GLOBAL WEAK SOLUTION TO COMPRESSIBLE NAVIER-STIKES-LANDAU-LIFSHITZ-MAXWELL EQUATIONS FOR QUANTUM FLUIDS IN DIMENSION THREE

Fengxia Liu^{1,†} and Boling Guo²

Abstract This paper is concerned with viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell equations in dimension three. We use Faedo-Galerkin method to prove the local existence of weak solution, then combine the a priori estimates to obtain the global existence of solution.

Keywords Viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system, weak solution, global solution, Faedo-Galerkin method.

MSC(2010) 35A01, 35D30, 35Q30.

1. Introduction and main results

In this paper, we study the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system on $\Omega \times (0,T)$

$$\partial_t \rho + \operatorname{div}(\rho u) = \nu_1 \triangle \rho, \tag{1.1}$$

$$\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \frac{\nabla P}{m} = -\frac{\rho e}{m} (E + u \times H) + \frac{\mu \hbar^2}{2m^2} \rho \nabla (\frac{\triangle \sqrt{\rho}}{\sqrt{\rho}}) + \nu_2 \triangle (\rho u)$$

$$-\frac{\rho u}{\tau} - \lambda \nabla \cdot (\nabla d \odot \nabla d - \frac{|\nabla d|^2}{2}I), \tag{1.2}$$

$$d_t + u \cdot \nabla d + \alpha_1 d \times (d \times (\triangle d + H)) = \alpha_2 d \times (\triangle d + H), \tag{1.3}$$

$$E_t - \nabla \times H = e\rho u, \tag{1.4}$$

$$H_t + \nabla \times E = -\lambda m(d_t + u \cdot \nabla d), \tag{1.5}$$

$$\nabla \cdot H = 0, \tag{1.6}$$

$$|d(x,t)| = 1 \tag{1.7}$$

with initial data

$$\rho|_{t=0} = \rho_0(x), \ u|_{t=0} = u_0(x), \ E|_{t=0} = E_0(x), \ d|_{t=0} = d_0(x), \ H|_{t=0} = H_0(x)$$
 (1.8)

 $^{^\}dagger \text{The corresponding author.}$ Email address: liufengxia 91@126.com(F. Liu)

¹Engineering Research Center of Ministry of Education for Financial Computing and Digital Engineering, Renmin University of China, Beijing, 100872, China

²Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

which satisfy that

$$\rho_0(x) > 0, \quad x \in \Omega,
|d_0(x)| = 1, \ d_0(x) \in H^2(\Omega), \ \inf_x d_0^2 > 0,
E_0(x), H_0(x) \in L^2(\Omega).$$
(1.9)

And the domain Ω we consider belongs to \mathbb{R}^3 and is 2D-periodic. We also assume that $\rho_0(x), u_0(x), d_0(x), E_0(x), H_0(x)$ are 2D-periodic, D>0 is a constant. Here we consider isentropic case $P=\rho^\gamma(\gamma>3)$ and P denotes the pressure. The unknown ρ represents the mass density, $u(x,t):\Omega\times(0,T)$ represents the velocity field of the flow. E and H represent the electric field and the magnetic field respectively. $d(x,t):\Omega\times(0,T)\to S^2$ is a unit vector that represents the macroscopic molecular orientation of the liquid crystal material. The physic constants m,e,\hbar are positive and represent the mass, the charge of the particle and Planck constant respectively. ν_1,ν_2 and μ are positive viscosity constants. λ represents the competition between kinetic energy and potential energy, τ denotes the relaxation time of electron. $\alpha_1 \geqslant 0$ is Gilbert damping coefficient and α_2 is a positive constant. $u\otimes u$ is the matrix with components $u_iu_j, \nabla d \odot \nabla d$ denotes the 3×3 matrix with components $\nabla_i d \cdot \nabla_j d$ for $1 \leqslant i,j \leqslant 3$, "×" denotes the vector outer product.

Notice that if d = E = H = 0, system (1.1)-(1.6) is called quantum hydrodynamic model(QHD). Jüngle [13] obtained the existence of global-in-time solutions to the multidimensional equations (1.1)-(1.2) with a strictly positive particle density. Quantum hydrodynamic models are used to describe superfluids [14], quantum semiconductors Loffredo etc [2] and so on. We can also refer to [5,6] for more details. There are many studies for the QHD system, one can see [4,15].

If the system $\mu = \nu = 0$, d is a constant vector, it becomes the Navier-Stokes-Landau-Lifshitz-Maxwell(NSLLM) system, we can see [7,8] and their references for more details about the Landau-Lifshitz equations.

The existence of global-in-time solutions to the two-dimensional equations (1.1)-(1.7) has been shown in Guo etc [10]. To our knowledge there are no results for the three dimensional situation. We will give such a result in this paper. Inspired by Jüngel [13] and Guo etc [10], the key is to deal with the maganetization field in the momentum equation.

Theorem 1.1 (Global existence). For any T > 0, $P(\rho) = A\rho^{\gamma}(\gamma > 3)$. Under the condition of (1.8) and that $E(\rho_0, u_0, d_0, E_0, H_0)$ is finite, where $E(\rho, u, d, E, H)$ will be defined in (4.2). There exists a weak solution (ρ, u, d, E, H) to (1.1)-(1.7) with the regularity

$$\sqrt{\rho} \in L^{\infty}([0,T]; H^1(\Omega)) \cap L^2([0,T]; H^2(\Omega)), \quad \rho \geqslant 0,$$
 (1.10)

$$\rho \in H^1([0,T]; L^2(\Omega)) \cap L^{\infty}([0,T]; L^{\gamma}(\Omega)) \cap L^2([0,T]; W^{1,3}(\Omega)), \tag{1.11}$$

$$\sqrt{\rho}u \in L^{\infty}([0,T]; L^{2}(\Omega)), \quad \rho u \in L^{2}([0,T]; W^{1,\frac{3}{2}}(\Omega)),$$
(1.12)

$$\sqrt{\rho}\nabla u \in L^2([0,T];L^2(\Omega)),\tag{1.13}$$

$$E \in L^{\infty}([0,T]; L^{2}(\Omega)), \quad H \in L^{\infty}([0,T]; L^{2}(\Omega)),$$
 (1.14)

$$d \in L^{2}([0,T]; H^{2}(\Omega)) \cap L^{\infty}([0,T]; L^{2}(\Omega)), \tag{1.15}$$

$$\nabla d \in L^4([0,T]; L^4(\Omega)), \tag{1.16}$$

satisfying (1.1) pointwise and for all smooth functions satisfying $\phi(\cdot,T)=0$,

$$-\int_{\Omega} \rho_0^2 u_0 \phi(\cdot, 0) dx$$

$$= \int_{0}^{T} \int_{\Omega} \left(\rho^2 u \cdot \phi_t - \rho^2 \operatorname{div}(u) u \cdot \phi - \nu_2(\rho u \otimes \nabla \rho) : \nabla \phi \right)$$

$$+ \rho u \otimes \rho u : \nabla \phi + \frac{\gamma}{\gamma + 1} \rho^{\gamma + 1} \operatorname{div}\phi + \frac{\rho e}{m} (E + u \times H) \cdot \rho \phi \qquad (1.17)$$

$$- \frac{\mu \hbar^2}{2m^2} \triangle \sqrt{\rho} (2\sqrt{\rho} \nabla \rho \cdot \phi + \rho^{\frac{3}{2}} \operatorname{div}\phi) - \nu_2 \nabla(\rho u) : (\rho \nabla \phi + 2\nabla \rho \otimes \phi)$$

$$+ \lambda (\nabla d \odot \nabla d - \frac{|\nabla d|^2}{2} I) \cdot \nabla(\rho \phi) dx dt,$$

$$- \int_{\Omega} d_0 \rho \phi(\cdot, 0) dx = \int_{0}^{T} \int_{\Omega} \left(d\rho \phi_t + \rho u \cdot \nabla d \cdot \phi + \alpha_1 d \times (d \times (\triangle d + H)) \cdot \rho \phi \right)$$

$$- \alpha_2 d \times (\triangle d + H) \cdot \rho \phi dx dt,$$

$$- \int_{\Omega} E_0 \phi(\cdot, 0) dx = \int_{0}^{T} \int_{\Omega} \left(E\phi_t - H \cdot (\nabla \times \phi) - e\rho u \cdot \phi \right) dx dt,$$

$$- \int_{\Omega} (H_0 + \lambda m d_0) \phi(\cdot, 0) dx = \int_{0}^{T} \int_{\Omega} \left((H + \lambda m d) \cdot \phi_t + E \cdot (\nabla \times \phi) + \lambda m (u \cdot \nabla d) \cdot \phi \right) dx dt.$$

$$(1.20)$$

Similar to Jüngel [13], to deal with the lack of compactness, we need to get the estimates of u. We first add the right hand side of (1.2) a viscosity term $\delta \triangle u - \delta u$:

$$\partial_t \rho + \operatorname{div}(\rho u) = \nu_1 \triangle \rho, \tag{1.21}$$

$$\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \frac{\nabla P}{m} = -\frac{\rho e}{m} (E + u \times H) + \frac{\mu \hbar^2}{2m^2} \rho \nabla (\frac{\triangle \rho}{\sqrt{\rho}}) + \nu_2 \triangle (\rho u)$$

$$-\frac{\rho u}{\tau} - \lambda \nabla \cdot (\nabla d \odot \nabla d - \frac{|\nabla d|^2}{2}I) + \delta \triangle u - \delta u, \tag{1.22}$$

$$d_t + u \cdot \nabla d + \alpha_1 d \times (d \times (\triangle d + H)) = \alpha_2 d \times (\triangle d + H), \tag{1.23}$$

$$E_t - \nabla \times H = e\rho u,\tag{1.24}$$

$$H_t + \nabla \times E = -\lambda m(d_t + u \cdot \nabla d), \tag{1.25}$$

$$\nabla \cdot H = 0, \tag{1.26}$$

$$|d(x,t)| = 1. (1.27)$$

Then we will let $\delta \to 0$. Finally, we obtain the desired weak solution to the original system (1.1)-(1.7).

This paper is organised as following. In section 2, we denote some preliminaries for this paper. Then we show the local existence solution to (1.1)-(1.7) in section 3. In section 4, we prove the global existence solution to (1.21)-(1.27). After some a priori estimates in section 5, we obtain the solution to (1.1)-(1.7) letting $n \to 0$ and $\delta \to 0$ respectively.

2. Preliminaries

C is a constant and may assume different values in different formulates.

The product A: B means summation over both indices of matrices A and B. $L^p([0,T],L^q(\Omega))$ is the space whose element is the p-integrable respect to time variable and q-integrable respect to space variable function.

Denote $H^m(\Omega), m=1,2,\cdots$ being the Sobolev space of complex-valued functions with the norm

$$||u||_{H^m} = \left(\int_{\Omega} \sum_{|\alpha| \le m} |D^{\alpha} u|^2 dx\right)^{\frac{1}{2}},$$

 $(H^m)^*$ is the dual space of H^m .

" \hookrightarrow " denotes compact imbedding, " \hookrightarrow " denotes continuous imbedding.

Lemma 2.1 (The Gagliardo-Nirenberg inequality, [16]). Assume that $u \in L^q(\Omega)$, $D^m u \in L^r(\Omega)$, $\Omega \subseteq \mathbb{R}^n$, $1 \leq q, r \leq \infty$, $0 \leq j \leq m$. Let p and α satisfy

$$\frac{1}{p} = \frac{j}{n} + \alpha (\frac{1}{r} - \frac{m}{n}) + (1 - \alpha) \frac{1}{q}; \quad \frac{j}{m} \leqslant \alpha \leqslant 1.$$

Then

$$||D^{j}u||_{p} \leqslant C(p, m, j, q, r)||D^{m}u||_{r}^{\alpha}||u||_{q}^{1-\alpha}$$
(2.1)

where C(p, m, j, q, r) is a positive constant.

Lemma 2.2 (The Gronwall's inequality, [1]). Let c be a constant, and b(t), u(t) be nonnegative continuous functions in the interval [0,T] satisfying

$$u(t) \leqslant c + \int_0^t b(\tau)u(\tau)d\tau, \quad t \in [0, T].$$

Then u(t) satisfies the estimate

$$u(t) \leqslant c \exp\left(\int_0^t b(\tau)d\tau\right), \quad t \in [0, T].$$
 (2.2)

Lemma 2.3 (Aubin-Lions Lemma, [17]). Assume $X \hookrightarrow \hookrightarrow E \hookrightarrow Y$ are Banach spaces. Then the following imbeddings are compact, if $1 < q \le \infty$ and $1 \le p < q$

$$L^{q}(0,T;E) \cap L^{1}(0,T;X) \cap \{\varphi : \frac{\partial \varphi}{\partial t} \in L^{1}(0,T;Y)\} \hookrightarrow \hookrightarrow L^{p}(0,T;E). \tag{2.3}$$

3. Local Existence of Solution

In this section we will show the local existence of solution to the viscosity system (1.21)-(1.27) by Faedo-Galerkin method. Let T>0, and w_j be an orthonormal basis of $L^2(\Omega)$ which is also an orthogonal basis of $H^1(\Omega)$, with periodicity $w_n(x-De_i)=w_n(x+De_i)$ (i=1,2,3). Consider the space $X_n=\mathrm{span}\{w_1,\cdots,w_n\}, n\in\mathbb{N}$.

Denote the approximate solution of the problem (1.21)-(1.27) as following form

$$u_m^{\delta}(x,t) = \sum_{s=1}^m \alpha_{sm}(t)w_s(x), \quad d_m^{\delta}(x,t) = \sum_{s=1}^m \beta_{sm}(t)w_s(x),$$

$$E_m^{\delta}(x,t) = \sum_{s=1}^m \gamma_{sm}(t) w_s(x), \quad H_m^{\delta}(x,t) = \sum_{s=1}^m \zeta_{sm}(t) w_s(x),$$

where $\alpha_{sm}(t), \beta_{sm}(t), \gamma_{sm}(t), \zeta_{sm}(t) (t \in \mathbb{R}^+) (s = 1, 2, \dots, m; m = 1, 2, \dots)$ are 3-dimensional vector valued functions.

We introduce the operator $S_1: C^0([0,T];X_n) \to C^0([0,T];C^3(\Omega))$ by $S_1(u) = \rho$. Since the equation for ρ is linear, S_1 is Lipshitz continuous:

$$||S_1(u_1) - S_1(u_2)||_{C^0([0,T];C^k(\Omega))} \le C(n,k)||u_1 - u_2||_{C^0([0,T];L^2(\Omega))}. \tag{3.1}$$

Next we wish to solve (1.21)-(1.27) on the space X_n . For $S_1(u) = \rho$, we are looking for functions $(u_n^{\delta}, d_n^{\delta}, E_n^{\delta}, H_n^{\delta}) \in (C^0([0, T]; X_n)^4)$ such that

$$-\int_{\Omega} \rho_{0} u_{0} \phi(\cdot, 0) dx = \int_{0}^{T} \int_{\Omega} \left(\rho u_{n}^{\delta} \cdot \phi_{t} + \rho(u \otimes u_{n}^{\delta}) : \nabla \phi + \frac{P(\rho) \operatorname{div}(\phi)}{m} \right)$$

$$-\frac{\rho e}{m} (E + u_{n}^{\delta} \times H) \cdot \phi - \frac{\mu \hbar^{2}}{2m^{2}} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \operatorname{div}(\rho \phi) - \nu_{2} \nabla(\rho u_{n}^{\delta}) : \nabla \phi$$

$$-\frac{\rho u_{n}^{\delta}}{\tau} \phi + \lambda (\nabla d \odot \nabla d - \frac{|\nabla d|^{2}}{2} I) \cdot \nabla \phi$$

$$-\delta (\nabla u_{n}^{\delta} : \nabla \phi + u_{n}^{\delta} \cdot \phi) dx dt,$$
(3.2)

$$-\int_{\Omega} d_0 \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} \left(d_n^{\delta} \phi_t + u_n^{\delta} \cdot \nabla d_n^{\delta} \cdot \phi + \alpha_1 d_n^{\delta} \times (d_n^{\delta} \times (\triangle d_n^{\delta} + H_n^{\delta})) \cdot \phi \right.$$
$$\left. - \alpha_2 d_n^{\delta} \times (\triangle d_n^{\delta} + H_n^{\delta}) \cdot \rho \phi \right) dx dt, \tag{3.3}$$

$$-\int_{\Omega} E_0 \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} \left(E_n^{\delta} \phi_t - H_n^{\delta} \cdot (\nabla \times \phi) - e\rho u_n^{\delta} \cdot \phi \right) dx dt, \tag{3.4}$$

$$-\int_{\Omega} (H_0 + \lambda m d_0) \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} \left((H_n^{\delta} + \lambda m d_n^{\delta}) \cdot \phi_t + E_n^{\delta} \cdot (\nabla \times \phi) + \lambda_m (u_n^{\delta} \cdot \nabla d_n^{\delta}) \cdot \phi \right) dx dt$$

$$(3.5)$$

for all $\phi \in (C^1([0,T];X_n))$ such that $\phi(\cdot,T)=0$. We will apply Banach fixed point theorem to prove the local-in-time existence of solution, so we add the regularization term $\delta(\triangle u_n^\delta - u_n^\delta)$. The regularization yields the H^1 regularity of u_n^δ needed to conclude the global existence of solution.

For some functions $\alpha_{sm}(t)$, and the norm of u in $C^0([0,T];X_n)$ can be formulated as

$$||u||_{C^0([0,T];X_n)} = \max_{t \in [0,T]} \sum_{m=1}^n \sum_{s=1}^m |\alpha_{sm}(t)|.$$

Then u belongs to $C^0([0,T];C^k(\Omega))$ for any $k \in \mathbb{N}$, and there exists a constant C depending on k such that

$$||u||_{C^0([0,T]:C^k(\Omega))} \le C||u||_{C^0([0,T]:L^2(\Omega))}. \tag{3.6}$$

The approximate system is defined as follows. Let $\rho \in C^1([0,T];C^3(\Omega))$ be the classical solution to

$$\partial_t \rho + \operatorname{div}(\rho u) = \nu \triangle \rho, \quad \rho|_{t=0} = \rho_0(x).$$
 (3.7)

The maximum principle provides the lower and upper bounds (Jiang etc [12])

$$\inf_{x \in \Omega} \rho_0(x) \exp(-\int_0^t \|\mathrm{div} u\|_{L^{\infty}(\Omega)} ds) \leqslant \rho(x) \leqslant \sup_{x \in \Omega} \rho_0(x) \exp(\int_0^t \|\mathrm{div} u\|_{L^{\infty}(\Omega)} ds).$$

Since $\rho_0(x) > \bar{\rho} > 0$, $\rho(x)$ is strictly positive. In view of (3.6), for $||u||_{C^0([0,T];L^2(\Omega))} \le C$, there exist constants $\rho_1(C)$ and $\rho_2(C)$ such that

$$0 < \rho_1(C) \leqslant \rho(x,t) \leqslant \rho_2(C)$$
.

To solve (3.2)-(3.5), we follow Feireisl [1] and introduce the following family of operators, given a function $\varrho \in L^1(\Omega)$ with $\varrho \geqslant \bar{\varrho} > 0$:

$$M[\varrho]: X_n \to X_n^*, < M[\varrho]u, w > = \int_{\Omega} \varrho u \cdot w, \quad u, w \in X_n.$$

These operators are symmetric and positive definite with the smallest eigenvalue

$$\int_{\|u\|_{L^2(\Omega)}=1} \langle M[\varrho]u, u \rangle = \int_{\|u\|_{L^2(\Omega)}=1} \varrho |u|^2 dx \geqslant \inf_{x \in \Omega} \varrho(x) \geqslant \bar{\varrho}.$$

Hence since X_n is finite-dimensional, the operators are invertible with

$$||M^{-1}[\varrho]||_{L(X_n^*, X_n)} \le \rho^{-1},$$

where $L(X_n^*, X_n)$ is the set of bounded linear mappings from X_n^* to X_n . Moreover (see Feireisl [1]), M^{-1} is Lipschitz continuous in the sense

$$||M^{-1}[\varrho_1] - M^{-1}[\varrho_2]||_{L(X_n^*, X_n)} \le C(n, \varrho)||_{\varrho_1} - \varrho_2||_{L^1(\Omega)}$$
(3.8)

for all $\varrho_1, \, \varrho_2 \in L^1(\Omega)$ such that $\varrho_1, \, \varrho_2 \geqslant \bar{\rho} > 0$.

Now the integral equation (3.2) can be rephrased as an ordinary differential equation on the finite-dimensional space X_n ,

$$\frac{d}{dt}(M[\rho(t)]u_n^{\delta}(t)) = N[u, d, H, E, u_n^{\delta}(t)], \quad M[\rho_0]u_n^{\delta}(0) = M[\rho_0]u_0, \tag{3.9}$$

when $\rho = S_1(u)$

$$\begin{split} &< N(u,d,E,H,u_n^\delta), \phi> \\ &= \int_0^T \int_\Omega \left(\rho(u \otimes u_n^\delta) : \nabla \phi + \frac{P(\rho) \mathrm{div}(\phi)}{m} \right. \\ &\quad - \frac{\rho e}{m} (E + u_n^\delta \times H) \cdot \phi - \frac{\mu \hbar^2}{2m^2} \frac{\triangle \sqrt{\rho}}{\sqrt{\rho}} \mathrm{div}(\rho \phi) - \nu_2 \nabla (\rho u_n^\delta) : \nabla \phi \\ &\quad - \frac{\rho u_n^\delta}{\tau} \phi + \lambda \big(\nabla d \odot \nabla d - \frac{|\nabla d|^2}{2} I \big) \cdot \nabla \phi - \delta \big(\nabla u_n^\delta : \nabla \phi + u_n^\delta \cdot \phi \big) \big) dx dt. \end{split}$$

For operator $N(u, d, E, H, \cdot): X_n \to X_n^*$ is continuous in time. Standard theory for systems of ordinary differential equations then provides the existence of a unique classical solution to (3.9), that is, for a given $u \in C^0([0,T];X_n)$, there exists a unique solution $u_n \in C^1([0,T];X_n)$ to (3.2).

Integrating (3.9) over (0,t) yields the following nonlinear equation:

$$u_n^{\delta}(t) = M^{-1} S_1(u_n^{\delta})(t) (M[\rho_0] u_0 + \int_0^t N[u_n^{\delta}, u_n^{\delta}(s)] ds).$$
 (3.10)

Since the operators S_1 and M are Lipschitz type, (3.10) can be solved by evoking the fixed point theorem of Banach on a short time interval [0,T'], where $T' \leq T$, in the space $C^0([0,T];X_n)$. In fact, we have even $u_n^{\delta} \in C^1([0,T'];X_n)$. Then we can solve system (3.3)-(3.5). Thus, there exists a unique local-in-time solution $(\rho_n^{\delta}, u_n^{\delta}, d_n^{\delta}, E_n^{\delta}, H_n^{\delta})$ to (1.21)-(1.27).

4. Global Existence solution to (1.21)-(1.27)

In this section, we will give the a-priori estimates. Using these estimates, we can show that the local-in-time solution $(\rho_n^{\delta}, u_n^{\delta}, d_n^{\delta}, E_n^{\delta}, H_n^{\delta})$ which are proved in Section 3 can be extended globally. For simplicity, we omit the subscript n and superscript δ in this section.

Theorem 4.1. Assume the conditions of Theorem 1.1 to be hold. Then we have the following energy equality:

$$\frac{d}{dt}E(\rho, u, d, E, H) + \int_{\Omega} \left(\frac{\nu_1}{m}\tilde{H}''(\rho)|\nabla\rho|^2 + \frac{\mu\nu_1\hbar^2}{4m^2}\rho|\nabla^2\log\rho|^2 + \nu_2\rho|\nabla u|^2 - \frac{1}{\tau}\rho|u|^2 + \lambda\alpha_1|d\times(\triangle d + H)|^2 + \delta|\nabla u|^2 + \delta|u|^2\right)dx = 0,$$
(4.1)

where

$$E(\rho, u, d, E, H) = \int_{\Omega} \left(\tilde{H}(\rho) + \frac{\mu \hbar^2}{2m^2} |\nabla \sqrt{\rho}|^2 + \frac{1}{2} \rho |u|^2 + \frac{\lambda}{2} |\nabla d|^2 + \frac{1}{2m} |E|^2 + \frac{1}{2m} |H|^2 \right) dx,$$

$$here, \ \tilde{H}(\rho) = \frac{A\rho^{\gamma}}{\gamma - 1} \ for \ \gamma > 3.$$
(4.2)

Proof. Multiplying (1.21) by $\frac{1}{m}\tilde{H}'(\rho) - \frac{|u|^2}{2} - \frac{\mu\hbar^2}{2m^2}\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}$, and integrating by parts in Ω , we have

$$\frac{1}{m}\frac{d}{dt}\int_{\Omega}\tilde{H}(\rho)dx - \int_{\Omega}\rho_{t}\frac{|u|^{2}}{2}dx + \frac{\mu\hbar^{2}}{2m^{2}}\frac{d}{dt}\int_{\Omega}|\nabla\sqrt{\rho}|^{2}dx
+ \frac{1}{m}\int_{\Omega}\operatorname{div}(\rho u)\tilde{H}'(\rho)dx - \int_{\Omega}\operatorname{div}(\rho u)\frac{|u|^{2}}{2}dx - \int_{\Omega}\operatorname{div}(\rho u)\frac{\mu\hbar^{2}}{2m^{2}}\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}dx
= -\frac{\nu_{1}}{m}\int_{\Omega}\tilde{H}''(\rho)|\nabla\rho|^{2}dx + \nu_{1}\int_{\Omega}\nabla\rho:\nabla u:udx
- \int_{\Omega}(\frac{\mu\nu_{1}\hbar^{2}}{4m^{2}}\rho|\nabla^{2}\log\rho|^{2} + \delta|\nabla u|^{2} + \delta|u|^{2})dx.$$
(4.3)

Here we have used

$$\begin{split} &\int_{\Omega} \partial_{t} \rho \tilde{H}'(\rho) dx = \frac{d}{dt} \int_{\Omega} \tilde{H}(\rho) dx, \\ &- \int_{\Omega} \partial_{t} \rho \frac{\mu \hbar^{2}}{2m^{2}} \frac{\triangle \sqrt{\rho}}{\sqrt{\rho}} dx = -\frac{\mu \hbar^{2}}{m^{2}} \int_{\Omega} \partial_{t} \sqrt{\rho} \triangle \sqrt{\rho} dx = \frac{\mu \hbar^{2}}{2m^{2}} \partial_{t} \int_{\Omega} |\nabla \sqrt{\rho}|^{2} dx, \\ &\int_{\Omega} \nu_{1} \triangle \rho \frac{1}{m} \tilde{H}'(\rho) dx = -\frac{\nu_{1}}{m} \int_{\Omega} \nabla \rho \nabla \tilde{H}'(\rho) dx = -\frac{\nu_{1}}{m} \int_{\Omega} \tilde{H}''(\rho) |\nabla \rho|^{2} dx, \\ &- \int_{\Omega} \nu_{1} \triangle \rho \frac{|u|^{2}}{2} dx = \nu_{1} \int_{\Omega} \nabla \rho : \nabla u : u dx, \\ &\int_{\Omega} \frac{\triangle \sqrt{\rho}}{\sqrt{\rho}} \triangle \rho dx = -\int_{\Omega} \rho \nabla \log \rho \nabla \left(\frac{\triangle \sqrt{\rho}}{\sqrt{\rho}}\right) dx = \frac{1}{2} \int_{\Omega} \rho |\nabla^{2} \log \rho|^{2} dx. \end{split}$$

Then multiplying (1.22) by u, and integrating both sides of it by parts respec-

tively in Ω , we have

$$\int_{\Omega} [\partial_{t}\rho|u|^{2} + \rho\partial_{t}(\frac{|u|^{2}}{2}) + \frac{1}{2}\nabla \cdot (\rho u)|u|^{2}]dx - \frac{1}{m} \int_{\Omega} \tilde{H}'(\rho)\operatorname{div}(\rho u)dx
= -\int_{\Omega} \frac{\rho e}{m} E \cdot u dx - \int_{\Omega} \frac{\mu \hbar^{2}}{2m^{2}} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \operatorname{div}(\rho u)dx - \int_{\Omega} \nu_{2} \nabla \rho : \nabla u : u dx
- \int_{\Omega} \nu_{2}\rho|\nabla u|^{2}dx - \int_{\Omega} \frac{1}{\tau}\rho|u|^{2}dx + \lambda \int_{\Omega} \nabla d \odot \nabla d : \nabla u dx - \int_{\Omega} \frac{|\nabla d|^{2}}{2} \nabla u dx.$$
(4.4)

Here, we have used

$$\begin{split} &\int_{\Omega} (\partial_{t}(\rho u) \cdot u + \operatorname{div}(\rho u \otimes u) \cdot u) dx \\ &= \int_{\Omega} [\partial_{t}\rho |u|^{2} + \rho \partial_{t}(\frac{|u|^{2}}{2}) + \nabla \cdot (\rho u)|u|^{2} + \rho u \nabla (\frac{|u|^{2}}{2})] dx \\ &= \int_{\Omega} [\partial_{t}\rho |u|^{2} + \rho \partial_{t}(\frac{|u|^{2}}{2}) + \frac{1}{2}\nabla \cdot (\rho u)|u|^{2}] dx, \\ &\int_{\Omega} \frac{\nabla P}{m} \cdot u dx = \frac{1}{m} \int_{\Omega} \nabla \tilde{H}'(\rho) \rho u dx = -\frac{1}{m} \int_{\Omega} \tilde{H}'(\rho) \operatorname{div}(\rho u) dx, \\ &- \int_{\Omega} \frac{\rho e}{m} u \times H \cdot u dx = 0, \\ &\int_{\Omega} \frac{\mu \hbar^{2}}{2m^{2}} \rho \nabla (\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}) \cdot u dx = -\int_{\Omega} \frac{\mu \hbar^{2}}{2m^{2}} (\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}) \operatorname{div}(\rho u) dx, \\ &\int_{\Omega} \nu_{2} \Delta(\rho u) \cdot u dx = -\int_{\Omega} \nu_{2} \nabla (\rho u) \cdot \nabla u dx = -\int_{\Omega} \nu_{2} \nabla \rho : \nabla u : u dx - \int_{\Omega} \nu_{2} \rho |\nabla u|^{2} dx, \\ &- \lambda \int_{\Omega} \nabla \cdot (\nabla d \odot \nabla d - \frac{|\nabla d|^{2}}{2} I) \cdot u dx = \lambda \int_{\Omega} \nabla d \odot \nabla d : \nabla u dx - \lambda \int_{\Omega} \frac{|\nabla d|^{2}}{2} \nabla u dx. \end{split}$$

Multiplying (1.23) by $\triangle d + H$, integrating both sides by parts respectively in Ω , we get

$$-\frac{d}{dt} \int_{\Omega} \frac{1}{2} |\nabla d|^2 dx - \int_{\Omega} \nabla d \odot \nabla d : \nabla u dx + \int_{\Omega} \frac{|\nabla d|^2}{2} \nabla u dx + \int_{\Omega} d_t H dx + \int_{\Omega} u \cdot \nabla d \cdot H dx - \alpha_1 \int_{\Omega} |d \times (\triangle d + H)|^2 dx = 0,$$

$$(4.5)$$

here we use the following computation:

$$\begin{split} \int_{\Omega} d_t \cdot \triangle ddx &= -\frac{d}{dt} \int_{\Omega} \frac{1}{2} |\nabla d|^2 dx, \\ \int_{\Omega} (u \cdot \nabla d) \cdot \triangle ddx &= \int_{\Omega} d_{jj} u^i d_i dx = \int_{\Omega} [(d_j u^i d_i)_j - d_i d_j u^i_j - u^i (\frac{|\nabla d|^2}{2})_i] dx \\ &= -\int_{\Omega} [d_i d_j u^i_j + u^i_i (\frac{|\nabla d|^2}{2})] dx \\ &= -\int_{\Omega} \nabla d \odot \nabla d : \nabla u dx + \int_{\Omega} \frac{|\nabla d|^2}{2} \nabla u dx, \end{split}$$

$$\alpha_1 \int_{\Omega} d \times (d \times (\triangle d + H)) \cdot (\triangle d + H) dx = -\alpha_1 \int_{\Omega} |d \times (\triangle d + H)|^2 dx,$$

$$\alpha_2 \int_{\Omega} d \times (\triangle d + H) \cdot (\triangle d + H) dx = 0.$$

Multiplying (1.24) by $\frac{E}{m}$, integrating by parts in Ω , we have

$$\frac{1}{2m}\frac{d}{dt}\int_{\Omega}|E|^{2}dx-\int_{\Omega}\nabla\times H\cdot\frac{E}{m}dx=\int_{\Omega}e\rho u\cdot\frac{E}{m}dx. \tag{4.6}$$

Multiplying (1.25) by $\frac{H}{m}$, integrating by parts in Ω , we have

$$\frac{1}{2m}\frac{d}{dt}\int_{\Omega}|H|^2dx - \int_{\Omega}\nabla\times E\cdot\frac{H}{m}dx = -\int_{\Omega}\beta d_t\cdot\frac{H}{m}dx - \int_{\Omega}\beta u\cdot\nabla d\cdot\frac{H}{m}dx. \quad (4.7)$$

Notice the fact that

$$\int_{\Omega} \nabla \times E \cdot \frac{H}{m} dx = \int_{\Omega} \nabla \times H \cdot \frac{E}{m} dx.$$

From (4.3)-(4.7) we can get

$$\frac{d}{dt} \int_{\Omega} (\tilde{H}(\rho) + \frac{\mu \hbar^{2}}{2m^{2}} |\nabla \sqrt{\rho}|^{2} + \frac{1}{2}\rho |u|^{2} + \frac{\lambda}{2} |\nabla d|^{2} + \frac{1}{2m} |E|^{2} + \frac{1}{2m} |H|^{2}) dx
+ \frac{\nu_{1}}{m} \int_{\Omega} \tilde{H}''(\rho) |\nabla \rho|^{2} dx + \nu_{2} \int_{\Omega} \rho |\nabla u|^{2} dx + \int_{\Omega} \frac{\mu \nu_{1} \hbar^{2}}{4m^{2}} \rho |\nabla^{2} \log \rho|^{2} dx
+ \int_{\Omega} (\frac{1}{\tau} \rho |u|^{2} + \lambda \alpha_{1} |d \times (\Delta d + H)|^{2} + \delta |\nabla u|^{2} + \delta |u|^{2}) dx = 0.$$
(4.8)

Combining Theorem 4.1 with Gronwall's inequality, we can get the following estimates:

5. A priori estimates.

Lemma 5.1.

 $\|\sqrt{\rho}\|_{L^{\infty}([0,T];H^{1}(\Omega))} \leqslant C,$ (5.1)

$$\|\rho\|_{L^{\infty}([0,T];L^{\gamma}(\Omega))} \leqslant C, \tag{5.2}$$

$$\|\sqrt{\rho}u\|_{L^{\infty}([0,T];L^{2}(\Omega))} \leqslant C, \tag{5.3}$$

$$\|\sqrt{\rho}\nabla u\|_{L^2([0,T];L^2(\Omega))} \leqslant C,\tag{5.4}$$

$$||H||_{L^{\infty}([0,T];L^{2}(\Omega))} + ||E||_{L^{\infty}([0,T];L^{2}(\Omega))} \leq C,$$
(5.5)

$$\|\nabla d\|_{L^{\infty}([0,T];L^{2}(\Omega))} \leqslant C, \tag{5.6}$$

$$||d \times (\triangle d + H)||_{L^2([0,T];L^2(\Omega))} \le C,$$
 (5.7)

$$\|\sqrt{\rho}\nabla^2 \log\rho\|_{L^2([0,T];L^2(\Omega))} \leqslant C, \tag{5.8}$$

$$\delta \|u\|_{L^2([0,T];H^1(\Omega))} \leqslant C. \tag{5.9}$$

The energy equality (4.1) and Lemma 5.1 allow us to achieve some estimates.

Lemma 5.2. The following uniform estimate holds for constant C > 0 which is independent of n and δ :

$$\|\sqrt{\rho}\|_{L^{2}([0,T];H^{2}(\Omega))} + \|\sqrt[4]{\rho}\|_{L^{4}([0,T];W^{1,4}(\Omega))} \leqslant C. \tag{5.10}$$

Proof. The lemma follows from the energy estimate in Theorem 4.1. The inequality

$$\int_{\Omega} \rho |\nabla^2 \log \rho|^2 dx \geqslant \kappa_2 \int_{\Omega} |\nabla^2 \sqrt{\rho}|^2 dx, \tag{5.11}$$

with κ_2 , was shown in Jüngel [13], and the inequality

$$\int_{\Omega} \rho |\nabla^2 \log \rho|^2 dx \geqslant \kappa \int_{\Omega} |\nabla \sqrt[4]{\rho}|^4 dx, \quad \kappa > 0$$

was proved in Jüngel [13].

We are able to deduce more regularity from the H^2 bound for $\sqrt{\rho}$.

Lemma 5.3. The following uniform estimates hold for some constants C > 0 that are independent of n and δ :

$$\|\rho u\|_{L^2([0,T]:W^{1,\frac{3}{2}}(\Omega))} \le C,$$
 (5.12)

$$\|\rho\|_{L^2([0,T];W^{2,p}(\Omega))} \leqslant C,\tag{5.13}$$

$$\|\rho\|_{L^{\frac{4\gamma}{3}+1}([0,T]:L^{\frac{4\gamma}{3}+1}(\Omega))} \le C,$$
 (5.14)

where $p = 2\gamma/(\gamma + 1)$.

Proof. Since the space $H^2(\Omega)$ embeds continuously into $L^{\infty}(\Omega)$, $\sqrt{\rho}$ is bounded in $L^2([0,T];L^{\infty}(\Omega))$. Thus, in view of (5.3), $\rho u = \sqrt{\rho}\sqrt{\rho}u$ is uniformly bounded in $L^2([0,T];L^2(\Omega))$. By (5.1) and (5.10), $\nabla\sqrt{\rho}$ is bounded in $L^2([0,T];L^6(\Omega))$ and $\sqrt{\rho}$ is bounded in $L^{\infty}([0,T];L^6(\Omega))$. This, together with (5.4), implies that

$$\nabla(\rho u) = 2\nabla\sqrt{\rho}\otimes(\sqrt{\rho}u) + \sqrt{\rho}\nabla u\sqrt{\rho}$$

is uniformly bounded in $L^2([0,T];L^{3/2}(\Omega))$, proving the first claim.

For the second claim, we observe first that, by the Gagliardo-Nirenberg inequality, with $p = 2\gamma/(\gamma + 1)$ and $\theta = 1/2$,

$$\|\nabla\sqrt{\rho}\|_{L^{4}([0,T];L^{2p}(\Omega))}^{4} \leqslant C \int_{0}^{T} \|\sqrt{\rho}\|_{H^{2}(\Omega)}^{4\theta} \|\sqrt{\rho}\|_{L^{2\gamma}(\Omega)}^{4(1-\theta)} dt$$
$$\leqslant C \|\sqrt{\rho}\|_{L^{\infty}([0,T];L^{2\gamma}(\Omega))}^{4(1-\theta)} \int_{0}^{T} \|\sqrt{\rho}\|_{H^{2}(\Omega)}^{2} dt \leqslant C.$$

Then, $\sqrt{\rho}$ is bounded in $L^4(0,T;W^{1,2p}(\Omega))$. Notice that $\gamma>3$, so 2p>3 gives a uniform bound for $\sqrt{\rho}$ in $L^4(0,T;L^\infty(\Omega))$. The estimate on $\nabla\sqrt{\rho}$ in $L^4(0,T;L^{2p}(\Omega))$ shows that

$$\nabla^2 \rho = 2(\sqrt{\rho} \nabla^2 \sqrt{\rho} + \nabla \sqrt{\rho} \otimes \nabla \sqrt{\rho})$$

is bounded in $L^2(0,T;L^p(\Omega))$, which proves the second claim.

Finally, the Gagliardo-Nirenberg inequality, with $\theta = 3/(4\gamma + 3)$ and $q = 2(4\gamma + 3)/3$,

$$\|\sqrt{\rho}\|_{L^{q}([0,T];L^{q}(\Omega))}^{q} \leqslant C \int_{0}^{T} \|\sqrt{\rho}\|_{H^{2}(\Omega)}^{q\theta} \|\sqrt{\rho}\|_{L^{2\gamma}(\Omega)}^{q(1-\theta)} dt$$

$$\leqslant C \|\rho\|_{L^{\infty}(0,T;L^{\gamma}(\Omega))}^{q(1-\theta)} \int_{0}^{T} \|\sqrt{\rho}\|_{H^{2}(\Omega)}^{2} dt \leqslant C$$

shows that ρ is bounded in $L^{\frac{q}{2}}([0,T];L^{\frac{q}{2}}(\Omega))$. This finishes the proof.

Lemma 5.4. The following uniform estimates hold for s > 5/2:

$$\|\partial_t \rho\|_{L^2([0,T];L^{3/2}(\Omega))} \le C,$$
 (5.15)

$$\|\partial_t(\rho u)\|_{L^{4/3}([0,T];(H^s(\Omega))^*)} \le C.$$
 (5.16)

Further,

$$\|\partial_t \sqrt{\rho}\|_{L^2([0,T];(H^1(\Omega))^*)} \le C.$$
 (5.17)

Proof. By (5.12), (5.13), we find that $\partial_t \rho = -\text{div}(\rho u) + \nu \triangle \rho$ is uniformly bounded in $L^2([0,T]; L^{3/2}(\Omega))$, achieving the first claim.

The sequence $(\rho u \otimes u)$ is bounded in $L^{\infty}([0,T];L^{1}(\Omega))$; hence, $\operatorname{div}(\rho u \otimes u)$ is bounded in $L^{\infty}([0,T];(W^{1,\infty}(\Omega))^{*})$ and, because of the continuous embedding of $H^{s}(\Omega)$ into $W^{1,\infty}(\Omega)$ for s > 5/2, also in $L^{\infty}([0,T];(H^{s}(\Omega))^{*})$. The estimate

$$\begin{split} & \int_{0}^{T} \int_{\Omega} \rho \nabla (\frac{\triangle \sqrt{\rho}}{\sqrt{\rho}}) \cdot \phi dx dt \\ &= - \int_{0}^{T} \int_{\Omega} \triangle \sqrt{\rho} (2 \nabla \sqrt{\rho} \cdot \phi + \sqrt{\rho} \text{div} \phi) dx dt \\ &\leq \|\triangle \sqrt{\rho}\|_{L^{2}([0,T];L^{2}(\Omega))} (2 \|\sqrt{\rho}\|_{L^{4}([0,T];W^{1,3}(\Omega))} \|\phi\|_{L^{4}([0,T];L^{6}(\Omega))} \\ &+ \|\sqrt{\rho}\|_{L^{\infty}([0,T];L^{6}(\Omega))} \|\phi\|_{L^{2}([0,T];W^{1,3}(\Omega))}) \\ &\leq C \|\phi\|_{L^{4}([0,T];W^{1,3}(\Omega))}, \end{split}$$

for all $\phi \in L^4([0,T];W^{1,3}(\Omega))$ proves that $\rho \triangle \sqrt{\rho}/\sqrt{\rho}$ is uniformly bounded in $L^{4/3}([0,T];(W^{1,3}(\Omega))^*) \hookrightarrow L^{4/3}([0,T];(H^s(\Omega))^*)$. By virtue of (ρ^{γ}) is bounded in $L^{4/3}([0,T];L^{4/3}(\Omega)) \hookrightarrow L^{4/3}([0,T];(H^s(\Omega))^*)$. Moreover, by $(5.12) \triangle (\rho u)$ is uniformly bounded in $L^2([0,T];(W^{1,3}(\Omega))^*)$, and $(\delta \triangle u)$ is bounded in $L^2([0,T];(H^1(\Omega))^*)$. Therefore, using Lemma 5.1 and Lemma 5.3 we have

$$(\rho u)_t = -\operatorname{div}(\rho u \otimes u) - \frac{\nabla P(\rho)}{m} - \frac{\rho e}{m} (E + u \times H) + \frac{\mu \hbar^2}{2m^2} \nabla (\frac{\triangle \sqrt{\rho}}{\sqrt{\rho}}) + \nu_2 \triangle (\rho u) - \frac{\rho u}{\tau} - \lambda \nabla \cdot (\nabla d \odot \nabla d - \frac{|\nabla d|^2}{2} I)$$

is uniformly bounded in $L^{4/3}([0,T];(H^s(\Omega))^*)$.

Dividing the mass equation by $\sqrt{\rho}$ gives

$$\partial_t \sqrt{\rho} = -\nabla \sqrt{\rho} \cdot u - \frac{1}{2} \sqrt{\rho} \operatorname{div} u + \nu_1 (\triangle \sqrt{\rho} + 4 |\nabla \sqrt[4]{\rho}|^2)$$
$$= -\operatorname{div} (\sqrt{\rho} u) + \frac{1}{2} \sqrt{\rho} \operatorname{div} u + \nu_1 (\triangle \sqrt{\rho} + 4 |\nabla \sqrt[4]{\rho}|^2).$$

The first term on the right-hand side is bounded in $L^2([0,T];(H^1(\Omega))^*)$ by (5.3), (5.4). By (5.3), (5.4) and (5.9), the remaining terms are uniformly bounded in $L^2([0,T];L^2(\Omega))$. The proof is completed.

Lemma 5.5. The following uniform estimates hold

$$\|\triangle d\|_{L^2([0,T];L^2(\Omega))} \le C,$$
 (5.18)

$$\|\partial_t d\|_{L^2([0,T];H^1(\Omega))\cap L^\infty([0,T];L^2(\Omega))} \le C. \tag{5.19}$$

Proof. On one hand, Gagliardo-Nirenberg inequality and elliptic estimates yield that

$$\|\nabla d\|_{L^4(\Omega)}^4 \leqslant C(\Omega)(\|\nabla^2 d\|_{L^2(\Omega)}^2 \|d\|_{L^{\infty}(\Omega)}^2 + \|d\|_{L^4(\Omega)}^4)$$

and

$$\|\nabla^2 d\|_{L^2(\Omega)} \le C(\Omega)(\varepsilon \|\Delta d\|_{L^2(\Omega)} + \frac{1}{\varepsilon} \|\nabla d\|_{L^2(\Omega)})$$
 for any $d \in H^1(\Omega)$.

Whence,

$$\|\nabla d\|_{L^{4}(\Omega)}^{4} \leqslant C(\Omega)\varepsilon\|\triangle d\|_{L^{2}(\Omega)}^{2} + \frac{C(\Omega)}{\varepsilon}(\|d\|_{L^{\infty}(\Omega)}^{2}\|\nabla d\|_{L^{2}(\Omega)}^{2} + \|d\|_{L^{4}(\Omega)}^{4})$$

$$\leqslant C(\Omega)\varepsilon\|\triangle d\|_{L^{2}(\Omega)}^{2} + \frac{C(\Omega)}{\varepsilon}(\|\nabla d\|_{L^{2}(\Omega)}^{2} + \|d\|_{L^{2}(\Omega)}^{2}).$$

On the other hand, since

$$\begin{split} \int_0^T \int_{\Omega} |\triangle d|^2 dx dt &\leqslant \int_0^T \int_{\Omega} \left(|d \times \triangle d + H|^2 - 2(H \cdot \triangle d) \right. \\ &+ 2(|\nabla d|^2 d)^2 + 2(d \cdot \triangle d)(d \cdot H) - |d \times H|^2 \right) dx dt \\ &\leqslant C \varepsilon \int_0^T \int_{\Omega} |\triangle d|^2 dx dt + \frac{C}{\varepsilon} \int_0^T \|\nabla d\|_{L^4(\Omega)}^4 dt + C. \end{split}$$

Combining above estimates, we have

$$\int_0^T \int_{\Omega} |\triangle d|^2 dx dt \leqslant C\varepsilon \int_0^T \|\triangle d\|_{L^2(\Omega)}^2 + \frac{C}{\varepsilon} \int_0^T (\|\nabla d\|_{L^2(\Omega)}^2 + \|d\|_{L^2(\Omega)}^2) dt.$$

So, $\triangle d \in L^2([0,T];L^2(\Omega))$.

Multiplying (1.3) by d_t and integrating by parts, we have

$$\int_{\Omega} |d_{t}|^{2} dx
= -\int_{\Omega} \{ u \cdot \nabla d \cdot d_{t} + \alpha_{1} d \times (d \times (\triangle d + H)) \cdot d_{t} - \alpha_{2} d \times (\triangle d + H) \cdot d_{t} \} dx
= \int_{\Omega} \{ u \cdot \nabla d_{t} \cdot d + \alpha_{1} (\triangle d + H) \cdot d_{t} + \alpha_{2} (d \times \nabla d_{t}) \cdot \nabla d + \alpha_{2} (d \times H) \cdot d_{t} \} dx
\leq \|u\|_{L^{2}(\Omega)} \|\nabla d\|_{L^{2}(\Omega)} + \alpha_{1} \|\triangle d\|_{L^{2}(\Omega)} \|d_{t}\|_{L^{2}(\Omega)}
+ (\alpha_{1} + \alpha_{2}) \|H\|_{L^{2}(\Omega)} \|d_{t}\|_{L^{2}(\Omega)} + \alpha_{2} \|\nabla d\|_{L^{2}(\Omega)} \|d_{t}\|_{L^{2}(\Omega)} - \alpha_{1} \frac{d}{dt} \int_{\Omega} |\nabla d_{t}|^{2} dx
\leq \frac{1}{2} \|d_{t}\|_{L^{2}(\Omega)}^{2} + C \|\triangle d\|_{L^{2}(\Omega)}^{2} + C \|H\|_{L^{2}(\Omega)}^{2} + C \|\nabla d\|_{L^{2}(\Omega)}^{2}
+ C \|u\|_{L^{2}(\Omega)}^{2} - \alpha_{1} \frac{d}{dt} \int_{\Omega} |\nabla d_{t}|^{2} dx.$$

Here C denotes different constants independent of n. Then integrating by parts respect to t in [0, T], then the Lemma 5.1 and Lemma 5.3 finish the proof.

6. Proof of Theorem 1.1

6.1. The limit $n \to \infty$.

We perform first the limit $n \to \infty$, $\delta > 0$ being fixed. The limit $\delta \to 0$ is carried out in section 6.2. We consider both limits separately since the weak formulation (1.17)-(1.20) for the continuous viscous quantum Euler model is different from its approximation (3.7), (3.2)-(3.5).

We conclude from the Aubin lemma, taking into account the regularity (5.13) and (5.15) for ρ_n , the regularity (5.10) and (5.17) for $\sqrt{\rho_n}$, and the regularity (5.12) and (5.16) for $\rho_n u_n$, that there exist subsequences of $\rho_n, \sqrt{\rho_n}$, and $(\rho_n u_n)$, which are not relabeled, such that, for some functions ρ and J, as $n \to \infty$,

$$\rho_n \to \rho \text{ strongly in } L^2([0,T]; L^\infty(\Omega)),$$

$$\sqrt{\rho_n} \to \sqrt{\rho} \text{ weakly in } L^2([0,T]; H^2(\Omega)),$$

$$\sqrt{\rho_n} \to \sqrt{\rho} \text{ strongly in } L^2([0,T]; H^1(\Omega)),$$

$$\rho_n u_n \to J \text{ strongly in } L^2([0,T]; L^2(\Omega)).$$

Here we have used that the embeddings $W^{2,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)(p > 3/2)$, and $W^{1,3/2}(\Omega) \hookrightarrow L^2(\Omega)$ are compact. The estimate (5.9) on u_n yields that as $n \to \infty$,

$$u_n \rightharpoonup u$$
 weakly in $L^2([0,T]; H^1(\Omega))$.

Then, since $(\rho_n u_n)$ converges weakly to ρu in $L^1([0,T];L^6(\Omega))$, we infer that $J=\rho u$. We are now in the position to let $n\to\infty$ in the approximate system (3.2)-(3.5) with $\rho=\rho_n,\ u=u_n,\ d=d_n,\ E=E_n$. It is clear to have that ρ solves

$$\partial_t \rho + \operatorname{div}(\rho u) = \nu_1 \triangle \rho$$

Next we consider the weak formulation (3.2) term by term. The strong convergence of $(\rho_n u_n)$ in $L^2([0,T];L^2(\Omega))$ and the weak convergence of ρ_n in $L^2([0,T];L^6(\Omega))$ leads to

$$\rho_n u_n \otimes u_n \rightharpoonup \rho u \otimes u$$
 weakly in $L^1([0,T];L^{3/2}(\Omega))$.

Furthermore, in view of (5.12) (up to a subsequence),

$$\nabla(\rho_n u_n) \rightharpoonup \nabla(\rho u)$$
 weakly in $L^2([0,T]; L^{3/2}(\Omega))$.

The $L^{\infty}([0,T];L^{\gamma}(\Omega))$ bound for ρ_n shows that $\rho_n^{\gamma} \to y$ weakly * in $L^{\infty}([0,T];L^1(\Omega))$ for some function y and, since $\rho_n^{\gamma} \to \rho^{\gamma}$, a.e., $y = \rho^{\gamma}$. Finally, the above convergence results show that the limit $n \to \infty$ of

$$\int_{\Omega} \operatorname{div}(\rho_n \phi) \frac{\triangle \sqrt{\rho_n}}{\sqrt{\rho_n}} dx = \int_{\Omega} \triangle \sqrt{\rho_n} (2\nabla \sqrt{\rho_n} \cdot \phi + \sqrt{\rho_n} \operatorname{div} \phi) dx$$

equals, for sufficiently smooth test functions,

$$\int_{\Omega} \triangle \sqrt{\rho} (2\nabla \sqrt{\rho} \cdot \phi + \sqrt{\rho} \operatorname{div} \phi) dx.$$

From Lemma 5.5 we know that $\|\nabla d\|_{L^2([0,T];H^2(\Omega))\cap L^\infty([0,T];L^2(\Omega))}$ is bounded, then

$$\nabla d_n \odot \nabla d_n \rightharpoonup \nabla d \odot \nabla d$$
 weakly in $L^2([0,T];L^2(\Omega))$,

$$\begin{split} &\frac{|\nabla d_n|^2}{2}I \rightharpoonup \frac{|\nabla d|^2}{2}I \ \text{ weakly in } L^2([0,T];L^2(\Omega)), \\ &\nabla d_n \odot \nabla d_n \to \nabla d \odot \nabla d \ \text{ strongly in } L^1([0,T];L^1(\Omega)), \\ &\frac{|\nabla d_n|^2}{2}I \to \frac{|\nabla d|^2}{2}I \ \text{ strongly in } L^1([0,T];L^1(\Omega)). \end{split}$$

Since $E, H \in L^{\infty}([0,T]; L^{2}(\Omega))$, we have

$$\begin{split} &\frac{\rho_n e}{m} E_n \rightharpoonup \frac{\rho e}{m} E \quad \text{weakly in} \quad L^1([0,T];L^1(\Omega)), \\ &\frac{\rho_n e}{m} u_n \times H_n \rightharpoonup \frac{\rho e}{m} u \times H \quad \text{weakly in} \quad L^1([0,T];L^1(\Omega)). \end{split}$$

Thus we have shown that (ρ, u, d, E, H) solves $\partial_t \rho + \operatorname{div}(\rho u) = \nu_1 \triangle \rho$ pointwise and for all test function such that the integrals are defined,

$$-\int_{\Omega} \rho_{0} u_{0} \phi(\cdot, 0) dx = \int_{0}^{T} \int_{\Omega} \left(\rho u \cdot \phi_{t} + \rho(u \otimes u) : \nabla \phi + P(\rho) \operatorname{div}(\phi) \right)$$

$$-\frac{\rho e}{m} (E + u \times H) \cdot \phi - \frac{\mu \hbar^{2}}{2m^{2}} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \operatorname{div}(\rho \phi) - \nu_{2} \nabla(\rho u) : \nabla \phi$$

$$-\frac{\rho u}{\tau} \phi + \lambda (\nabla d \odot \nabla d - \frac{|\nabla d|^{2}}{2} I) \cdot \nabla \phi$$

$$-\delta (\nabla u : \nabla \phi + u \cdot \phi) dx dt.$$
(6.1)

Then, we consider the weak formulation (3.3) term by term. By (5.6) (5.9) and Lemma 5.5 we obtain

$$u_n \nabla d_n \rightharpoonup u \nabla d$$
 weakly in $L^2([0,T];L^2(\Omega))$,

(5.6) and (5.7) imply that

$$d_n \times (d_n \times (\triangle d_n + H_n)) \rightharpoonup d \times (d \times (\triangle d + H))$$
 weakly in $L^1([0,T];L^1(\Omega))$,

(5.2) and (5.7) imply that

$$d_n \times (\triangle d_n + H_n) \rightharpoonup d \times (\triangle d + H)$$
 weakly in $L^1([0,T];L^1(\Omega))$.

Then the limit of d_n satisfy

$$-\int_{\Omega} d_0 \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} \left(d\phi_t + u \cdot \nabla d \cdot \phi + \alpha_1 d \times (d \times (\triangle d + H)) \cdot \phi - \alpha_2 d \times (\triangle d + H) \cdot \rho \phi \right) dx dt.$$

$$(6.2)$$

Analogously, using the a priori estimates we can show that as $n \to \infty$, the limit of (E_n, H_n) satisfy

$$-\int_{\Omega} E_0 \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} \left(E \phi_t - H \cdot (\nabla \times \phi) - e \rho u \cdot \phi \right) dx dt, \tag{6.3}$$

$$-\int_{\Omega} (H_0 + \lambda m d_0) \phi(\cdot, 0) dx = \int_0^T \int_{\Omega} ((H + \lambda m d) \cdot \phi_t + E \cdot (\nabla \times \phi) + \lambda m (u \cdot \nabla d) \cdot \phi) dx dt.$$
(6.4)

6.2. The limit $\delta \to 0$.

Let $(\rho^{\delta}, u^{\delta}, d^{\delta}, E^{\delta}, H^{\delta})$ be a solution to (3.2)-(3.5) with the regularity proved in the previous. By employing the test function $\rho^{\delta}\phi$ in (3.2), we obtain,

$$-\int_{\Omega} \rho_{0}^{2} u_{0} \phi(\cdot,0) dx$$

$$= \int_{0}^{T} \int_{\Omega} \left[(\rho^{\delta})^{2} u^{\delta} \cdot \phi_{t} - (\rho^{\delta})^{2} \operatorname{div}(u^{\delta}) u^{\delta} \cdot \phi - \nu_{2} (\rho^{\delta} u^{\delta} \otimes \nabla \rho^{\delta}) : \nabla \phi \right]$$

$$+ \rho^{\delta} u^{\delta} \otimes \rho^{\delta} u^{\delta} : \nabla \phi + \frac{\gamma}{\gamma + 1} \frac{(\rho^{\delta})^{\gamma + 1}}{m} \operatorname{div} \phi + \frac{(\rho^{\delta})^{2} e}{m} (E^{\delta} + u^{\delta} \times H^{\delta}) \cdot \phi$$

$$- \frac{\mu \hbar^{2}}{2m^{2}} \Delta \sqrt{\rho^{\delta}} (2 \sqrt{\rho^{\delta}} \nabla \rho^{\delta} \cdot \phi + (\rho^{\delta})^{3/2} \operatorname{div} \phi)$$

$$- \nu_{2} \nabla (\rho^{\delta} u^{\delta}) : (\rho^{\delta} \nabla \phi + 2 \nabla \rho^{\delta} \otimes \phi) + \lambda (\nabla d^{\delta} \odot \nabla d^{\delta} - \frac{|\nabla d^{\delta}|^{2}}{2} I) \cdot \nabla (\rho^{\delta} \phi)$$

$$- \delta \nabla u^{\delta} : (\rho^{\delta} \nabla \phi + \nabla \rho^{\delta} \otimes \phi) - \delta \rho^{\delta} u^{\delta} \cdot \phi | dx dt.$$

$$(6.5)$$

By Aubin-Lions lemma and the regularity results, for some functions ρ and J, we have that as $\delta \to 0$.

$$\rho^{\delta} \to \rho$$
 strongly in $L^2([0,T]; W^{1,p}(\Omega)), 3 (6.6)$

$$\rho^{\delta} u^{\delta} \to J \text{ strongly in } L^2([0,T]; L^q(\Omega)), \quad 1 \leqslant q < 3,$$
(6.7)

$$\sqrt{\rho^{\delta}} \to \sqrt{\rho} \text{ strongly in } L^{\infty}([0,T];L^{r}(\Omega)), \quad 1 \leqslant r < 6.$$
 (6.8)

Estimate (5.3) (5.4) and Fatou's lemma yield

$$\int_{\Omega} \lim_{\delta \to 0} \inf_{\delta} \frac{|\rho^{\delta} u^{\delta}|^2}{\rho^{\delta}} < \infty.$$

This implies that J=0 in $\rho=0$. Then, when we define the limit velocity $u:=J/\rho$ in $\{\rho\neq 0\}$ and u:=0 in $\rho=0$, thus $J=\rho u$. By (5.3) (5.4) there exists a subsequence such that

$$\sqrt{\rho^{\delta}} u^{\delta} \rightharpoonup g \text{ weakly } * \text{in } L^{\infty}([0, T]; L^{2}(\Omega)),$$
 (6.9)

for some function g. Hence, since $\sqrt{\rho^{\delta}}$ converges strongly to $\sqrt{\rho}$ in $L^2([0,T];L^{\infty}(\Omega))$, we infer that $\rho^{\delta}u^{\delta}=\sqrt{\rho^{\delta}}\sqrt{\rho^{\delta}}u^{\delta}$ converges weakly to $\sqrt{\rho}g$ in $L^2([0,T];L^2(\Omega))$ and $\sqrt{\rho}g=\rho u=J$. In particular, $g=J/\sqrt{\rho}$ in $\{\rho\neq 0\}$.

Now we are able to pass the limit $\delta \to 0$ in the weak formulation (6.5) term by term. The strong convergences (6.6) and (6.7) imply that

$$(\rho^{\delta})^2 u^{\delta} \to \rho^2 u$$
 strongly in $L^1([0,T]; L^q(\Omega)), 1 \le q < 3,$
 $\rho^{\delta} u^{\delta} \otimes \nabla \rho^{\delta} \to \rho u \otimes \nabla \rho$ strongly in $L^1([0,T]; L^{3/2}(\Omega)).$

The strong convergence of $\rho^{\delta}u^{\delta}$ yields

$$\rho^{\delta}u^{\delta}\otimes\rho^{\delta}u^{\delta}\to\rho u\otimes\rho u\ \text{ strongly in }\ L^1([0,T];L^{q/2}(\Omega)),\ 1\leq q<3.$$

Furthermore, we have

$$\nabla \rho^{\delta} \to \nabla \rho$$
 strongly in $L^2([0,T]; L^p(\Omega)), p > 3$,

$$\begin{split} & \sqrt{\rho^\delta} \to \sqrt{\rho} \ \text{ strongly in } \ L^\infty([0,T];L^r(\Omega)) \text{ with } r = 2p/(p-2), \\ & \triangle \sqrt{\rho^\delta} \rightharpoonup \triangle \sqrt{\rho} \ \text{ weakly in } \ L^2([0,T];L^2(\Omega)). \end{split}$$

Notice that r < 6 since p > 3, which implies that

$$\triangle \sqrt{\rho^{\delta}} \sqrt{\rho^{\delta}} \nabla \rho^{\delta} \rightharpoonup \triangle \sqrt{\rho} \sqrt{\rho} \nabla \rho$$
 weakly in $L^{1}([0,T];L^{1}(\Omega))$.

Since $\nabla(\rho^{\delta}u^{\delta})$ converges weakly in $L^2([0,T];L^{3/2}(\Omega))$ (see (5.12)) and $\nabla\rho^{\delta}$ converges strongly in $L^2([0,T];L^3(\Omega))$ (see (6.6)), we obtain

$$\nabla(\rho^{\delta}u^{\delta})\cdot\nabla\rho^{\delta} \rightharpoonup \nabla(\rho u)\cdot\nabla\rho$$
 weakly in $L^1([0,T];L^1(\Omega))$.

The a.e. convergence of ρ^{δ} and the $L^{4\gamma/3+1}([0,T];L^{4\gamma/3+1}(\Omega))$ bound on ρ^{δ} (see (5.14)), together with the fact that $4\gamma/3+1>\gamma+1$, proves that

$$(\rho^{\delta})^{\gamma+1} \to \rho^{\gamma+1}$$
 strongly in $L^1([0,T];L^1(\Omega))$.

Using the estimate (5.9) for $\sqrt{\delta}u^{\delta}$, we obtain

$$\delta \int_{\Omega} \nabla u^{\delta} : (\rho^{\delta} \nabla \phi + \nabla \rho^{\delta} \otimes \phi) dx
\leq \sqrt{\delta} \|\sqrt{\delta} \nabla u^{\delta}\|_{L^{2}([0,T];L^{2}(\Omega))} (\|\rho^{\delta}\|_{L^{2}([0,T];L^{\infty}(\Omega))} \|\phi\|_{L^{\infty}([0,T];H^{1}(\Omega))}
+ \|\rho^{\delta}\|_{L^{2}([0,T];W^{1,3}(\Omega))} \|\phi\|_{L^{\infty}([0,T];L^{6}(\Omega))}) \to 0, \text{ as } \delta \to 0,
\delta \int_{\Omega} \rho^{\delta} u^{\delta} \cdot \phi dx \leq \delta \|\rho^{\delta} u^{\delta}\|_{L^{2}([0,T];L^{3}(\Omega))} \|\phi\|_{L^{2}([0,T];L^{3/2}(\Omega))} \to 0, \text{ as } \delta \to 0.$$

It remains to show the convergence of $(\rho^{\delta})^2 \operatorname{div}(u^{\delta}) u^{\delta}$. We proceed similarly as in Guo etc [11] and introduce the functions $G_{\alpha} \in C^{\infty}([0,\infty))$, $\alpha > 0$, satisfying $G_{\alpha}(x) = 1$ for $x \geq 2\alpha$, $G_{\alpha}(x) = 0$ for $x \leq \alpha$, and $0 \leq G_{\alpha}(x) \leq 1$. Then we estimate the low-density part of $(\rho^{\delta})^2 \operatorname{div}(u^{\delta}) u^{\delta}$ by

$$\|(1 - G_{\alpha}(\rho^{\delta}))(\rho^{\delta})^{2} \operatorname{div}(u^{\delta}) u^{\delta}\|_{L^{1}([0,T];L^{1}(\Omega))}$$

$$\leq \|(1 - G_{\alpha})\sqrt{\rho^{\delta}}\|_{L^{\infty}([0,T];L^{\infty}(\Omega))} \|\sqrt{\rho^{\delta}} \operatorname{div}(u^{\delta}) u^{\delta}\|_{L^{2}([0,T];L^{2}(\Omega))} \|\rho^{\delta} u^{\delta}\|_{L^{2}([0,T];L^{2}(\Omega))}$$

$$\leq C \|(1 - G_{\alpha})\sqrt{\rho^{\delta}}\|_{L^{\infty}([0,T];L^{\infty}(\Omega))} \leq C\sqrt{\alpha},$$

$$(6.10)$$

where C > 0 is independent of α . We write

$$G_{\alpha}(\rho^{\delta})\rho^{\delta} \operatorname{div} u^{\delta} = \operatorname{div}(G_{\alpha}(\rho^{\delta})\rho^{\delta}u^{\delta}) - \rho^{\delta}u^{\delta} \otimes \nabla \rho^{\delta}(G_{\alpha}'(\rho^{\delta}) + \frac{G_{\alpha}(\rho^{\delta})}{\rho^{\delta}}).$$
 (6.11)

As $\delta \to 0$, the first term on the right-hand side converges strongly to $\operatorname{div}(G_{\alpha}(\rho)\rho u)$ in $L^1([0,T];(H^1(\Omega))^*)$ since $G_{\alpha}(\rho^{\delta})$ converges strongly to $G_{\alpha}(\rho)$ in $L^p([0,T];L^p(\Omega))$ for any $p < \infty$ and $\rho^{\delta}u^{\delta}$ converges strongly to ρu in $L^2([0,T];L^q(\Omega))$ for any q < 3. In view of (6.8) and (6.9), we infer the weak* convergence $\rho^{\delta}u^{\delta} \to \sqrt{\rho}g = \rho u$ in $L^{\infty}([0,T];L^{2r/(r+2)}(\Omega))$ for all r < 6. Thus, by (6.6),

$$\rho^\delta u^\delta \otimes \nabla \rho^\delta \rightharpoonup \rho u \otimes \nabla \rho \ \text{weakly in} \ L^2([0,T];L^\theta(\Omega))$$

where $\theta = 2pr/(2p + 2r + pr)$. It is possible to choose $3 < p6\gamma/(\gamma + 3)$ and r < 6 such that $\theta > 1$. Then, together with strong convergence of $G'_{\alpha}(\rho^{\delta}) + G_{\alpha}(\rho^{\delta})/\rho^{\delta}$

to $G'_{\alpha}(\rho) + G_{\alpha}(\rho)/\rho$ in $L^{p}([0,T];L^{p}(\Omega))$ for any $p < \infty$, the limit $\delta \to 0$ in (6.11) yields the identity

$$G_{\alpha}(\rho)\rho \operatorname{div} u = \operatorname{div}(G_{\alpha}(\rho)\rho u) - \rho u \otimes \nabla \rho (G'_{\alpha}(\rho) + \frac{G_{\alpha}(\rho)}{\rho}).$$

in $L^1([0,T];(H^2(\Omega))^*)$. Since $G_{\alpha}(\rho^{\delta})\rho^{\delta} \mathrm{div}(u^{\delta})$ is bounded in $L^2([0,T];L^2(\Omega))$, we conclude that

$$G_{\alpha}(\rho^{\delta})\rho^{\delta} \operatorname{div}(u^{\delta}) \rightharpoonup G_{\alpha}(\rho)\rho \operatorname{div} u$$
 weakly in $L^{2}([0,T];L^{2}(\Omega))$.

Moreover, in view of the strong convergence of $\rho^{\delta}u^{\delta}$ to ρu in $L^{2}([0,T];L^{q}(\Omega))$ for all q < 3, we infer that

$$G_{\alpha}(\rho^{\delta})\rho^{\delta} \operatorname{div}(u^{\delta})\rho^{\delta}u^{\delta} \rightharpoonup G_{\alpha}(\rho)\rho^{2} \operatorname{div}(u)u$$
 weakly in $L^{1}([0,T];L^{q/2}(\Omega))$.

We write, for $\phi \in L^{\infty}([0,T];L^{\infty}(\Omega))$,

$$\int_{\Omega} ((\rho^{\delta})^{2} \operatorname{div}(u^{\delta}) u^{\delta} - \rho^{2} \operatorname{div}(u) u) \cdot \phi dx$$

$$= \int_{\Omega} (G_{\alpha}(\rho^{\delta})(\rho^{\delta})^{2} \operatorname{div}(u^{\delta}) u^{\delta} - G_{\alpha}(\rho) \rho^{2} \operatorname{div}(u) u) \cdot \phi dx$$

$$+ \int_{\Omega} (G_{\alpha}(\rho) - G_{\alpha}(\rho^{\delta})) \rho^{2} \operatorname{div}(u) u \cdot \phi dx$$

$$+ \int_{\Omega} (1 - G_{\alpha}(\rho^{\delta})) ((\rho^{\delta})^{2} \operatorname{div}(u^{\delta}) u^{\delta} - \rho^{2} \operatorname{div}(u) u) \cdot \phi dx.$$
(6.12)

For fixed $\alpha > 0$, the first integral converges to zero as $\delta \to 0$. Furthermore, the last integral can be estimated by $C\sqrt{\alpha}$ uniformly in δ . For the second term, we recall that $G_{\alpha}(\rho^{\delta}) \to G_{\alpha}(\rho)$ strongly in $L^{p}([0,T];L^{p}(\Omega))$ for all $p < \infty$. Furthermore, by the Gagliardo-Nirenberg inequality, the bounds of $\rho u \in L^{2}([0,T];W^{1,3/2}(\Omega))$ and $L^{\infty}([0,T];L^{3/2}(\Omega))$ imply that $\rho u \in L^{5/2}([0,T];L^{5/2}(\Omega))$. Thus, since $\sqrt{\rho} \text{div} u \in L^{2}([0,T];L^{2}(\Omega))$ and $\sqrt{\rho} \in L^{q}([0,T];L^{q}(\Omega))$ with $q = 8\gamma/3 + 2$,

$$\rho^2 \mathrm{div}(u) u = \sqrt{\rho}(\sqrt{\rho} \mathrm{div} u) \rho u \in L^r([0,T];L^r(\Omega)), \quad r = \frac{18\gamma + 21}{20\gamma + 15} > 1.$$

So the second integral converges to zero as $\delta \to 0$. Thus, in the limit $\delta \to 0$, (6.12) can be made arbitrarily small, and hence,

$$(\rho^{\delta})^2 \operatorname{div}(u^{\delta}) u^{\delta} \rightharpoonup \rho^2 \operatorname{div}(u) u$$
 weakly in $L^1([0,T];L^1(\Omega))$.

Here we will omit the rest term convergence about d, E, H, you can refer to Guo etc [11].

We have proved that (ρ, u, d, E, H) solves (1.21)-(1.27) for smooth initial data. Let $(\rho_0, u_0, d_0, E_0, H_0)$ be some finite-energy initial data, i.e., $\rho_0 \geqslant 0$, $E(\rho_0, u_0, d_0, E_0, H_0) < \infty$, and let $(\rho_0^{\delta}, u_0^{\delta}, d_0^{\delta}, E_0^{\delta}, H_0^{\delta})$ be smooth approximations satisfying $\rho_0^{\delta} \geqslant \delta > 0$ in Ω and $\sqrt{\rho_0^{\delta}} \rightarrow \sqrt{\rho_0}$ strongly in $H^1(\Omega)$ and $\sqrt{\rho_0^{\delta}} u_0^{\delta} \rightarrow \sqrt{\rho_0} u_0$ strongly in $L^{3/2}(\Omega)$. From the above estimates, there exists a weak solution $(\rho^{\delta}, u^{\delta}, d^{\delta}, E^{\delta}, H^{\delta})$ to (1.21)-(1.27) with initial data $(\rho_0^{\delta}, u_0^{\delta}, d_0^{\delta}, E_0^{\delta}, H_0^{\delta})$ satisfying all the above bounds. Since $(\rho^{\delta}, \rho^{\delta} u^{\delta})$ converges strongly to $(\rho, \rho u)$ as $\delta \rightarrow 0$, and there exist uniform bounds

for ρ^{δ} in $H^1([0,T];L^{3/2}(\Omega))$ and for $\rho^{\delta}u^{\delta}$ in $W^{1,4/3}([0,T];(H^s(\Omega))^*)$. Thus, up to subsequences, as $\delta \to 0$,

$$\rho_0^{\delta} = \rho^{\delta}(\cdot, 0) \rightharpoonup \rho(\cdot, 0) \text{ weakly in } L^{3/2}(\Omega),$$

$$\rho_0^{\delta} u_0^{\delta} = \rho^{\delta} u^{\delta}(\cdot, 0) \rightharpoonup (\rho u)(\cdot, 0) \text{ weakly in } (H^s(\Omega))^*.$$

This shows that $\rho(\cdot,0) = \rho_0$ and $\rho u(\cdot,0) = \rho_0 u_0$ in the sense of distributions. We conclude the proof of Theorem 1.1.

References

- [1] E. Feireisl, *Dynamics of Viscous Compressible Fluids*, Oxford Univer. Press, 2004.
- [2] D. Ferry and J. R. Zhou, Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling, Phys. Rev. B, 1993, 48, 7944–7950.
- [3] P. Fuchs, A. Juengel and M. V. Renesse, On the lagrangian structure of quantum fluid model, DCDS-Series A, 2017, 34(4), 1375–1396.
- [4] C. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 1994, 54, 409–427.
- [5] J. Grant, Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations, J. Phys. A, 1973, 6, L151–L153.
- [6] M. Gualdani and A. Jungel, Analysis of the viscous quantum hydrodynamic equations for semiconductors, European J. Appl. Math., 2004, 15, 577–595.
- [7] B. Guo and S. Ding, *Landau-Lifshitz-Maxwell Equations*, Landau-Lifshitz Equations, 2014.
- [8] B. Guo and F. Liu, Weak and smooth solutions to incompressible Navier-Stokes-Landau-Lifshitz-Maxwell equations, Frontiers of Mathematics in China, 2020, 14(6).
- [9] B. Guo and M. Hong, The Landau-Lifshitz equations of the ferromagnetic spin chain and harmonic maps, Calc. Var., 1993, 1, 311–334.
- [10] B. Guo and G. Wang, Global finite weak solution to the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell model in 2-dimension, Appl. Math., 2016.
- [11] B. Guo and S. Ding, *Landau-Lifshitz Equations*, Word Science: Singapore, 2008.
- [12] S. Jiang and P. Zhang, Global sphereically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 2001, 215, 559–581.
- [13] A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Appl. Math., 2010, 42(3), 1025–1045.
- [14] M. Loffredo and L. Morato, On the creation of quantum vortex lines in rotating He II, Societ Italiana di Fisica, 1993, 108B, 205–215.
- [15] E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik, 1927, 40, 322–326.

- [16] L. Nirenberg, On elliptic partial differential equations, Anna. della Scuola Normale Superiore di Pisa-Classe di Scienze, 1959, 13(2), 115–162.
- [17] A. Novotny and I. Straškra, Introduction to the mathematical theory of compressible flow, Oxford Univer. Press, 2004.
- [18] R. Wyatt, Quantum Dynamics with Trajectories, Springer, New York, 2005.