+ κ3λe
−λτ2 + (κ5 + κ6) e

−λτ2 + (κ4 + κ7) = 0. (2.15)

Thus λ = iϑ2(ϑ2 > 0) is a root of (2.15) if and only if ϑ2 satisfies the following
equation

− ϑ22 + i (κ1 + κ2)ϑ2 + iκ3ϑ2 [cos(ϑ2τ2)− i sin(ϑ2τ2)]

+ (κ5 + κ6) [cos(ϑ2τ2)− i sin(ϑ2τ2)] + κ4 + κ7 = 0.
(2.16)
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Separating the real and imaginary part of (2.16), we have{
κ3ϑ2 sin (ϑ2τ2) + (κ5 + κ6) cos(ϑ2τ2) = ϑ22 − κ4 − κ7,

(κ5 + κ6) sin(ϑ2τ2)− κ3ϑ2 cos(ϑ2τ2) = (κ1 + κ2)ϑ2.

Then 
sin(ϑ2τ2) =

(κ1 + κ2)(κ5 + κ6)ϑ2 + κ3ϑ2(ϑ
2
2 − κ4 − κ7)

κ23ϑ
2
2 + (κ5 + κ6)2

,

cos(ϑ2τ2) =

(
ϑ22 − κ4 − κ7

)
(κ5 + κ6)− κ3(κ1 + κ2)ϑ

2
2

κ23ϑ
2
2 + (κ5 + κ6)2

,

(2.17)

furthermore, we have
ϑ42 + q1ϑ

2
2 + q2 = 0, (2.18)

where

q1 = (κ1 + κ2)
2 − κ23 − 2(κ4 + κ7), q2 = (κ4 + κ5 + κ6 + κ7)(κ4 − κ5 − κ6 + κ7).

Setting v2 = ϑ22, (2.18) becomes

v22 + q1v2 + q2 = 0. (2.19)

Lemma 2.4. For (2.19), we have the following conclusions:

(1) When ∆2 = q21 − 4q2 < 0, (2.19) has no positive roots;
(2) When ∆2 = q21 − 4q2 ≥ 0, (2.19) has positive root(s) if q2 < 0 or q2 ≥ 0 and

q1 < 0.

Assuming that (2.19) has two positive roots, denoted v21 and v22 , respectively.
Then (2.18) has two positive roots denoted ϑ21 =

√
v21 and ϑ22 =

√
v22 , respec-

tively. Then ±iϑ2n(n = 1, 2) are two pairs of pure imaginary roots of (2.15).
Substituting ϑ2n into (2.17), we have

τ
(j)
2n

=
1

ϑ2n

{
arccos

[(
ϑ22n − κ4 − κ7

)
(κ5 + κ6)− κ3 (κ1 + κ2)ϑ

2
1n

κ23ϑ
2
2n

+ (κ5 + κ6)2

]
+ 2jπ

}
,

where n = 1, 2; j = 0, 1, 2, · · · . Furthermore, we define

τ20 = min
{
τ
(j)
2n

∣∣n = 1, 2; j = 0, 1, 2, · · ·
}
.

Let λ(τ2) = α(τ2)+iϑ2(τ2) be a root of equation (2.15) with α(τ (j)2n
) = 0, ϑ2(τ

(j)
2n

) =

ϑ2n near τ2 = τ
(j)
2n

. Next, we need to check transversality.

Lemma 2.5. Assume that the condition

(H3) 2ϑ22n + q1 > 0

is hold, then we have
[
d(Reλ(τ2))

dτ2

]
τ2=τ

(j)
2n

> 0(n = 1, 2; j = 0, 1, 2, · · · ).



310 D. P. Hu, Y. Zhang, Z. W. Zheng & M. Liu

Proof. Similar to the Case 2, from (2.15), we have[
dλ(τ2)

dτ2

]−1

=
(2λ+ κ1 + κ2)e

λτ2

λ(κ3λ+ κ5 + κ6)
+

κ3
λ(κ3λ+ κ5 + κ6)

− τ2
λ
, (2.20)

substituting λ = iϑ2n into (2.20)[
d(Reλ(τ2))

dτ2

]−1

τ2=τ
(j)
2n

= Re

[
(2λ+ κ1 + κ2)e

λτ2

λ(κ3λ+ κ5 + κ6)

]
τ2=τ

(j)
2n

+Re

[
κ3

λ(κ3λ+ κ5 + κ6)

]
τ2=τ

(j)
2n

=
1

M2
{(κ5 + κ6)ϑ2n [2ϑ2n cos(ϑ2nτ2) + (κ1 + κ2) sin(ϑ2nτ2)]

+ κ3ϑ
2
2n [2ϑ2n sin(ϑ2nτ2)− (κ1 + κ2) cos(ϑ2nτ2)]− κ23ϑ

2
2n

}
=

1

M2

{
2ϑ22n [κ3ϑ2n sin(ϑ2nτ2) + (κ5 + κ6) cos(ϑ2nτ2)]

+ (κ1 + κ2)ϑ2n [(κ5 + κ6) sin(ϑ2nτ2)− κ3ϑ2n cos(ϑ2nτ2)]− κ23ϑ
2
2n

}
=

1

M2

[
2ϑ22n(ϑ

2
2n − κ4 − κ7) + (κ1 + κ2)ϑ2n(κ1 + κ2)ϑ2n − κ23ϑ

2
2n

]
=
ϑ22n
M2

(2ϑ22n + q1),

where M2 = ϑ22n
[
κ23ϑ

2
2n + (κ5 + κ6)

2
]
. Hence, if 2ϑ22n + q1 > 0, we have[

d(Reλ(τ2))
dτ2

]−1

τ2=τ
(j)
2n

> 0, that is,
[
d(Reλ(τ2))

dτ2

]
τ2=τ

(j)
2n

> 0 (n = 1, 2; j = 0, 1, 2, · · · ).

Theorem 2.2. If the parameters of model (2.1) satisfy the condition (H1), then
(i) When ∆2 = q21 − 4q2 < 0, all the roots of (2.15) have negative real parts, then

the equilibrium E(x∗, y∗) of model (2.1) is asymptotically stable when τ2 ≥ 0;
(ii) When ∆2 = q21−4q2 ≥ 0, if q2 < 0 or q2 ≥ 0 and q1 < 0, all the roots of (2.15)

have negative real parts when τ2 ∈ [0, τ20), then the equilibrium E(x∗, y∗) of
model (2.1) is asymptotically stable when τ2 ∈ [0, τ20) and is unstable with
τ2 ≥ τ20 ;

(iii) If the above conditions (ii) and (H3) hold, model (2.1) will undergo a Hopf
bifurcation at the equilibrium E(x∗, y∗) when τ2 crosses through each critical
values τ (j)2n

(n = 1, 2; j = 0, 1, 2, · · · ).
Case 4. τ1 = τ2 = τ ̸= 0. The characteristic equation (2.6) becomes

λ2 + κ1λ+ (κ2 + κ3)λe
−λτ + (κ4 + κ5) e

−λτ + κ6e
−2λτ + κ7 = 0. (2.21)

The equation (2.21) multiplying eλτ is given by(
λ2 + κ1λ+ κ7

)
eλτ + κ6e

−λτ + (κ2 + κ3)λ+ (κ4 + κ5) = 0. (2.22)
Then λ = iϑ3(ϑ3 > 0) is a root of (2.22) if and only if ϑ3 satisfies the following
equation (

−ϑ23 + iκ1ϑ3 + κ7
)
[cos(ϑ3τ) + i sin(ϑ3τ)]

+κ6 [cos(ϑ3τ)− i sin(ϑ3τ)] + iϑ3 (κ2 + κ3) + κ4 + κ5 = 0.
(2.23)
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Separating the real and imaginary parts of (2.23), we have{
−κ1ϑ3 sin(ϑ3τ) +

(
κ6 + κ7 − ϑ23

)
cos(ϑ3τ) = −(κ4 + κ5),(

κ7 − κ6 − ϑ23
)
sin(ϑ3τ) + κ1ϑ3 cos(ϑ3τ) = −(κ2 + κ3)ϑ3,

and 
sin(ϑ3τ) =

κ1ϑ3(κ4 + κ5)− (κ2 + κ3)ϑ3
(
κ7 + κ6 − ϑ23

)
κ21ϑ

2
3 + (κ7 + κ6 − ϑ23) (κ7 − κ6 − ϑ23)

,

cos(ϑ3τ) = −
κ1ϑ

2
3(κ2 + κ3) + (κ4 + κ5)

(
κ7 − κ6 − ϑ23

)
κ21ϑ

2
3 + (κ7 + κ6 − ϑ23) (κ7 − κ6 − ϑ23)

.

(2.24)

Then we can obtain

ϑ83 +m1ϑ
6
3 +m2ϑ

4
3 +m3ϑ

2
3 +m4 = 0, (2.25)

where

m1 = 2κ21 − 4κ7 − (κ2 + κ3)
2
,

m2 = (κ2 + κ3)
2(2κ6 + 2κ7 − κ21)− (κ4 + κ5)

2
+ κ41 − 4κ21κ7 + 6κ27 − 2κ26,

m3 = 4κ1κ6(κ2 + κ3) (κ4 + κ5)−
[
κ21 + 2(κ6 − κ7)

]
(κ4 + κ5)

2

− (κ2 + κ3)
2
(κ6 + κ7)

2
+ (2κ21 − 4κ7)

(
κ27 − κ26

)
,

m4 = (κ6 − κ7)
2(κ7 − κ4 + κ6 − κ5)(κ7 + κ4 + κ6 + κ5).

Since (2.25) can be treated as a fourth order equation by the transformation u =
ϑ23, equation (2.25) has at most four real roots un(n = 1, 2, 3, 4) which implies that
there exist at most four positive roots ϑ3n(n = 1, 2, 3, 4). Without loss of generality,
we suppose that (2.25) has four positive roots, denoted ϑ3n(n = 1, 2, 3, 4). Then
±iϑ3n(n = 1, 2, 3, 4) are four pairs of pure imaginary roots of (2.22). Substituting
ϑ3n into (2.24), we have

τ
(j)
3n

=
1

ϑ3n

{
arccos

[
−
κ1ϑ

2
3n(κ2 + κ3) + (κ4 + κ5)

(
κ7 − κ6 − ϑ23n

)
κ21ϑ

2
3n

+
(
κ7 + κ6 − ϑ23n

) (
κ7 − κ6 − ϑ23n

) ]
+ 2jπ

}
,

where n = 1, 2, 3, 4; j = 0, 1, 2, · · · . Furthermore, we define

τ30 = min
{
τ
(j)
3n

|n = 1, 2, 3, 4; j = 0, 1, 2, · · ·
}
.

Let λ(τ) = α(τ) + iϑ3(τ) be a root of (2.22) with α(τ
(j)
3n

) = 0, ϑ3(τ
(j)
3n

) = ϑ3n

near τ1 = τ2 = τ
(j)
3n

. We next check the transversality conditions.
Taking the derivative of λ with respect to τ in (2.22), we have[

dλ(τ)

dτ

]−1

= − (2λ+ κ1)e
λτ + κ2 + κ3

λ [(λ2 + κ1λ+ κ7) eλτ − κ6e−λτ ]
− τ

λ
,

then[
d(Reλ(τ))

dτ

]−1

τ=τ
(j)
3n

= Re

[
− (2λ+ κ1)e

λτ + κ2 + κ3
λ [(λ2 + κ1λ+ κ7) eλτ − κ6e−λτ ]

]
τ=τ

(j)
3n

=
N1

M3
,
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where

N1 =
[
2κ1κ6 cos(ϑ3nτ) + (κ2 + κ3)

(
κ6 + κ7 − ϑ23n

)]
sin(ϑ3nτ)

+ ϑ3n
[
4κ6 cos

2(ϑ3nτ) + κ1(κ2 + κ3) cos(ϑ3nτ) + κ21 + 2ϑ23n − 2κ6 − 2κ7
]
,

M3 = ϑ3n
[
4κ1κ6ϑ3n cos(ϑ3nτ) sin(ϑ3nτ)− 4κ6

(
κ7 − ϑ23n

)
cos2(ϑ3nτ)

+ϑ43n +
(
κ21 − 2κ6 − 2κ7

)
ϑ23n + (κ6 + κ7)

2
]
.

Thus if N1

M3
> 0, then we have

[
d(Reλ(τ))

dτ

]−1

τ=τ
(j)
3n

> 0, that is,
[
d(Reλ(τ))

dτ

]
τ=τ

(j)
3n

> 0.

Lemma 2.6. Assume that the condition

(H4)
N

M3
> 0

is hold, then we have
[
d(Reλ(τ))

dτ

]
τ=τ

(j)
3n

> 0(n = 1, 2, 3, 4; j = 0, 1, 2, · · · ).

Theorem 2.3. If the parameters of model (2.1) satisfy the condition (H1), then

(i) If (2.25) has no positive roots, then the equilibrium E(x∗, y∗) of model (2.1)
is asymptotically stable when τ1 = τ2 = τ ≥ 0;

(ii) If (2.25) has at least one positive root and the condition (H4) hold, then the
equilibrium E(x∗, y∗) of model (2.1) is locally asymptotically stable when τ1 =
τ2 = τ ∈ [0, τ30) and is unstable when τ1 = τ2 = τ ≥ τ30 . Furthermore, when
τ1 = τ2 = τ cross through each critical values τ (j)3n

(n = 1, 2, 3, 4; j = 0, 1, 2, · · · ),
model (2.1) will undergo a Hopf bifurcation at the equilibrium E(x∗, y∗).

Case 5. τ1 > 0, τ2 > 0 and τ1 ̸= τ2.
For this case, we suppose characteristic equation (2.6) with τ2 in its stable

interval [0, τ20) and choose τ1 as a free parameter. Hence, we assume that λ =
iϑ4(ϑ4 > 0) is a root of the characteristic equation (2.6), then

− ϑ24 + iκ1ϑ4 + iκ2ϑ4 [cos(ϑ4τ1)− i sin(ϑ4τ1)] + iκ3ϑ4 [cos(ϑ4τ2)− i sin(ϑ4τ2)]

+ κ4 [cos(ϑ4τ1)− i sin(ϑ4τ1)] + κ5 [cos(ϑ4τ2)− i sin(ϑ4τ2)]

+ κ6 [cos (ϑ4(τ1 + τ2))− i sin (ϑ4(τ1 + τ2))] + κ7 = 0.

(2.26)

Similarly, we have 
sin(ϑ4τ1) =

b2c1 − b1c2
b21 + b22

,

cos(ϑ4τ1) =
b2c2 + b1c1
b21 + b22

,

(2.27)

where
b1 = κ4 + κ6 cos(ϑ4τ2), b2 = κ2ϑ4 − κ6 sin(ϑ4τ2),

c1 = ϑ24 − κ3ϑ4 sin(ϑ4τ2)− κ5 cos(ϑ4τ2)− κ7,

c2 = −κ1ϑ4 − κ3ϑ4 cos(ϑ4τ2) + κ5 sin(ϑ4τ2).

Moreover, we have
ϑ44 + n1ϑ

3
4 + n2ϑ

2
4 + n3ϑ4 + n4 = 0, (2.28)
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where
n1 = −2κ3 sin (ϑ4τ2) ,

n2 = 2 (κ1κ3 − κ5) cos (ϑ4τ2) + κ21 − κ22 + κ23 − 2κ7,

n3 = −2 (κ1κ5 − κ2κ6 − κ3κ7) sin(ϑ4τ2),

n4 = −2 (κ4κ6 − κ5κ7) cos(ϑ4τ2)− κ24 + κ25 − κ26 + κ27.

Suppose that (2.28) has positive roots. Without loss of generality, we assume
that it has four positive roots, denoted ϑ4n(n = 1, 2, 3, 4). Then ±iϑ4n(n = 1, 2, 3, 4)
are four pairs of pure imaginary roots of (2.26). Substituting ϑ4n into (2.27), we
have

τ
(j)
4n

=
1

ϑ4n

[
arccos

(
b2c2 + b1c1
b21 + b22

)
+ 2jπ

]
, n = 1, 2, 3, 4; j = 0, 1, 2, · · · .

Furthermore, we define

τ40 = min
{
τ
(j)
4n

∣∣n = 1, 2, 3, 4; j = 0, 1, 2, · · ·
}

(2.29)

and ϑ40 is the critical value corresponding to τ40 .
Next, we also need to check the transversality. From (2.6), we have[

dλ(τ1)

dτ1

]−1

=
−κ6τ2e−λ(τ1+τ2) + κ2e

−λτ1 + (−κ3λτ2 − κ5τ2 + κ3) e
−λτ2 + κ1 + 2λ

λ
(
κ6e−λ(τ1+τ2) + (κ2λ+ κ4)e−λτ1

) − τ1
λ

and [
d(Reλ(τ1))

dτ1

]−1

τ1=τ
(j)
4n

= Re

[
−κ6τ2e−λ(τ1+τ2)+κ2e

−λτ1+(−κ3λτ2−κ5τ2+κ3) e−λτ2 + κ1 + 2λ

λ
(
κ6e−λ(τ1+τ2) + (κ2λ+ κ4)e−λτ1

) ]
τ1=τ

(j)
4n

= Re

[
N2

M4

]
τ1=τ

(j)
4n

=
M4RN2R +M4IN2I

M2
4R

+M2
4I

,

where
N2 =− κ6τ2 cos[ϑ4(τ1 + τ2)] + κ2 cos(ϑ4τ1) + (κ3 − κ5τ2) cos(ϑ4τ2)

− κ3ϑ4τ2 sin(ϑ4τ2) + κ1 + i {κ6τ2 sin[ϑ4(τ1 + τ2)]− κ2 sin(ϑ4τ1)

−κ3ϑ4τ2 cos(ϑ4τ2)− (κ3 − κ5τ2) sin(ϑ4τ2) + 2ϑ4} ,
M4 =κ6ϑ4 sin[ϑ4(τ1 + τ2)] + κ4ϑ4 sin(ϑ4τ1)− κ2ϑ

2
4 cos(ϑ4τ1)

+ i
{
κ6ϑ4 cos[ϑ4(τ1 + τ2)] + κ4ϑ4 cos(ϑ4τ1) + κ2ϑ

2
4 sin(ϑ4τ1)

}
and N2R , N2I , M4R , M4I are stand for the real part of N2, imaginary part of
N2, real part of M4 and imaginary part of M4, respectively. Thus, if M4RN2R +

M4IN2I > 0, then
[
d(Reλ(τ1))

dτ1

]−1

τ1=τ
(j)
4n

> 0, that is, we have
[
d(Reλ(τ1))

dτ1

]
τ1=τ

(j)
4n

>

0(n = 1, 2, 3, 4; j = 0, 1, 2, · · · ).
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Lemma 2.7. Assume that the condition

(H5) M4RN2R +M4IN2I > 0

is hold, then we have
[
d(Reλ(τ1))

dτ1

]
τ1=τ

(j)
4n

> 0(n = 1, 2, 3, 4; j = 0, 1, 2, · · · ).

Theorem 2.4. If the parameters of model (2.1) satisfy the condition (H1) and
τ2 ∈ [0, τ20), then

(i) If (2.28) has no positive roots, then the equilibrium E(x∗, y∗) of model (2.1)
is asymptotically stable when τ1 ≥ 0;

(ii) If (2.28) has at least one positive root and the condition (H5) hold, then the
equilibrium E(x∗, y∗) of model (2.1) is asymptotically stable when τ1 ∈ [0, τ40)
and is unstable when τ1 ≥ τ40 . Furthermore, when τ1 cross through critical
values τ

(j)
4n

(n = 1, 2, 3, 4; j = 0, 1, 2, · · · ), model (2.1) will undergo a Hopf
bifurcation at the equilibrium E(x∗, y∗).

3. Properties of Hopf Bifurcation
In this section, using the normal form theory and central manifold theorem for
RFDEs [16], we will study the properties of Hopf bifurcation obtained by Theorem
2.4.

Throughout this section, we always assume that model (2.1) undergoes Hopf
bifurcation at the equilibrium E(x∗, y∗) when τ1 = τ40 and then ±iϑ40 are the
corresponding purely imaginary roots of the characteristic equation (2.6). We as-
sume that τ∗2 < τ40 , where τ∗2 ∈ (0, τ20). Meanwhile, let τ1 = τ40 + µ, where
τ40 is defined by (2.29) and µ ∈ R. Then there is the Hopf bifurcation value of
model (2.1) at E(x∗, y∗) when µ = 0. Since model (2.1) is equivalent to model
(2.3), hence we mainly investigate model (2.3) in the following discussion. Letting
X1(t) = x(τ1t), X2(t) = y(τ1t) to normalize the delays, model (2.3) is transformed
into a RFDEs in phase space C = C([−1, 0],R2) as

Ẋ(t) = Lµ(Xt) + F (µ,Xt), (3.1)

where X(t) = (X1(t), X2(t))
T ∈ R2, Xt = Xt(θ) = X(t + θ) = (X1(t + θ), X2(t +

θ))T ∈ C and Lµ : C → R2, F : R× C → R2 are given respectively by

Lµ(ϕ) = (τ40 + µ)B

ϕ1(0)
ϕ2(0)

+ (τ40 + µ)C

ϕ1 (− τ∗
2

τ40

)
ϕ2

(
− τ∗

2

τ40

)
+ (τ40 + µ)D

ϕ1(−1)

ϕ2(−1)


(3.2)

and
F (µ, ϕ) = (τ40 + µ)

×


−ϕ21(0)− a

(a+x∗)2ϕ1(−1)ϕ2(0)− (ϕ2(0) + y∗)

∞∑
i=2

1
i!f

(i)(x∗)ϕi1(−1)(
β

x∗2ϕ1(0)− β
x∗

)
ϕ2(0)ϕ2

(
− τ∗

2

τ40

)
+ βy∗

x∗2 ϕ1(0)
(
ϕ2(0) + ϕ2

(
− τ∗

2

τ40

))
− β

×
(
ϕ2(0)ϕ2

(
− τ∗

2

τ40

)
+ y∗

(
ϕ2(0) + ϕ2

(
− τ∗

2

τ40

))
+ y∗2

) ∞∑
i=2

1
i!g

(i)(x∗)ϕi1(0)


,

(3.3)
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where ϕ = ϕ(θ) = (ϕ1(θ), ϕ2(θ))
T ∈ C, and

B =

1− 2x∗ − x∗

a+x∗

βy∗2

x∗2 δ − βy∗

x∗

 , C =

0 0

0 −βy∗

x∗

 , D =

− ay∗

(a+x∗)2 0

0 0

 . (3.4)

By the Riese representation theorem, there exist a 2×2 matrix function η(θ, µ),
−1 ≤ θ ≤ 0, whose elements are of bounded variation such that

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(θ) for ϕ ∈ C([−1, 0],R2).

In fact, we can choose

η(θ, µ) =



(τ40 + µ)(B + C +D), θ = 0,

(τ40 + µ)(B + C), θ ∈
[
− τ∗

2

τ40
, 0
)
,

(τ40 + µ)D, θ ∈
(
−1,− τ∗

2

τ40

)
,

0, θ = −1.

(3.5)

For ϕ ∈ C1([−1, 0],R2), defining

A(µ)ϕ(θ) =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1

dη(ξ, µ)ϕ(ξ) = Lµϕ, θ = 0

(3.6)

and

R(µ)ϕ(θ) =

{
0, θ ∈ [−1, 0),

F (µ, θ), θ = 0,
(3.7)

since dXt

dθ = dXt

dt , then model (3.1) is equivalent to

Ẋt = A(µ)Xt +R(µ)Xt, (3.8)

where Xt(θ) = X(t+ θ).
For ψ ∈ C1

(
[−1, 0], (R2)∗

)
, defining

A∗(µ)ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1

dηT (t, µ)ψ(−t), s = 0

(3.9)

and a bilinear inner product

⟨ψ(s), ϕ(θ)⟩ = ψ(0) · ϕ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ
T
(ξ − θ)dη(θ)ϕ(ξ)dξ, (3.10)

where ηT denotes the transpose of η, η(θ) = η(θ, 0). Here, for a and b in Cn,

a · b means
n∑

i=1

aibi, where ai and bi are the components of the vectors a and b,
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respectively. Then A(0) and A∗(0) are adjoint operators. Furthermore, ⟨ψ,Aϕ⟩ =
⟨A∗ψ, ϕ⟩. Note that the above scaling transformation the corresponding character-
istic exponents and the associated frequencies are transformed into τ1λ and τ1ω,
respectively. Hence, when µ = 0, ±iϑ40τ40 are the eigenvalues of A(0). Therefore,
they are also eigenvalues of A∗(0). Let q(θ) be the eigenvector for A(0) correspond-
ing to iϑ40τ40 and q∗(θ) be the eigenvector for A∗(0) corresponding to −iϑ40τ40 .
Then we have

A(0)q(θ) = iϑ40τ40q(θ), (3.11)
A∗(0)q∗(s) = −iϑ40τ40q

∗(s). (3.12)

From (3.6), we can rewrite (3.11) as follows
dq(θ)

dθ
= iϑ40τ40q(θ), θ ∈ [−1, 0),

L0q(0) = iϑ40τ40q(0), θ = 0.

(3.13)

Using (3.13), we have

q(θ) = V eiϑ40
τ40θ, θ ∈ [−1, 0], (3.14)

where V = (v1, v2)
T is an undetermined constant vector, and from (3.13), the

constant vector V must satisfy(
B + Ce−iϑ40τ

∗
2 +De−iϑ40τ40 − iϑ40I

)
V = 0,

where I denotes the 2 × 2 identity matrix. The above algebraic equation has an
infinite number of solutions. Without loss of generality, setting v1 = 1, we have

v2 =
(1− 2x∗ − iϑ40)(a+ x∗)2 − ay∗e−iϑ40

τ40

x∗(a+ x∗)
.

Similarly, from (3.9), we rewrite (3.12) as follows

dq∗(s)

ds
= iϑ40τ40q

∗(s), s ∈ (0, 1],∫ 0

−1

dηT (t, 0)φ(−t)

= τ40B
Tφ(0) + τ40C

Tφ

(
τ∗2
τ40

)
+ τ40D

Tφ(1) = −iϑ40τ40q(0), s = 0.

(3.15)
Using (3.15), we have

q∗(s) = PV ∗eiϑ40
τ40s, s ∈ [0, 1], (3.16)

where P and V ∗ = (v∗1 , v
∗
2)

T are a constant and constant vector, respectively. From
(3.16), the constant vector V ∗ satisfies(

BT + CT eiϑ40
τ∗
2 +DT eiϑ40

τ40 + iϑ40I
)
V ∗ = 0,
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where I denotes the 2× 2 identity matrix, setting v∗1 = 1, we have

v∗2 =
x∗2(1− 2x∗ + iϑ40)(a+ x∗)2 − ax∗2y∗eiϑ40

τ40

−βy∗2(a+ x∗)2
.

Next, we will find a constant P to make ⟨q∗(s), q(θ)⟩ = 1. By (3.9), we get

⟨q∗(s), q(θ)⟩ = q∗(0) · q(0)−
∫ 0

θ=−1

∫ θ

ξ=0

q∗T (ξ − θ)dη(ξ)q(ξ)dξ

= P (v∗1, v
∗
2)(v1, v2)

T

−
∫ 0

θ=−1

∫ θ

ξ=0

P (v∗1, v
∗
2)e

−iϑ40τ40 (ξ−θ)dη(θ)(v1, v2)
T eiϑ40τ40ξdξ

= P (v∗1, v
∗
2)(v1, v2)

T − q∗T (0)

∫ 0

θ=−1

∫ θ

ξ=0

eiϑ40
τ40θdξdη(θ)q(0)

= P (v∗1, v
∗
2)(v1, v2)

T − q∗T (0)

∫ 0

θ=−1

ξeiϑ40
τ40θ

∣∣∣∣θ
ξ=0

dη(θ)q(0)

= P (v∗1, v
∗
2)(v1, v2)

T − q∗T (0)

∫ 0

θ=−1

θeiϑ40
τ40θdη(θ)q(0)

= P (v1v
∗
1 + v2v

∗
2) + q∗T (0)τ∗2

0 0

0 −βy∗

x∗

 e−iϑ40
τ∗
2 q(0)

+ q∗T (0)τ40

− ay∗

(a+x∗)2 0

0 0

 eiϑ40
τ40 q(0)

= P

[
(v1v

∗
1 + v2v

∗
2)−

2τ∗2 e
−iϑ40

τ∗
2 v̄∗2βy

∗v2
x∗

− τ40e
−iϑ40

τ40 v̄∗1ay
∗v1

(a+ x∗)2

]
,

thus, we can choose P as

P =
1

(v1v
∗
1 + v2v

∗
2)−

τ∗
2 e

−iϑ40
τ∗
2 v̄∗

2βy
∗v2

x∗ − τ40e
−iϑ40

τ40 v̄∗
1ay

∗v1
(a+x∗)2

,

P =
1

(v1v∗1 + v2v∗2)−
τ∗
2 e

−iϑ40
τ∗
2 v∗

2βy
∗v̄2

x∗ − τ40e
−iϑ40

τ40 v∗
1ay

∗v̄1
(a+x∗)2

,

(3.17)

which assures that ⟨q∗(s), q(θ)⟩ = 1. Furthermore, ⟨q∗(s), q̄(θ)⟩ = 0.
Using the same notations as in Hassard et al. [16], we first compute the coordi-

nates to describe the center manifold Cµ at µ = 0, i.e., C0, where

Cµ =
{
Xt ∈ R2|Xt =W (t, θ;µ) + 2Re{z(t)q(θ;µ)}, |z(t)| < δ

}
,

for some sufficiently small δ, and W (t, θ;µ), z(t) will be defined below. Let Xt be
the solution of (3.1) when µ = 0. We can define

z(t) = ⟨q∗, Xt⟩, W (t, θ) = Xt(θ)− z(t)q(θ)− z(t)q(θ) = Xt(θ)− 2Re{z(t)q(θ)}.
(3.18)
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On the center manifold C0 we have W (t, θ) =W (z(t), z(t), θ), where

W (z(t), z(t), θ) =W20(θ)
z2(t)

2
+W11(θ)z(t)z(t) +W02(θ)

z2(t)

2
+W30

z3(t)

6
+ · · · ,
(3.19)

where z and z are local coordinates for the center manifold C0 in the directions q∗
and q∗. Note that W is real if Xt is real, we shall deal with real solutions only. For
the solution Xt ∈ C0 of (3.1), since µ = 0, we have

ż(t) = ⟨q∗, Ẋt⟩ = ⟨q∗, A(0)Xt +R(0)Xt⟩ = ⟨q∗, A(0)Xt⟩+ ⟨q∗, R(0)Xt⟩
= ⟨A∗(0)q∗, Xt⟩+ q∗(0) · F (0, Xt)

= iϑ40τ40z(t) + q∗(0) · F (0,W (z(t), z(t), 0) + 2Re{z(t)q(0)}) .

Denoting F (0,W (z(t), z(t), 0) + 2Re{z(t)q(0)}) by F0(z(t), z(t)), we have

ż(t) = iϑ40τ40z(t) + q∗(0) · F0(z(t), z(t)). (3.20)

Furthermore, we rewrite (3.20) as

ż(t) = iϑ40τ40z(t) + g(z(t), z(t)), (3.21)

where g(z(t), z(t)) = q∗(0) · F0(z(t), z(t)), and expand g(z(t), z(t)) in the following
form

g (z(t), z(t)) = g20
z2(t)

2
+ g11z(t)z(t) + g02

z2(t)

2
+ g21

z2(t)z(t)

2
+ · · · , (3.22)

then it follows from (3.18) that

Xt(θ) =W (t, θ) + 2Re{z(t)q(t)} =W20(θ)
z2(t)

2
+W11(θ)z(t)z(t) +W02(θ)

z2(t)

2

+ (v1, v2, v3)
T eiϑ40τ40θz(t) + (v1, v2, v3)

T e−iϑ40τ40θz(t) + · · · .
(3.23)

Since
q(θ) = V eiϑ40

τ40θ = (v1, 1)
T eiϑ40

τ40θ.

From (3.3) and (3.22),

g(z(t), z̄(t)) = q̄∗(0)F0(z(t), z̄(t))

= q̄∗(0)F0(0, Xt) = q̄∗(0)τ40

A
B


= Pτ40

{
−v̄∗1

[(
W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ z(t)v1 + z̄(t)v1

)2

+
a

(a+ x∗)2

(
W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ z(t)v1e

−iϑ40
τ40

+z̄(t)v̄1e
iϑ40

τ40

)(
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v2

)
+

(
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v2 + y∗

)
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×
∞∑
i=2

1

i!
f (i)(x∗)

(
W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ z(t)v1e

−iϑ40
τ40

+z̄(t)v̄1e
iϑ40

τ40

)i
]
+v̄∗2

[(
β

x∗2

(
W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄+W

(1)
02 (0)

z̄2

2
+ z(t)v1

+z̄(t)v1)−
β

x∗

) (
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v2

)
×
(
W

(2)
20

(
− τ∗2
τ40

)
z2

2
+W

(2)
11

(
− τ∗2
τ40

)
zz̄ +W

(2)
02

(
− τ∗2
τ40

)
z̄2

2
+ z(t)v2e

−iϑ40
τ∗
2

+z̄(t)v̄2e
iϑ40τ

∗
2

)
+

β

x∗2

(
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2

+z̄(t)v2

)(
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v2

)
+

(
W

(2)
20

(
− τ∗2
τ40

)
z2

2
+W

(2)
11

(
− τ∗2
τ40

)
zz̄ +W

(2)
02

(
− τ∗2
τ40

)
z̄2

2
+ z(t)v2e

−iϑ40τ
∗
2

+z̄(t)v̄2e
iϑ40τ

∗
2

)
−β

((
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄+W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v2

)
×

(
W

(2)
20

(
− τ∗2
τ40

)
z2

2
+ W

(2)
11

(
− τ∗2
τ40

)
zz̄ +W

(2)
02

(
− τ∗2
τ40

)
z̄2

2
+ z(t)v2e

−iϑ40
τ∗
2

+z̄(t)v̄2e
iϑ40

τ∗
2

)
+

(
W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ z(t)v2 + z̄(t)v̄2

+W
(2)
20

(
− τ∗2
τ40

)
z2

2
+W

(2)
11

(
− τ∗2
τ40

)
zz̄ +W

(2)
02

(
− τ∗2
τ40

)
z̄2

2
+ z(t)v2e

−iϑ40
τ∗
2

+z̄(t)v̄2e
iϑ40

τ∗
2

)
+ y∗2

)
×

∞∑
i=2

1

i!
g(i)(x∗)

(
W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ z(t)v1 + z̄(t)v1

)i
]}

,

(3.24)

where

A =−
(
W (1)(0) + z(t)v1 + z̄(t)v1

)2

− a

(a+ x∗)2

(
W (1)(−1) + z(t)v1e

−iϑ40τ40

+z̄(t)v̄1e
iϑ40

τ40
) (
W (2)(0) + z(t)v2 + z̄(t)v2

)
−
(
W (2)(0) + z(t)v2 + z̄(t)v2

+y∗
)
×

∞∑
i=2

1

i!
f (i)(x∗)

(
W (1)(−1) + z(t)v1e

−iϑ40
τ40 + z̄(t)v̄1e

iϑ40
τ40

)i

,

B =

(
β

x∗2
(W (1)(0) + z(t)v1 + z̄(t)v1)−

β

x∗

)(
W (2)(0) + z(t)v2 + z̄(t)v̄2

)
×
(
W (2)

(
− τ∗2
τ40

)
+ z(t)v2e

−iϑ40
τ∗
2 + z̄(t)v̄2e

iϑ40
τ∗
2

)
+

β

x∗2

(
W (1)(0) + z(t)v1

+z̄(t)v̄1

)((
W (2)(0) + z(t)v2 + z̄(t)v̄2

)
+

(
W (2)

(
− τ∗2
τ40

)
+ z(t)v2e

−iϑ40τ
∗
2
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+z̄(t)v̄2e
iϑ40

τ∗
2

))
− β

[(
W (2)(0) + z(t)v2 + z̄(t)v̄2

)(
W (2)

(
− τ∗2
τ40

)
+z(t)v2e

−iϑ40τ
∗
2 + z̄(t)v̄2e

iϑ40τ
∗
2

)
+ y∗

(
W (2)(0) + z(t)v2 + z̄(t)v̄2

+W (2)

(
− τ∗2
τ40

)
+ z(t)v2e

−iϑ40
τ∗
2 + z̄(t)v̄2e

iϑ40
τ∗
2

)
+ y∗2

]
×

∞∑
i=2

1

i!
g(i)(x∗)

(
W (1)(0) + z(t)v1 + z̄(t)v1

)i

.

Comparing with the coefficients of (3.22), we can find

g20 =2Pτ40

{
−v̄∗1

[
v21 +

a

(a+ x∗)2
v1v2e

−iϑ40
τ40 +

1

2
f ′′(x∗)y∗v21e

−2iϑ40
τ40

]
− β2v22

x∗3
e−iϑ40

τ∗
2 +

βv1v2
x∗2

(
e−iϑ40

τ∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v1

2

}
,

g11 =Pτ40

{
−v̄∗1

[
2v1v̄1 +

a

(a+ x∗)2
(
v̄1v2e

iϑ40
τ40 + v1v̄2e

−iϑ40
τ40

)
+y∗f ′′(x∗)v1v̄1

]
− β2

x∗3

(
v2v̄2e

iϑ40
τ∗
2 + v2v̄2e

−iϑ40
τ∗
2

)
+

β

x∗2

(
v1

(
v̄2e

iϑ40
τ∗
2

+v̄2

)
+ v̄1

(
v2e

−iϑ40τ
∗
2 + v2

))
−g′′(x∗)βy∗2v1v̄1

}
,

g02 =2Pτ40

{
−v̄∗1

[
v̄21 +

a

(a+ x∗)2
v̄1v̄2e

iϑ40
τ40 +

1

2
f ′′(x∗)y∗v̄21e

2iϑ40
τ40

]
− β2v̄22

x∗3
eiϑ40

τ∗
2 +

βv̄1v̄2
x∗2

(
eiϑ40

τ∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v̄21

}
,

g21 =2Pτ40

{
−v̄∗1

[
2W

(1)
11 (0)v1 +W

(1)
20 (0)v̄1 +

a

(a+ x∗)2

(
1

2
W

(2)
20 (0)v̄1e

iϑ40
τ40

+
1

2
W

(1)
20 (−1)v̄2 +W

(1)
11 (−1)v2 +W

(2)
11 (0)v1e

−iϑ40τ40

)
+ f ′′(x∗)

(
1

2
v21 v̄2e

−2iϑ40
τ40 + v1v̄1v2 +

1

2
y∗W

(1)
20 (−1)v̄1e

iϑ40
τ40

+y∗W
(1)
11 (−1)v1e

−iϑ40
τ40

)
+
1

2
f ′′′(x∗)y∗v21 v̄1e

−iϑ40
τ40

]
+

β

x∗2

(
v̄1v

2
2e

−iϑ40
τ∗
2

− β

x∗
W

(2)
11 (0)v2e

−iϑ40τ
∗
2 + v1v2v̄2

(
e−iϑ40τ

∗
2 + eiϑ40τ

∗
2

)
− β

x∗
v2W

(2)
11

(
− τ∗2
τ40

)
− β

2x∗
W

(2)
20 (0)v̄2e

iϑ40
τ∗
2 − β

2x∗
v̄2W

(2)
20

(
− τ∗2
τ40

))
+

β

x∗2

(
1

2
v̄1W

(2)
20 (0)

+
1

2
W

(1)
20 (0)eiϑ40

τ∗
2 +W

(1)
11 (0)v2e

−iϑ40
τ∗
2

+v1W
(2)
11

(
− τ∗2
τ40

)
+
1

2
v̄1W

(2)
20

(
− τ∗2
τ40

)
+

1

2
W

(1)
20 (0)v̄2 + v1W

(2)
11 (0)

+v2W
(1)
11 (0)

)
− βy∗g′′(x∗)

(
v1v̄1v2e

−iϑ40τ
∗
2 + v1v̄1v2 +

1

2
v21 v̄2
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+
1

2
v21 v̄2e

iϑ40
τ∗
2

)
− βy∗2g′′(x∗)

(
1

2
W

(1)
20 (0)v̄1 +W

(1)
11 (0)v1

)
−1

2
g′′′(x∗)βy∗2v21 v̄1

}
.

Since there are unknown terms in g21, we need to compute W20(θ) and W11(θ).
From (3.8), (3.18) and (3.21), we have

Ẇ = Ẋt − żq − ˙̄zq̄

=

{
AW − 2Re{q∗(0) · F0(z, z)q(θ)}, θ ∈ [−1, 0)

AW − 2Re{q∗(0) · F0(z, z)q(0)}+ F0(z, z), θ = 0

≜ AW +H(z, z, θ),

(3.25)

where
H(z, z, θ) = H20

z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.26)

From (3.25) and (3.26) and the definition of W , we need to use (3.19) and (3.21)
to replace Wz and ż and their conjugates. Comparing the coefficients (3.25), we
obtain

(2iϑ40τ40I −A)W20(θ) = H20(θ), −AW11(θ) = H11(θ), (3.27)

where I denotes the 2× 2 identity matrix.
From (3.25), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0) · f0(z, z)q(θ)− q∗(0) · f0(z, z)q(θ) = −g(z, z)q(θ)− g(z, z)q(θ).

(3.28)
Substituting (3.22) into (3.28), we have

H(z, z, θ) = [−g20q(θ)− g02q(θ)]
z2

2
+ [−g11q(θ)− g11q(θ)] zz

+ [−g02q(θ)− g20q(θ)]
z2

2
+ · · · .

(3.29)

Comparing the coefficients in (3.29) in with those in (3.26), we can obtain

H20(θ) = −g20q(θ)− g02q(θ), H11(θ) = −g11q(θ)− g11q(θ). (3.30)

From (3.27), (3.30) and the definition of A, we have

Ẇ20(θ) = 2iϑ40τ40W20(θ) + g20q(θ) + g02q(θ). (3.31)

Substituting q(θ) = (v1, v2)
T eiϑ40τ40 into (3.31), we can get the solution of (3.31)

W20(θ) =
ig20
ϑ40τ40

q(0)eiϑ40τ40θ +
ig02

3ϑ40τ40
q(0)e−iϑ40

τ40θ +G1e
2iϑ40τ40θ, (3.32)

similarly

W11(θ) = − ig11
ϑ40τ40

q(0)eiϑ40τ40θ +
ig11
ϑ40τ40

q(0)e−iϑ40τ40θ +G2, (3.33)
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where G1 =
(
G

(1)
1 , G

(2)
1

)T

, G2 =
(
G

(1)
2 , G

(2)
2

)T

and G1, G2 ∈ R2, they are constant
vectors.

Next we will seek the values of constant vectors G1 and G2 in (3.32) and (3.33),
respectively. From (3.27) and the definition of A, we have

A(0)W20(θ) =

∫ 0

−1

dη(θ)W20(θ) = 2iϑ40τ40W20(0)−H20(0) (3.34)

and
A(0)W11(θ) =

∫ 0

−1

dη(θ)W11(θ) = −H11(0), (3.35)

where η(θ) = η(θ, 0). And from (3.25), we have

H20(0) = −g20q(0)− g02q(0) + τ40

×

 −v21 −
a

(a+ x∗)2
v1v2e

−iϑ40
τ40 − 1

2
f ′′(x∗)y∗v21e

−2iϑ40
τ40

−β
2v22
x∗3

e−iϑ40
τ∗
2 +

βv1v2
x∗2

(
e−iϑ40

τ∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v1

2

 ,
(3.36)

H11(0) = −g11q(0)− g11q(0) + τ40

×


−2v1v̄1−

a

(a+ x∗)2
(
v̄1v2e

iϑ40τ40 +v1v̄2e
−iϑ40τ40

)
−y∗f ′′(x∗)v1v̄1

−β
2

x∗3
(
v2v̄2e

iϑ40τ
∗
2 +v2v̄2e

−iϑ40τ
∗
2

)
+

β

x∗2
(
v1

(
v̄2e

iϑ40τ
∗
2 +v̄2

)
+v̄1

×
(
v2e

−iϑ40
τ∗
2 +v2

))
− g′′(x∗)βy∗2v1v̄1

 .

(3.37)

Substituting (3.32) and (3.36) into (3.34), we have(
2iϑ40τ40I −

∫ 0

−1

e2iϑ40τ40θdη(θ)

)
G1

= 2τ40

 −v21 −
a

(a+ x∗)2
v1v2e

−iϑ40
τ40 − 1

2
f ′′(x∗)y∗v21e

−2iϑ40
τ40

−β
2v22
x∗3

e−iϑ40
τ∗
2 +

βv1v2
x∗2

(
e−iϑ40

τ∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v1

2

 .

(3.38)

From the definition of A, we can obtain∫ 0

−1

e2iϑ40
τ40θdη(θ) = A(µ)e2iϑ40

τ40θ = Lµ

(
e2iϑ40

τ40θ
)
,

when µ = 0,∫ 0

−1

e2iϑ40
τ40θdη(θ) = τ40

(
B + Ce−2iϑ40

τ∗
2 +De−2iϑ40

τ40

)
.

Therefore, when µ = 0, we have1− 2x∗ − ay∗e
−2iω0τ40

(a+x∗)2 − x∗

a+x∗

βy∗2

x∗2 δ − βy∗

x∗ − βy∗e−2iω0τ∗
2

x∗

G1
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=2

 −v21 −
a

(a+ x∗)2
v1v2e

−iω0τ40 − 1

2
f ′′(x∗)y∗v21e

−2iω0τ40

−β
2v22
x∗3

e−iω0τ
∗
2 +

βv1v2
x∗2

(
e−iω0τ

∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v1

2

 , (3.39)

hence,

G1 =2

1− 2x∗ − ay∗e
−2iϑ40

τ40

(a+x∗)2 − x∗

a+x∗

βy∗2

x∗2 δ − βy∗

x∗ − βy∗e
−2iϑ40

τ∗
2

x∗

−1

×

 −v21 −
a

(a+ x∗)2
v1v2e

−iϑ40τ40 − 1

2
f ′′(x∗)y∗v21e

−2iϑ40τ40

−β
2v22
x∗3

e−iϑ40τ
∗
2 +

βv1v2
x∗2

(
e−iϑ40τ

∗
2 + 1

)
− 1

2
g′′(x∗)βy∗2v1

2

 .

(3.40)

Similarly, we have∫ 0

−1

dη(θ)G2

= −


−2v1v̄1 −

a

(a+ x∗)2
(
v̄1v2e

iϑ40
τ40 + v1v̄2e

−iϑ40
τ40

)
− y∗f ′′(x∗)v1v̄1

− β2

x∗3
(
v2v̄2e

iϑ40
τ∗
2 + v2v̄2e

−iϑ40
τ∗
2

)
+

β

x∗2
(
v1

(
v̄2e

iϑ40
τ∗
2 + v̄2

)
+ v̄1

×
(
v2e

−iϑ40
τ∗
2 + v2

))
− g′′(x∗)βy∗2v1v̄1

 ,

(3.41)
hence,

G2 =

1− 2x∗ − ay∗

(a+x∗)2 − x∗

a+x∗

βy∗2

x∗2 δ − 2βy∗

x∗

−1

×


−2v1v̄1 −

a

(a+ x∗)2
(
v̄1v2e

iϑ40τ40 + v1v̄2e
−iϑ40τ40

)
− y∗f ′′(x∗)v1v̄1

− β2

x∗3
(
v2v̄2e

iϑ40τ
∗
2 + v2v̄2e

−iϑ40τ
∗
2

)
+

β

x∗2
(
v1

(
v̄2e

iϑ40τ
∗
2 + v̄2

)
+ v̄1

×
(
v2e

−iϑ40τ
∗
2 + v2

))
− g′′(x∗)βy∗2v1v̄1

 .

(3.42)

Thus, we can get the following quantities:

C1(0) =
i

2ϑ40τ40

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = − Re (C1(0))

Re (λ′(τ40))
,

β2 = 2Re (C1(0)) ,

T2 =
Im(C1(0)) + µ2Im (λ′(τ40))

ϑ40τ40
,

which determine the properties of Hopf bifurcation at the critical value τ1 = τ40
and τ2 ∈ [0, τ20) on the center manifold. We have the following theorem.
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Theorem 3.1. For model (2.1), the following results hold:

(i) The sign of µ2 can determine the direction of the Hopf bifurcation: if µ2 > 0
(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the periodic
solutions exist for τ1 > τ40 (τ1 < τ40);

(ii) The sign of β determines the stability of the bifurcating periodic solutions: if
β2 > 0 (β2 < 0), the periodic solutions are stable (unstable).

(iii) The sign of T2 determines the period of the bifurcating periodic solutions: if
T2 > 0 (T2 < 0), the period of the periodic solutions increase (decrease).

4. Numerical simulations
In this section, we will present some numerical simulation results of model (2.1) for
different parameter values to support the previous analytical results.

First, we consider model (2.1) with a = 0.7, h = 3
25 , δ = 3

5 , β = 1. Then
it has two positive equilibria E1(x

∗, y∗) = (0.51219177, 0.30731719), E2(x
∗, y∗) =

(0.16741488, 0.10044918) and two boundary equilibria E3(x
∗, y∗) = (0.13944460, 0),

E4(x
∗, y∗) = (0.86055556, 0)(see Fig. 1(a)). By using a simple calculation, for E1,

we have κ1 + κ2 + κ3 = 0.77079226 > 0, κ4 + κ5 + κ6 + κ7 = 0.25458599 > 0 and
p21−4p2 = −0.07912947 < 0, hence, according to Theorem 2.1(i), the equilibrium E1

is asymptotically stable when τ1 > 0(see Fig. 2(a)-(b)). The other three equilibria
do not satisfy the condition (H1). In fact, when τ1 = τ2 = 0, E2 and E4 are two
saddle points and E3 is a nodal source, hence, they are unstable.
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Figure 1. The equilibria of model (2.1). The magenta and yellow lines represent prey and predator
nullclines, respectively. The points where the two nullclines cross are equilibria and there are four of
these points for (a) a = 0.7, h = 3

25 , δ = 3
5 , β = 1; (b) a = 0.2, h = 1

16 , δ = 1
5 , β = 0.3.

Next, we set the following parameters a = 0.2, h = 1
16 , δ = 1

5 , β = 0.3.
Model (2.1) also has two positive equilibria E1(x

∗, y∗) = (0.39929087, 0.26619585),
E2(x

∗, y∗) = (0.08835544, 0.05890365) and two boundary equilibria E3(x
∗, y∗) =

(0.06698700, 0), E4(x
∗, y∗) = (0.93301270, 0)(see Fig. 1(b)). For E1, κ1 + κ2 +

κ3 = 0.14682143 > 0, κ4 + κ5 + κ6 + κ7 = 0.07820114, ∆1 = 0.00826602 > 0,
p1 = −0.11907885 < 0, p2 = 0.00147844 > 0. Equation (2.13) has two positive
roots v11 = 0.10499826 and v12 = 0.01408058. Hence, equation (2.12) has two
positive roots ϑ11 = 0.32403435 and ϑ12 = 0.11866163. Furthermore, we have τ (0)11

=

3.11596840, τ (0)12
= 21.92151453 and τ10 = 3.11596840, 2ϑ211+p1 = 0.090901768 > 0,

2ϑ212 + p1 = −0.09091768 < 0. Therefore, according to Theorem 2.1(ii) and (iii),
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Figure 2. Time series of x(t), y(t) of model (2.1) with τ2 = 0 and τ1 = 0, 0.5, 5, 10, 15, respectively.
The positive equilibrium E1(0.51219177, 0.30731719) is locally asymptotically stable. Here the initial
value is (0.5, 0.2).

the equilibrium E1 is asymptotically stable when τ1 ∈ [0, τ10) (see Fig. 3(a)-(b))
and is unstable when τ1 > τ10(see Fig. 3(c)-(d)). Model (2.1) undergoes a Hopf
bifurcation around E1 when τ1 > τ10(see Fig. 3(c)-(d)).
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Figure 3. (a)-(b): Time series of x(t), y(t) of model (2.1) with τ2 = 0 and τ1 = 0, 0.5, 1, 2.5 < τ10 =
3.11596840, respectively. The positive equilibrium E1(0.39929087, 0.26619585) is locally asymptotically.
The initial value is (0.5, 0.2). (c)-(d): Time series of x(t), y(t) and phase portrait of model (2.1) with
τ2 = 0 and τ1 = 3.2 > τ10 = 3.11596840. The positive equilibrium E1 is unstable and the orbit from
the initial value (0.39, 0.26) located in a sufficiently small neighborhood of E1 converges to a periodic
solution.
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For Theorem 2.2(i), we consider the following parameters a = 0.1, h = 1
15 , δ =

3
80 , β = 0.1. There are two positive equilibria E1(x

∗, y∗) = (0.56316894, 0.21118835),
E2(x

∗, y∗) = (0.09137792, 0.03426718) and two boundary equilibria E3(x
∗, y∗) =

(0.07182558, 0), E4(x
∗, y∗) = (0.92817445, 0). For E1, we can easily find that E1 is

asymptotically stable when τ2 > 0(see Fig. 4(a)-(b)). Again, we can find that E2

and E4 are two saddle points and E3 is a nodal source, they are unstable.
For Theorem 2.2(ii) and (iii), we consider model (2.1) with parameters a =

0.5, h = 1
80 , δ = 3

5 , β = 1
2 . There are two positive equilibria E1(x

∗, y∗) =
(0.42147248, 0.50576827), E2(x

∗, y∗) = (0.01307041, 0.01568494) and two bound-
ary equilibria E3(x

∗, y∗) = (0.01266000, 0), E4(x
∗, y∗) = (0.98734000, 0). By a

simple calculation, only E1 satisfies the conditions of the Theorem 2.2(ii) and
τ20 = 1.76144387. Therefore, E1 is asymptotically stable when τ2 ∈ [0, τ20)(see
Fig. 5(a)-(b)) and is unstable when τ2 > τ20(Fig. 5(c)-(d)). Model (2.1) undergoes
a Hopf bifurcation around E1 when τ2 > τ20(Fig. 5(c)-(d)).
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Figure 4. Time series of x(t), y(t) of model (2.1) with τ1 = 0 and τ2 = 0, 0.5, 5, 10, 15, respectively.
The positive equilibrium E1(0.56316894, 0.21118835) is locally asymptotically stable. Here initial value
is (0.5, 0.2).

Now we will consider Theorem 2.3(i). Choosing the parameters as follows: a =
0.5, h = 3

25 , δ = 1
10 , β = 3

10 , model (2.1) has two positive equilibria E1(x
∗, y∗) =

(0.62234655, 0.20744885), E2(x
∗, y∗) = (0.15728432, 0.05242922) and two boundary

equilibria E3(x
∗, y∗) = (0.13944453, 0), E4(x

∗, y∗) = (0.86055512, 0). For E1, we
have κ1+κ2+κ3 = 0.42703618 > 0, κ4+κ5+κ6+κ7 = 0.05118711 > 0 and (2.25)
has no positive roots. Hence, E1 is asymptotically stable when τ1 = τ2 = τ ≥ 0(see
Fig. 6(a)-(b)).

For Theorem 2.3(ii), we consider the following parameters a = 0.7, h = 3
80 , δ =

3
5 , β = 1. Model (2.1) has two positive equilibria E1(x

∗, y∗) = (0.652995, 0.3917969),
E2(x

∗, y∗) = (0.04046421, 0.02428095) and two boundary equilibria E3(x
∗, y∗) =

(0.03902278, 0), E4(x
∗, y∗) = (0.96097723, 0). Only E1 satisfies the conditions

of Theorem 2.3(ii) and τ30 = 2.12332287. Hence, E1 is asymptotically stable
when τ1 = τ2 = τ ∈ [0, 2.12332287) (see Fig. 7(a)-(b)) and is unstable when
τ1 = τ2 = τ > 2.12332287(see Fig. 7(c)-(d)). Model (2.1) undergoes a Hopf bifur-
cation around E1 when τ1 = τ2 = τ > 2.12332287(see Fig. 7(c)-(d)).

For Theorem 2.4(i), we consider the following parameters: a = 0.4, h = 4
30 , δ =

0.2, β = 0.7. Model (2.1) has two positive equilibria E1(x
∗, y∗) = (0.60849, 0.17385),

E2(x
∗, y∗) = (0.18348630, 0.05242466) and two boundary equilibria E3(x

∗, y∗) =
(0.15843497, 0), E4(x

∗, y∗) = (0.84156503, 0). For E1, we have κ1 + κ2 + κ3 =
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Figure 5. (a)-(b): Time series of x(t), y(t) of model (2.1) with τ1 = 0 and τ2 = 0, 0.5, 1.2, 1.5 < τ20 =
1.76144387, respectively. The positive equilibrium E1(0.42147248, 0.50576827) is locally asymptotically.
The initial value is (0.5, 0.2). (c)-(d): Time series of x(t), y(t) and phase portrait of model (2.1) with
τ1 = 0 and τ2 = 1.77 > τ20 = 1.76144387. The positive equilibrium E1 is unstable and the orbit from
the initial value (0.5, 0.2) located in a sufficiently small neighborhood of E1 converges to a periodic
solution.
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Figure 6. Time series of x(t), y(t) of model (2.1) with τ1 = τ2 = 0, 0.5, 5, 10, 15, respectively. The
positive equilibrium E1(0.62234655, 0.20744885) is locally asymptotically stable. Here initial value is
(0.5, 0.2).

0.48534963 > 0, κ4 + κ5 + κ6 + κ7 = 0.09154801 > 0. If we choose τ2 = 1 ∈ [0, τ20),
then (2.28) has no positive roots. According to Theorem 2.4(i), E1 is asymptotically
stable when τ1 ≥ 0(see Fig. 8(a)-(b)).



328 D. P. Hu, Y. Zhang, Z. W. Zheng & M. Liu

0 100 200 300

t

0.5

0.55

0.6

0.65

0.7

0.75

x
(t

)

(a)
1
=

2
=0

1
=

2
=1

1
=

2
=1.5

1
=

2
=2

0 100 200 300

t

0.2

0.3

0.4

0.5

y
(t

)

(b)
1
=

2
=0

1
=

2
=1

1
=

2
=1.5

1
=

2
=2

0 50 100 150 200

t

0.4

0.5

0.6

0.7

0.8

0.9

x
(t

)

0

0.2

0.4

0.6

0.8

y
(t

)

(c)
x(t)

y(t)

0.4 0.5 0.6 0.7 0.8

x(t)

0

0.2

0.4

0.6

0.8

y
(t

)

(d)

Figure 7. (a)-(b): Time series of x(t), y(t) of model (2.1) with τ1 = τ2 = 0, 1, 1.5, 2 < τ30 = 2.12332287,
respectively. The positive equilibrium E1(0.65299477, 0.39179686) is locally asymptotically. The initial
value is (0.5, 0.2). (c)-(d): Time series of x(t), y(t) and phase portrait of model (2.1) with τ1 = τ2 =
2.35 > τ30 = 2.12332287. The positive equilibrium E1 is unstable and the orbit from the initial value
(0.5, 0.2) located in a sufficiently small neighborhood of E1 converges to a periodic solution.

For Theorem 2.4(ii), we consider the following parameters: a = 0.5, h = 1
80 , δ =

3
5 , β = 1

2 . Model (2.1) has two positive equilibria E1(x
∗, y∗) = (0.421472, 0.505768),

E2(x
∗, y∗) = (0.01307000, 0.015684000) and two boundary equilibria E3(x

∗, y∗) =
(0.01266000, 0), E4(x

∗, y∗) = (0.98734000, 0). Only E1 satisfies the conditions of
Theorem 2.4(ii) and τ40 = 1.08245692. According to Theorem 2.4(ii), choosing
τ2 = 1.5 ∈ [0, τ20), E1 is asymptotically stable when τ1 ∈ [0, τ40)(see Fig. 9(a)-
(b)) and is unstable when τ1 ≥ τ40 = 1.08245692(see Fig. 9(c)-(d)). Model (2.1)
undergoes a Hopf bifurcation around E1 when τ1 ≥ τ40 = 1.08245692(see Fig.
9(c)-(d)).

When τ40 = 1.08245692, τ2 = 1.5 ∈ [0, τ20), we can obtain C1(0) = −5.97596954−
8.25043868i, µ2 = 63.8610682, β2 = −11.95193908, T2 = 9.46870954. Hence, ac-
cording to the Theorem 3.1, we know that model (2.1) can undergo a supercritical
Hopf bifurcation around equilibrium E1. β2 < 0 implies that the bifurcating peri-
odic solution is asymptotically stable on the center manifold. T2 > 0 means that
the period of bifurcating periodic solutions are increasing with the increase of τ1.
The effect of τ1 on the period T2 with τ2 = 1.5 is shown in Fig. 10(a). We can find
that the period of periodic solutions are increasing as the delay τ1 increases. Some
phase portraits of model (2.1) with τ1 = 1.15, 1.3, 1.5, 1.8, 2 > τ40 = 1.08245692 and
τ2 = 1.5 ∈ [0, τ20) are given in Fig. 10(b). To erase the transient behaviour, we just



Dynamics of a delayed predator-prey model 329

0 50 100

t

0.5

0.55

0.6

0.65

x
(t

)

(a)
1
=0

1
=0.5

1
=5

1
=10

1
=15

0 50 100

t

0.16

0.17

0.18

0.19

0.2

y
(t

)

(b)
1
=0

1
=0.5

1
=5

1
=10

1
=15

Figure 8. Time series of x(t), y(t) of model (2.1) with τ2 = 1 and τ1 = 0, 0.5, 5, 10, 15, respectively.
The positive equilibrium E1(0.60848685, 0.17385342) is locally asymptotically stable. Here initial value
is (0.5, 0.2).
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Figure 9. (a)-(b): Time series of x(t), y(t) of model (2.1) with τ2 = 1.5 and τ1 = 0, 0.1, 0.5, 0.8 < τ40 =
1.08245692, respectively. The positive equilibrium E1(0.42147248, 0.50576827) is locally asymptotically.
The initial value is (0.5, 0.2). (c)-(d): Time series of x(t), y(t) and phase portrait of model (2.1) with
τ2 = 1.5 and τ1 = 1.15 > τ40 = 1.08245692. The positive equilibrium E1 is unstable and the orbit
from the initial value (0.5, 0.2) located in a sufficiently small neighborhood of E1 converges to a periodic
solution.

keep the last 1000 points for each τ1.
In the following, we will continue to use the numerical simulations to investigate

the influence of constant-yield prey harvesting h on the system dynamics. In fact,
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Figure 10. (a): The effect of τ1 on the period T2 with τ2 = 1.5 ∈ [0, τ20 ). The stars stand for
τ1 = 1.15, 1.3, 1.5, 1.8, 2 > τ40 = 1.08245692, respectively. (b): Phase portraits without showing the
transient of model (2.1) with τ2 = 1.5 ∈ [0, τ20 ) and τ1 = 1.15, 1.3, 1.5, 1.8, 2 > τ40 = 1.08245692,
respectively. The parameters are the same as Fig. 9.
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Figure 11. (a): The relationship between the location of the positive equilibrium E1(x
∗, y∗) and h. The

blue and red stars stand for ( 1
80 , 0.42147248) and ( 1

80 , 0.50576827), respectively. (b): The relationship
between the critical value τ40 and h. The red star is ( 1

80 , 1.08245692).

the delays do not affect the number of equilibria for the model (2.1). The influence
of the harvesting term h on the number of the equilibrium states has been studied
in detail by the authors in the reference [25]. An obvious question is how does dy-
namics change as h is changed with time delays? Fig. 11(a) shows how the location
of the positive equilibrium E1(x

∗, y∗) changes when the harvesting term h is varied.
We can find that the x∗ and y∗ of the equilibrium E1 are monotonically decreasing,
that is, the equilibrium E1 will move to the lower left as h increases. Moreover, the
equilibrium E1 exists when h is a free parameter in the range 0 ≤ h ≤ 0.091449
with a = 0.5, δ = 3

5 and β = 1
2 fixed. Actually, this is also the range of harvest-

ing h in which the positive equilibria exist. The blue and red stars in Fig. 11(a)
stand for ( 1

80 , 0.42147248) and ( 1
80 , 0.50576827), respectively. That is when h = 1

80 ,
E1(x

∗, y∗) = (0.42147248, 0.50576827) which is used to verify the Theorem 2.4(ii).
The relationship between the critical value τ40 and h is shown in Fig. 11(b).

When 0 ≤ h ≤ hc, where hc ≈ 0.066667, the critical value τ40 is monotonically
decreasing, whereas τ40 is monotonically increasing if hc ≤ h ≤ 0.091449. That is,
the critical value τ40 initially decreases as h increases and increases afterwards. The
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equilibrium E1(x
∗, y∗) of model (2.1) is asymptotically stable where the parameters

h and τ40 are below the curve in the (h, τ40)-plane and model (2.1) will under go a
Hopf bifurcation at the equilibrium E1(x

∗, y∗) where h and τ40 are above the curve.
Therefore, the size of the critical value τ40 can be changed by adjusting the size of
harvesting term h, and vice versa. The star in Fig. 11(b) is ( 1

80 , 1.08245692).

5. Conclusions
The biological resources are mostly harvested for achieving economic interest. How-
ever, the unreasonable exploitation of many natural and biological resources is a
serious problem at present. Compared with the traditional ordinary differential
equations without time delay, the delay differential equation can describe the laws
of evolution of natural and objective things more accurately. In this paper, we
mainly consider the effects of two time delays on a predator-prey model of Holling
and Leslie type with constant-yield prey harvesting. By analyzed the corresponding
characteristic equation of the model, we derive the stability of positive equilibria
and the existence conditions of Hopf bifurcation. On the basis of the normal form
theory and central manifold theorem, some explicit formulas are given for deter-
mining the direction of the Hopf bifurcation and the stability of bifurcated periodic
solutions. And some numerical simulation results are carried out for illustrating
these analyses.

In [25], the authors have discussed the effects of the harvesting term h and the
conditions of Hopf bifurcation of model (2.1) in the absence of time delays. It is
obvious for model (2.1) that the constant-yield harvesting h could lead some dan-
gers in real-life harvesting such as there is no positive equilibria and either prey
or predator will go to extinction for some values of the constant-yield harvesting h
with some other parameters fixed(see Fig.11(a)). The period oscillations discussed
by the authors of [25] arise from the Hopf bifurcation caused by the system param-
eters β and h. Actually, periodic oscillations are often observed in such laboratory
experiments and attributed to time delayed responses [5]. In the present work, we
give the periodic solutions caused by time delays. Based on the ecological meaning
of these results, the presence of two time delays can make a perturbation of dy-
namics of predator and prey. Biologically, the bifurcation parameters τ1 and τ2 in
the model (2.1) plays a major role of the measure of the biological maturation time
of prey and the gestation time of predator, respectively. If the maturation time of
prey τ1 or(and) the gestation time of predator τ2 is small enough, i.e., less than
their corresponding critical values, the stability of the positive equilibrium of model
(2.1) is unaffected. As the time delays τ1 or(and) τ2 increases, the stable positive
equilibrium changed at the critical value τk0(k = 1, 2, 3, 4) to a stable or unstable
period solution. According to the relationship between the critical value τ40 and h,
it could provide some suggestions and data supports for the government’s policies,
such as the period of fishing ban, the size of the harvesting. An understanding of
the effects of different time delays in predation system can help us to explain popu-
lation dynamics under different situations and monitor the sensitivity and recovery
of predator populations [1].

As mentioned earlier, periodic oscillation behavior is a ubiquitous natural phe-
nomenon with a wide range of applications, including neurological behavior, cir-
cadian rhythms, chemical reactions, and cell physiology [46]. It was observed in
many naturally occurring nonconservative systems. The growth of some species
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does not agree with the increase described by logistic equation, such as fruit flies,
flour beetles, and other organisms that have complex life cycles involving eggs, lar-
vae, pupae, and adults. In these organisms, the predicted asymptotic approach to
a steady carrying capacity was never observed–instead the populations exhibited
large, persistent fluctuations after an initial period of logistic growth [43]. The
possible causes of these fluctuations include age structure and time-delayed effects
of overcrowding in the population. Some oscillations are intrinsic to the biological
system and are not caused by external environmental changes while others might re-
sult from predator-prey interactions in field populations. For example, the Canada
lynx eats snow-shoe hares and both species show dramatic cyclic oscillations in
density with peaks every 9 to 10 years. This lynx-hare cycle has been interpreted
as an example of an intrinsic predator-prey oscillation, but more recent experimen-
tal studies have suggested that both food shortage and predation are involved in
generating cycles. Lynx depend on snow-shoe hares as primary prey, and are thus
food-limited, whereas hares are affected by both food limitations and predators.
The time delay inherent in the numerical response of lynx to hare numbers induces
the density cycle of hares [28]. Therefore, the periodic oscillation can not only show
the evolutionary changes of relationship between the predator and prey, but also
act as a means of self-regulation of ecosystem.
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