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GLOBAL WEAK SOLUTION TO
COMPRESSIBLE NAVIER-STIKES-LANDAU-
LIFSHITZ-MAXWELL EQUATIONS FOR
QUANTUM FLUIDS IN DIMENSION THREE

Fengxia Liu"" and Boling Guo?

Abstract This paper is concerned with viscous quantum Navier-Stokes-Landau-
Lifshitz-Maxwell equations in dimension three. We use Faedo-Galerkin method
to prove the local existence of weak solution, then combine the a priori esti-
mates to obtain the global existence of solution.
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1. Introduction and main results

In this paper, we study the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell
system on Q x (0,7")

Op + div(pu) = 11 Ap, (1.1)
. VP pe wh? AN/
O(pu) +div(pu @ u) + —— = ——(E +u x H) + ngﬂv(i\/ﬁ )+ v2(pu)
d2
P AV (Vdo vd - |V2| D), (1.2)
-
di +u-Vd+ ard x (dx (Ad+ H)) = agd x (Ad+ H), (1.3)
Ey —V x H = epu, (1.4)
H;+V x E=-X m(d; +u-Vd), (1.5)
V-H=0, (1.6)
d(a, )] =1 (1.7)

with initial data

pli=o = po(x), ult=o = uo(z), Elt=0 = Eo(z), d|t=0 = do(z), H|t=0 = Ho(z) (1.8)
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which satisfy that

pO(Z') > Ov S Qa
|do(2)| =1, do(x) € H*(Q), infdg > 0, (1.9)
Eo(x), Ho(z) € L*(Q).

And the domain  we consider belongs to R3 and is 2D-periodic. We also assume
that po(x), uo(x),do(x), Eo(x), Ho(z) are 2D-periodic, D > 0 is a constant. Here we
counsider isentropic case P = p7(vy > 3) and P denotes the pressure. The unknown
p represents the mass density, u(x,t) : Q x (0,T) represents the velocity field of
the flow. F and H represent the electric field and the magnetic field respectively.
d(z,t) : 2 x (0,T) — S? is a unit vector that represents the macroscopic molecular
orientation of the liquid crystal material. The physic constants m, e, i are positive
and represent the mass, the charge of the particle and Planck constant respectively.
V1,9 and p are positive viscosity constants. A represents the competition between
kinetic energy and potential energy, 7 denotes the relaxation time of electron. «; >
0 is Gilbert damping coefficient and a5 is a positive constant. u ® w is the matrix
with components u;u;, Vd© Vd denotes the 3 x 3 matrix with components V;d-V ;d
for 1 <i,7 <3, “x” denotes the vector outer product.

Notice that if d = F = H = 0, system (1.1)-(1.6) is called quantum hydrody-
namic model(QHD). Jiingle [13] obtained the existence of global-in-time solutions
to the multidimensional equations (1.1)-(1.2) with a strictly positive particle den-
sity. Quantum hydrodynamic models are used to describe superfluids [14], quantum
semiconductors Loffredo etc [2] and so on. We can also refer to [5,6] for more details.
There are many studies for the QHD system, one can see [4,15].

If the system pu = v = 0, d is a constant vector, it becomes the Navier-Stokes-
Landau-Lifshitz-Maxwell(NSLLM) system, we can see [7,8] and their references for
more details about the Landau-Lifshitz equations.

The existence of global-in-time solutions to the two-dimensional equations (1.1)-
(1.7) has been shown in Guo etc [10]. To our knowledge there are no results for the
three dimensional situation. We will give such a result in this paper. Inspired by
Jingel [13] and Guo etc [10], the key is to deal with the maganetization field in the
momentum equation.

Theorem 1.1 (Global existence). For any T > 0, P(p) = ApY (v > 3). Under the
condition of (1.8) and that E(po,wo,do, Eo, Ho) is finite, where E(p,u,d, E, H) will
be defined in (4.2). There exists a weak solution (p,u,d, E,H) to (1.1)-(1.7) with
the regularity

V€ L¥([0,T; H' () N L*([0, T]; H*(2)),
p € H'([0,T]; L*(2)) N L>=([0,T); L7 (2)) 0 L*([0, T]; W*2(Q)),
Vou € L2([0, T L7(Q)), pu € L*([0,T); Wh2(Q)),

20, (1.10)

(1.11)

(1.12)

VpVu € L*([0,T]; L*()), (1.13)
(1.14)

(1.15)

(1.16)

pje A~ b

B e L>([0,T]; L*(Q)), H € L>([0,T); L*(%)),
d € L*([0,T]; H*(2)) N L*>([0, T; L*(%)),
Vd € L*([0, T]; L*(2)),
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satisfying (1.1) pointwise and for all smooth functions satisfying ¢(-,T) = 0,

- / pguo(b(~7 0)dz
Q

T
:/ /Q (p2u - — prdiv(u)u - ¢ — va(pu @ Vp) : Vb
0

+pu® pu: Vo + 117+1dw¢+ (E4+uxH)-pd (1.17)

h2
— B AVRRVPV - 6+ pEding) — 12V (pu) : (V6 +2Vp  0)

Vd|?
+AMVd o Vd - L) Y (pg))dadt,
T
—/Qdop¢(-,0)dx :/0 /Q (dpdy + pu-Vd - ¢+ ard x (d x (Ad+ H)) - pd (1.18)
— aod x (Ad+ H) - pp)dadt,
/ Eyo(-,0)dx = / / E¢, — (V x ¢) — epu - ¢)dudt, (1.19)
_/Q(HO + Amdo)o(-,0)dx —/ / H+ amd) - ¢y (1.20)

(V x ¢) + Am(u - Vd) - ¢)dxdt.

Similar to Jiingel [13], to deal with the lack of compactness, we need to get the
estimates of u. We first add the right hand side of (1.2) a viscosity term §Au — du:

Orp + div(pu) = 11 Dp, (1.21)
. VP  pe h? Ap
Oc(pu) +div(pu @ u) + — = ——(E+ux H) + QmQPV(\/ﬁ) + 12 (pu)
|Vaf?

-2 v (VdoVd - ——1I)+ §Au — du, (1.22)
-

di +u-Vd+ ard x (dx (Ad+ H)) = aed x (Ad+ H), (1.23)
-V x H = epu, (1.24)

Hy+V x E=—Xm(dy +u-Vd), (1.25)

V-H =0, (1.26)

|d(x,t)] = 1. (1.27)

Then we will let § — 0. Finally, we obtain the desired weak solution to the original
system (1.1)-(1.7).

This paper is organised as following. In section 2, we denote some preliminaries
for this paper. Then we show the local existence solution to (1.1)-(1.7) in section
3. In section 4, we prove the global existence solution to (1.21)-(1.27). After some
a priori estimates in section 5, we obtain the solution to (1.1)-(1.7) letting n — 0
and § — 0 respectively.

2. Preliminaries

C is a constant and may assume different values in different formulates.
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The product A : B means summation over both indices of matrices A and B.

LP([0,T7], L1(£2)) is the space whose element is the p-integrable respect to time
variable and g¢-integrable respect to space variable function.

Denote H™(Q)),m = 1,2,--- being the Sobolev space of complex-valued func-

tions with the norm
1
fullan = (3 IDufdo)’,

2 jal<m

(H™)* is the dual space of H™.
“ <5< ” denotes compact imbedding, “ — ” denotes continuous imbedding.

Lemma 2.1 (The Gagliardo-Nirenberg inequality, [16]). Assume that u € Li(Q),
DMy e L™(Q), QCR™, 1 < q,r<00,0<j<m. Let p and « satisfy

1 1 1
celiac-Dra-a)s L<agi
p n r on qg m
Then .
ID7ullp < Clp,m, g, q,r)|| D™ ull¢|ul;~* (2.1)

where C(p,m,j,q,7) is a positive constant.

Lemma 2.2 (The Gronwall’s inequality, [1]). Let ¢ be a constsnt, and b(t),u(t) be
nonnegative continuous functions in the interval [0,T] satisfying

u(t) < e+ /0 b(r)u(r)dr, t e [0,T].

Then u(t) satisfies the estimate

u(t) < c ewp(/o b(r)dr), tel0,T]. (2.2)

Lemma 2.3 (Aubin-Lions Lemma, [17]). Assume X —— E < Y are Banach
spaces. Then the following imbeddings are compact, if 1 <qg< oo and1 <p<q

LY0,T; E) N LY(0,T; X) N {¢p %‘tp € LY(0,T;Y)} << LP(0,T; E).  (2.3)

3. Local Existence of Solution

In this section we will show the local existence of solution to the viscosity system
(1.21)-(1.27) by Faedo-Galerkin method. Let T' > 0, and w; be an orthonormal basis
of L?(Q) which is also an orthogonal basis of H!(2), with periodicity w,, (z — De;) =
wp(x 4+ De;)(i = 1,2,3). Consider the space X,, = span{wy,--+ ,w,},n € N.
Denote the approximate solution of the problem (1.21)-(1.27) as following form

ufn(%ﬂ = Z s (D) ws (), dfn(z,t) = Zﬂsm(t)WS(x)v

Efn(x,t) = Z'Vsm(t)wS(x)» an(x,t) = Z Com (H)ws (),
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where g (t), Bsm (t), Ysm (£), Com (£)(t € RT)(s = 1,2,--+ ;m;m = 1,2,---) are 3-
dimensional vector valued functions.

We introduce the operator Sy : C°([0,T]; X,,) — C°([0, T]; C3(2)) by S1(u) = p.
Since the equation for p is linear, S; is Lipshitz continuous:

151 (u1) — S1(uz)llco(o, 1,00 () < C(n, k) llur — uallco(o,11:2(02))- (3.1)

Next we wish to solve (1.21)-(1.27) on the space X,,. For Si(u) = p, we are
looking for functions (u,d’, ES, H?) € (C°([0,T]; X,,)* such that

n7 n?

/ouoqb dx—// ¢t+pu®u) V¢+w
0

Bl )0 s S () — ¥ () Vo

d2
p”¢+)\(Vd®Vd |v2| 1)-Vé

— (V) : Vo + ud) - ¢))dzdt,

T
[ oo, 0de = [ [ (@04l V6 ands x (0] x (A4 1)
Q 0 Q
— apd, x (NS + HY) - pg)dadt,

(3.3)
T
—/E0¢(-,O)dx:/ /(E;iqst—H;j-(vw)—epu;i-qs)da:dt, (3.4)
Q 0 Q
_ mdo)é(-,0)dz = s md?) - ¢, 5
| (o smagyot-oyiz = [ [ (1 ama)- o+ B (Vo)

+ A (Ul - V) - ¢)dwdt

for all ¢ € (C'([0,7T]; X,,) such that ¢(-,T) = 0. We will apply Banach fixed point
theorem to prove the local-in-time existence of solution, so we add the regularization
term §(Aul — ud). The regularization yields the H' regularity of u} needed to

n
conclude the global existence of solution.

For some functions ay, (t), and the norm of v in C°([0, T]; X,,) can be formulated
as

u = max ZZ a
llullcoo,1):x,) = 0 2 | s (

=1s=1

Then u belongs to C°([0, T]; C*(Q)) for any k € N, and there exists a constant C
depending on k such that

lull coo,71:0% )y < Cllullcoqo,r);2(@))- (3.6)

The approximate system is defined as follows. Let p € C1(]0,T]; C3(2)) be the
classical solution to

Op + div(pu) = vAp, pli=o = po(x). (3.7)

The maximum principle provides the lower and upper bounds (Jiang etc [12])

¢
irelsflpo(x)exp(f/ l[divul| L~ @yds) < p(r) < suppo exp/ (| diva|| 1o () ds).
@ 0
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Since po(z) > p > 0, p(x) is strictly positive. In view of (3.6), for |[ul|co(jo,1);22(Q)) <
C, there exist constants p; (C) and p2(C') such that

0 < p1(C) < p(a,t) < p2(C).
To solve (3.2)-(3.5), we follow Feireisl [1] and introduce the following family of
operators, given a function ¢ € L*(2) with o > 9> 0:

Mlo] : X, — X, <M[g]u7w>=/gu-w, u,w € X,.
Q

These operators are symmetric and positive definite with the smallest eigenvalue

J

Hence since X, is finite-dimensional, the operators are invertible with

HM_l[Q]HL(X;;,Xn) <p

where L(X, X,,) is the set of bounded linear mappings from X to X,,. Moreover
(see Feireisl [1]), M ~! is Lipschitz continuous in the sense

1M~ o1] = M~ ool nixs x.) < Cn,0)ller — o2lln1e) (3.8)

for all o1, 02 € L*(2) such that o1, 02 = p > 0.
Now the integral equation (3.2) can be rephrased as an ordinary differential
equation on the finite-dimensional space X,

< Molu,u >= / olu|*dx > ing2 o(z) > o.
faS]

ullp2(g)=1 lull L2 () =1
() o)

(Mlp()]up(t)) = Nlu,d, H, E,up (1)}, Mlpo]uy,(0) = Mlpo]uo, (3.9)
when p = 57 (u)
< N(u,d, E,H,u), ¢ >

[ [ (ot v OO

A
o x ) 6 ;‘W\g’div(m) — L V(pd) Vg

2
|V2d| I)-V¢—3(Vud : Vo +ud - ¢))dwdt.

. "¢+)\(Vd®Vdf

For operator N(u,d, E, H,-) : X,, — X is continuous in time. Standard theory for
systems of ordinary differential equations then provides the existence of a unique
classical solution to (3.9), that is, for a given u € C°([0,7]; X,,), there exists a
unique solution u,, € C*([0,7]; X,,) to (3.2).

Integrating (3.9) over (0,t) yields the following nonlinear equation:

W () = M8 (ul)(£)(M po]uo + / N[, ul (s)]ds). (3.10)

Since the operators S; and M are Lipschitz type, (3.10) can be solved by evoking
the fixed point theorem of Banach on a short time interval [0,7”], where TV < T,
in the space C°([0,T]; X,,). In fact, we have even u} € C*([0,7']; X,,). Then we
can solve system (3.3)-(3.5). Thus, there exists a unique local-in-time solution
(P, ud,d’, B3, H?) to (1.21)-(1.27).
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4. Global Existence solution to (1.21)-(1.27)

In this section, we will give the a-priori estlmates Using these estimates, we can
show that the local-in-time solution (p2,u?,dS, ES, HS) which are proved in Section
3 can be extended globally. For simplicity, we omlt the subscript n and superscript
0 in this section.

Theorem 4.1. Assume the conditions of Theorem 1.1 to be hold. Then we have
the following energy equality:

d [ 2, 2 2 2
GEd B + [ () V0P + B AR T logel? + vl

(4.1)
fp|u\2 + A |d x (Ad + H)[? + §|Vul® + 8|ul?)dz = 0,
J
where
F ph? 2, 1 2, A 2,
(4.2)

here, H(p) = % for vy > 3.

Proof. Multiplying (1.21) by %f{/( ) — luff _ ﬂAi and integrating by parts
in Q, we have

|U| ph? i/ 2
mdt/H )da /pf v 22 1V P
2 dipn B (e — [ div(pu) ™ de / v (pu) M2 BVP
+m/dlv(pu)H (p)dz /lev(pu) 5 dx lev(p )2 b

:7E H (p )\Vp|2dx+ul/ Vp:Vu: udz

(4.3)

1%
- /Q<“412 oI t0gpl? + 81V ul? + dluf)

Here we have used

/ 8tpH/ / H d$

k2 Af uh? 2
_/Qatp2m2 \/ﬁ _ /8tfﬁfdx——28t/ v /7l%dz,

1
/l/lAp— :——/ VpVH (p H”( )|V p|?dz,
Q m

— / VlApuda: =1 / Vp:Vu: ude,
Q 2 Q

Ay/p Ayp 1 2 2
——=—Apdx = —/ pVlogpV (—=—)dx = f/ p|VZlogp|“dzx.
/Q NI Q ( NI ) 2 Ja | |

Then multiplying (1.22) by u, and integrating both sides of it by parts respec-
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tively in 2, we have

1
/[8tp|u\2+p8t(| uf” )+§V (pu)|ul?]d —/ H'(p)div(pu)d
LA
7/ —E'udmf/ LhQ \/ﬁdiv(pu)dxf/ voVp : Vu : udz
Qm 2m= \/p Q
) ) |v 2
— | vep|Vul|*dr — p|u| dx + X Vd@Vd Vudr — [ ——Vudz.
Q

(4.4)

Here, we have used

/Q(at(pu) ~u+ div(pu @ u) - u)de

2
— [[@otul? + pau - ) 9 Gpulul? + puv (D
1

— [t + pou(y ‘“' )+ 5V (ol

VT: udr = — /VH’ puda:———/H' Vdiv(pu)dz,
Q
— p—u X H -udr =0,

Q m

PN - Wi AP
| ¥ e = — [ (i

/ vaN(pu) ~udx:f/ eV (pu) - Vudz:—/ voVp :Vu: udx—/ vap|Vul?de,
Q Q Q Q

2 2
—/\/V (VdoVvd - ‘V2d| I)- datzz\/VdQVd:Vudx—/\/@Vudx.
Q Q

Multiplying (1.23) by Ad+ H, integrating both sides by parts respectively in 2, we
get

d 1 9 |Vd|?
—— | =|Vd]*dz— | Vd© Vd:Vudz+ | ——Vudx+ | diHdzx

dt Jo 2 Q o 2 Q

(4.5)

+/u-Vd-Hda:—a1/ |d x (ANd+ H)|*dx = 0,

Q Q

here we use the following computation:
d 1
N - _ - - 2
/th ddx pm /Q 5 |Vd|“dz,
, , ) | Vd|?
Q Q Q

; - |Vd|?

2
—/Vd@Vd:Vudx—!—/ [Vl Vudz,
Q o 2
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al/dx(dx(Ad+H)).(Ad+H)dx:—a1/ ld x (Ad + H)[*dz,
Q Q
ag/dx(Ad+H)-(Ad+H)d:c:0.

Q

Multiplying (1.24) by %, integrating by parts in €, we have

1 d E E
——/ |E\2dx—/VXH'—dm:/epu'—dx.
2m dt Q Q m Q m

Multiplying (1.25) by %, integrating by parts in €2, we have

ii./|H|2dx_/VXE'de:_/&it'galx—/ﬁu.Vd.Edm.
2m dt Jq O m A = A —

Notice the fact that

H
/VxE-—dm:/VxH-Edm.
Q m Q m

From (4.3)-(4.7) we can get

d N ph? s 1 5 N oo 1 o 1
— [ (H — = SV + —|E* + =—|H|*)d
ai )+ 5 sVl 4 gplul” + 5Vl + IR + 5 H ) de

n F 2 2 pv ? 2 2
+—= | H'(p)|Vp|*dx + vy | p|Vuldx + 5| V=logp|“dx
m Jo Q Q 4m

1
+ / (;p\u|2 + dayld x (Ad+ H)|> + §|Vul? + §|u|?)dz = 0.
Q

(4.6)

(4.8)

O

Combining Theorem 4.1 with Gronwall’s inequality, we can get the following

estimates:

5. A priori estimates.

Lemma 5.1.

Vel o,r1m ) < C,

ol Lo (0, 73;27 (2)) < C

IVpull L= o,1;22(0)) < C,
IVPVull L2 o,7y;22(0)) < €

1 HI Lo (jo,77;22(2)) + 1Bl ([0,11;22(2)) < C,
[Vl Lo (jo,11;22(0)) < C,

lld x (Ad+ H)ll 20,7522 (0)) < C

Iv/PV 2 logpl| L2 f0.17:L2(02)) < C

Slull 2o, m1 () < C.

/\AAAAA/\AA
© 0 NS o s N =
S e e e e S N N

The energy equality (4.1) and Lemma 5.1 allow us to achieve some estimates.
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Lemma 5.2. The following uniform estimate holds for constant C > 0 which is
independent of n and §:

IVl 2o,y m2(0)) + 1/Pl Lo, rwra(0)) < C. (5.10)
Proof. The lemma follows from the energy estimate in Theorem 4.1. The inequal-
ity
/ p|V31ogp|?dx > ko / |V2/p|?dx, (5.11)
Q Q

with kg, was shown in Jiingel [13], and the inequality

/ p|V31ogp|?dx > I{/ |V ¢/pl*dz, x>0
Q Q

was proved in Jiingel [13]. O
We are able to deduce more regularity from the H? bound for N2

Lemma 5.3. The following uniform estimates hold for some constants C' > 0 that
are independent of n and §:

||pu||L2([O,T];W1’%(Q)) < C? (512)

lollzzo,r1,w2p ) < Cs (5.13)
||p||L4%+1([0,T];L4T’Y+1(Q)) < 07 (514)
where p = 27/ (v + 1).

Proof. Since the space H?*(Q) embeds continuously into L>(f2), \/p is bounded
in L2([0,7]; L>(£2)). Thus, in view of (5.3), pu = /p,/pu is uniformly bounded in
L2([0,T); L3(2)). By (5.1) and (5.10), V,/p is bounded in L*([0,T]; L5(Q)) and /p
is bounded in L*([0,T]; L5(£2)). This, together with (5.4), implies that

V(o) = 2Vy5 & (VAu) + VAV

is uniformly bounded in L?([0,T]; L3/2()), proving the first claim.
For the second claim, we observe first that, by the Gagliardo-Nirenberg inequal-
ity, with p =2v/(y+1) and 8 = 1/2,

4(1-0
”v\fHL‘l(OT 1;L27(2)) C/ ||f||H2(Q H\f”L(M Q))dt
4(1-0)
C”\[”L(oo([OT L%(Q))/ H\/ﬁ”%{?(ﬂ)dt < C.

Then, /p is bounded in LA(0,T; W12r(Q)). Notice that v > 3, so 2p > 3 gives a
uniform bound for \/p in L*(0,T; L>(£2)). The estimate on V/p in L*(0, T; L??(Q2))

shows that
V2 = 2(/aVVp+ VP 8 V)

is bounded in L?(0,T; LP(f2)), which proves the second claim.
Finally, the Gagliardo-Nirenberg inequality, with § = 3/(4v+3) and ¢ = 2(4y+
3)/3,

T
(1-90)
||\/p||%LI([O,T];Lq(Q)) <C ”\/ﬁ” (Q)||f||L27 Q)dt
0 (
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T
1-0
< Clel(J(OO(O7)1“;LW(Q))/O V0l oydt < C

shows that p is bounded in L2 ([0,T]; L% (2)). This finishes the proof. O

Lemma 5.4. The following uniform estimates hold for s > 5/2:

9ol L2 (0, 1;372(2)) < O (5.15)
10:(pw)l Lass o, 55 (2))+) < C- (5.16)

Further,
Hat\/ﬁnLz([O,T];(Hl(Q))*) <C. (517)

Proof. By (5.12), (5.13), we find that 9;p = —div(pu)+vAp is uniformly bounded
in L2([0, T); L3/2(Q)), achieving the first claim.

The sequence (pu ® u) is bounded in L>([0,T]; L*(2)); hence, div(pu ® u) is
bounded in L ([0, T]; (W>°(£))*) and, because of the continuous embedding of
H*(Q) into Wh°(Q) for s > 5/2, also in L ([0, T]; (H*(2))*). The estimate

/OT/Q/)V(%E) - pdxdt

__ /O /Q ARV V- &+ /pdive)dedt

< 1AVl Lo,z Vel Lo, rywrs @) |6l Lo, 17 0 ()
+ VPl Lo 0,m3;z8 @) |81l 2 (jo, 77w 1.3 (92)))
< Cl@llLao, w3 ()5

for all ¢ € L*([0,T); W'3(Q)) proves that pA,/p/\/p is uniformly bounded in
LA3([0, T); (WH3(Q))*) < LY3([0, T); (H*(2))*). By virtue of (p7 ) is bounded
in L4/3([0, T); L*3(Q)) = L*3([0, T); (H*(Q))*). Moreover, by (5.12) A(pu) is uni-
formly bounded in L2([0, T]; (W3(Q))*), and (§Aw) is bounded in L2([0, T]; (H*'(2))*).
Therefore, using Lemma 5.1 and Lemma 5.3 we have

o VP(p) pe ph? o Ayp
(pu)y = — div(pu @ u) - m(E+u><H)+2m2V( 7 )
d 2
N ”7“ v (vaeva- YAy

is uniformly bounded in L*/3([0, T; (H*(Q))*).
Dividing the mass equation by /p gives

1
O/ = =V/p-u— 5/pdivu + 11 (Ayp + 41V ¢/pl?)
1
= —div(y/pu) + iﬁdivu + v (Ap + 4V ).
The first term on the right-hand side is bounded in L2([0,T]; (H'(2))*) by (5.3),

(5.4). By (5.3), (5.4) and (5.9), the remaining terms are uniformly bounded in
L?([0,T7]; L?*()). The proof is completed. O
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Lemma 5.5. The following uniform estimates hold
IAd| L2(0,1);2(2)) < C, (5.18)
[10edl| L2 o, 7351 (@)L= (0, 71:22(02)) < C- (5.19)

Proof. On one hand, Gagliardo-Nirenberg inequality and elliptic estimates yield
that

IVd|[Ls ) < COQUIVZd]L2 0 lldl7 @) + lldl 74 0))

and
1
I92d]22(0) < CO)(ENAdl 20 + = IVl zagey) for any d € ().
Whence,
4 2 cQ) 2 2 4
IVl sy < COellAd||L2 ) + — (dll 7 @) IVAllZ2 () + 1l 24(0)
c(Q)

< C( Qe Ad||72 gy + ——=(IVdlZ20) + 1] F2(0))-

On the other hand, since
/ / |Ad|?dzdt < / / |d x Ad+ H? —2(H - Ad)
+2(|Vd|?d)? +2(d - Ad)(d - H) — |d x H|*)dzdt

<cg/ /\Ad\zda@dt—i——/ IVl L gt + C.
0o Ja € Jo

Combining above estimates, we have

T 2 T 2 c 4 2 2
| [ iadpasar < ce [ 1adiae + S [ Q90 + Il

So, Ad € L*([0,T]; L3(%)).
Multiplying (1.3) by d: and integrating by parts, we have

/|dt|2dx

Q

——/{u-Vd~dt—|—a1d><(dx(Ad—i—H))-dt—agdx(Ad—i—H)-dt}dx
Q

Q{u “Vdi-d+ oy (Ad+ H) - dy + as(d x Vdi) - Vd + ag(d x H) - di }dx
< lull 2@ IVl 2 (0) + a1l Ad L2 ) l|de | L2 )
+ (a1 + a2)[[H |2 lldi || 2 (@) + 2lIVd| L2 1dt] 22 (@) — 041% /Q \Vdy|*da
< 3l + CIIAIR ) + ClIHIs(q) + CIVAlsqq
+ Cllul2aq 041—/ Vdi|2dz.

Here C denotes different constants independent of n. Then integrating by parts
respect to t in [0, 7], then the Lemma 5.1 and Lemma 5.3 finish the proof. O
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6. Proof of Theorem 1.1

6.1. The limit n — oo.

We perform first the limit n — oo, § > 0 being fixed. The limit § — 0 is carried
out in section 6.2. We consider both limits separately since the weak formulation
(1.17)-(1.20) for the continuous viscous quantum Euler model is different from its
approximation (3.7), (3.2)-(3.5).

We conclude from the Aubin lemma, taking into account the regularity (5.13)
and (5.15) for p,, , the regularity (5.10) and (5.17) for \/p,,, and the regularity (5.12)
and (5.16) for p,u, , that there exist subsequences of p,,, /pn, and (ppu,), which
are not relabeled, such that, for some functions p and J, as n — oo,

pn — p strongly in L2([0,T]; L°(Q)),
VP — /p weakly in L*([0,T]; H*(5)),
on — \/p strongly in L*([0,T]; H*(Q)),
pntin — J strongly in L*([0,T]; L*()).
Here we have used that the embeddings W?2?(Q) < L>(Q)(p > 3/2), and W13/2(Q)
— L?(Q) are compact. The estimate (5.9) on u,, yields that as n — oo,

u, — u weakly in L*([0,7T]; H'(Q)).

Then, since (p,u, ) converges weakly to pu in L([0, T]; L(Q)), we infer that J = pu.
We are now in the position to let n — oo in the approximate system (3.2)-(3.5) with
P = pPn, U =1Up, d=d,, E=F,. It is clear to have that p solves

Orp + div(pu) = 11 Dp.

Next we consider the weak formulation (3.2) term by term. The strong conver-
gence of (p,uy,) in L2([0,T]; L?(£2)) and the weak convergence of p,, in L2([0, T]; L5(£2))
leads to

Prtin @ Uy — pu®@u weakly in L'([0,T]; L*2(Q)).

Furthermore, in view of (5.12) (up to a subsequence),
V(pnun) = V(pu) weakly in L*([0,T]; L*/*(2)).
The L>([0,7T7]; L7 (€2)) bound for p,, shows that p], — y weakly * in L°°([0, T]; L*(2))

for some function y and, since p)} — p7, a.e., y = p”. Finally, the above convergence
results show that the limit n — oo of

Pn
| divipue) =2 F — [ AV oo+ Vv
equals, for sufficiently smooth test functions,
/Q AVp(2V/p - ¢+ /pdive)dz

From Lemma 5.5 we know that ||Vd| 12 (jo,71;#2(@))nL>(j0,7);52(2)) is bounded, then

Vd, ®Vd, = Vd® Vd weakly in L*([0,T]; L*(2)),
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Vdu? | |V

I weakly in L?([0,T]; L*()),

2
Vd, ®Vd, — Vd® Vd strongly in L'([0,T]; L*(Q)),
2 2
‘V(;n| I— |V2d| I strongly in L*([0,T]; L* ().

Since E, H € L*([0,T]; L*(Q)), we have

%En—\%E weakly in L'([0,T]; L'(Q)),

m

Pl x Hy — P50 x H weakly in LY([0,T]; L*(Q)).
m m

Thus we have shown that (p,u,d, E, H) solves 0;p + div(pu) = v1 Ap pointwise
and for all test function such that the integrals are defined,

T
~ [ pwuag(e0)da = [ [ (- ou-+ plue ) Vot Ploiv(o)

A
—%(E—i—uxH)- —gmzfdv(p(b)—ugV(pu) V¢
2
—%(b—l—A(Vd@Vd—@[)-%ﬁ

—6(Vu:Vo+u-¢))dudt.
(6.1)

Then, we consider the weak formulation (3.3) term by term. By (5.6) (5.9) and
Lemma 5.5 we obtain

u, Vd, — uVd weakly in L?([0,T]; L*(Q)),
(5.6) and (5.7) imply that
X (dp X (Ady + Hy)) = d x (dx (Ad+ H)) weakly in L'(]0,77; L*(2)),
(5.2) and (5.7) imply that
dp % (Ady + Hy) — d x (Ad+ H) weakly in L'([0,T]; L' (2)).

Then the limit of d,, satisfy

T
—/d0¢(~,0)dx:/ /(d¢t+u~Vdo¢+a1d><(dx(AdJrH))«ng
Q 0o Ja
— agd x (Ad+ H) - pp)dadt.

(6.2)

Analogously, using the a priori estimates we can show that as n — oo, the limit of
(En, Hy,) satisfy

/E0¢ dxf/ / E¢y— H - (V x ¢) — epu - ¢)dudt, (6.3)

—/(Ho—i—)\mdo)qb(-,o)dx:/ / ((H + Xmd) -+ E - (V % 6)
Q 0 Q
+ Am(u - Vd) - ¢)dzdt.

(6.4)
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6.2. The limit § — 0.

Let (p,u°,d’, E°, H®) be a solution to (3.2)-
previous. By employlng the test function p°

- / pouod(-, 0)d
Q

T
=/1}wﬂﬁ¢rwfﬂmmmﬂ¢—wwm®vfwv¢
0

v (p°) ! (p°)2e
+1 m

Af 20V - ¢+ (p°)* 2 dive)

- VQV(péué) L (p°Vo+ 2V’ ® ¢) + M(Vd° © Vd° —
— 0V’ (p°Vé + Vp? @ ¢) — 6p°u’ - ¢|dadt.

(3.5) with the regularity proved in the
¢ in (3.2), we obtain,

o @ p'u VG4 dive + (B"+u’ < H) -6 (5

Vd6 2
N vite)

By Aubin-Lions lemma and the regularity results, for some functions p and J, we
have that as § — 0,

p® — p strongly in L2([0,T]; W"P(Q)), 3 <p<6y/(y+3), (6.6)
pPu® — J strongly in L*([0,T]; L4(Q)), 1< ¢<3,
Vp? — /p strongly in L*([0,T];L"(Q)), 1<r<6. (6.8)

Estimate (5.3) (5.4) and Fatou’s lemma yield

5,612
) U
/limmf|p 5' < 00

This implies that J = 0 in p = 0. Then, when we define the limit velocity u := J/p in
{p#0} and u:=0in p = 0, thus J = pu. By (5.3) (5.4) there exists a subsequence
such that

Vpoul — g weakly xin L*®([0,T]; L*(Q)), (6.9)

for some function g. Hence, since 1/p? converges strongly to /p in L*([0, T]; L*°(12)),
we infer that p?u® = \/p?/p?u’ converges weakly to \/pg in L*([0,T]; L*(R2)) and

/P9 = pu = J. In particular, g = J/\/p in {p # 0}.
Now we are able to pass the limit 6 — 0 in the weak formulation (6.5) term by
term. The strong convergences (6.6) and (6.7) imply that

(p°)*u’ — p*u strongly in L*([0,T];L%(Q)), 1<q<3,
Pou’ @ Vp® — pu® Vp strongly in L([0,T]; L¥%(Q)).

The strong convergence of p’u® yields
p’u’ @ pPu’ — pu @ pu strongly in L*([0,T); L‘I/Q(Q))7 1<g<3.
Furthermore, we have

Vp® — Vp strongly in L*([0,T); L*(Q)), p > 3,
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N Vp strongly in L°°([0,T]; L"(£2)) with r = 2p/(p — 2),
AV p® = A\p weakly in L*([0,T); L*(Q)).

Notice that r < 6 since p > 3, which implies that

AN PNV = Apy/pVp weakly in L'([0,T7; L'(9)).

Since V(p?u?) converges weakly in L2([0,T]; L>/?(Q)) (see (5.12)) and Vp° con-
verges strongly in L2([0, T]; L3(Q2)) (see (6.6)), we obtain

V(p’u’) - Vp® — V(pu) - Vp weakly in L([0,T]; L*(Q)).

The a.e. convergence of p® and the L*/3+1(]0,T]; L*/3+1(Q2)) bound on p° (see
(5.14)), together with the fact that 4v/3 4+ 1 >« + 1, proves that

(p°) = p7*L strongly in LY([0,T]; L1(Q)).

Using the estimate (5.9) for v/du®, we obtain

) / Vul : (p°Vo + Vo’ @ ¢)da
Q

VIV | 2o ry:2 ) (10° | 22 (0.1 () 16| o (0.7 107 ()

+ ||P6HL2( [0,T);W13(€)) ||¢||L°C([0,T];L6(Q))) —0, as §d — 0,

5/90 - pdz < 8] p°u’ || L2 o115 ) |8ll L2 (0, psL2/2(0)) — 0, as § = 0.

It remains to show the convergence of (p?)2div(u®)u’. We proceed similarly as

in Guo etc [11] and introduce the functions G, € C"X’([O,oo))7 a > 0, satisfying
Ga(z) =1for x > 2a, Go(x) =0 for z < @, and 0 < G (z) < 1. Then we estimate
the low-density part of (p?)2div(u®)u’ by
(1 = Ga(p*) ()2 div(u)u’ || L1 jo,7); Ll(Q))
<L = Ga) VPPl L= (po.17; 2 on 1V PP div ()1’ | L2 o ms 22 ) 1074 || 22 o s 22 ()
<O = Ga) vV Pl o= (o, 12 (2)) < OV,
(6.10)
where C' > 0 is independent of a. We write
AW IS TR P 8y 8.8 5,8 S(ev (8 Ga(p%)
Ga(p®)p’dive’ = div(Ga(p°)p"u’) — p’u’ @ Vp° (Go(p°) + o ). (6.11)

As § — 0, the first term on the right-hand side converges strongly to div(Gq(p)pu)
in L1([0, T]; (HY(Q2))*) since G4 (p°) converges strongly to G (p) in LP([0, T]; LP(Q))
for any p < oo and p®u’ converges strongly to pu in L2([0, T]; L4(R2)) for any q < 3.
In view of (6.8) and (6.9), we infer the weak* convergence p’u® — \/pg = pu in
L= ([0, T); L*"/(r+2)(Q)) for all » < 6. Thus, by (6.6),

Su? @ Vp® — pu® Vp weakly in L*([0,T]; LY (Q))

where 8 = 2pr/(2p + 2r + pr). It is possible to choose 3 < p6v/(y + 3) and r < 6
such that # > 1. Then, together with strong convergence of G/, (p°) 4+ Gu(p?)/p°
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to GL(p) + Ga(p)/p in LP([0,T]; LP(Q2)) for any p < oo, the limit 6 — 0 in (6.11)
yields the identity

Gaolp)
p

Ga(p)pdivu = div(Ga(p)pu) — pu® V(G (p) + )-
in LY([0,T); (H?(2))*). Since Gu(p?)p’div(u’) is bounded in L2([0, T]; L%(Q2)), we
conclude that

Ga(p?)p°div(u®) = Gu(p)pdivu weakly in L2([0,T]; L*(Q2)).

Moreover, in view of the strong convergence of p’u’ to pu in L2([0,T]; L(f2)) for
all ¢ < 3, we infer that

Go(p®)p?div(ud)p’u’ — Golp)p?div(u)u weakly in LY([0,T]; LY%(Q)).

We write, for ¢ € L ([0, T]; L*=(£2)),
/Q((p‘s)zdiv(u‘g)u‘s — pAdiv(u)u) - pdx

- / (Ga(6”) (0°)?div(u® ) — Go(p)pPdiv(u)us) - gl
¢ (6.12)

+ / (Ga(p) - Galp™))pPdiv(u)u - pdz
Q

+ / (1= Gal(p"))((p")?div(u)u’ — p*div(u)u) - gda.
Q

For fixed o > 0, the first integral converges to zero as § — 0. Furthermore, the last
integral can be estimated by C'y/a uniformly in 4. For the second term, we recall
that Gy (p°) — Ga(p) strongly in LP([0,7T]; LP(2)) for all p < co. Furthermore, by
the Gagliardo-Nirenberg inequality, the bounds of pu € L?([0,T]; W3/2(Q2)) and
L>([0,T); L¥/%(Q2)) imply that pu € L/2([0,T]; L°/?(2)). Thus, since /pdivu €
L2([0,T); L3(Q)) and /p € L([0,T]; L9(Q)) with ¢ = 8v/3 + 2,

_ 18y+21

p*div(v)u = /p(y/pdivu)pu € L"([0,T); L™ (Q)), r= 0,415 -

So the second integral converges to zero as § — 0. Thus, in the limit § — 0, (6.12)
can be made arbitrarily small, and hence,

(p°)2div(u®)u® — p?div(u)u weakly in L'([0,T]; L*(Q)).

Here we will omit the rest term convergence about d, E, H, you can refer to Guo
ete [11].

We have proved that (p,u,d, E, H) solves (1.21)-(1.27) for smooth initial data.
Let (po, w0, do, Eo, Ho) be some finite-energy initial data, i.e., po >0, E(po,uo0,do, Fo, Ho)
< 00, and let (pd,ud,dS, ES, HJ) be smooth approximations satisfying p§ > & > 0
in Q and \/pf — V/Po strongly in H'(2) and Vpdu — V/Pouo strongly in L3/2(€).
From the above estimates, there exists a weak solution (p°,u’,d’, E, H°) to (1.21)-
(1.27) with initial data (pd,uS,dS, E, HY) satisfying all the above bounds. Since
(p?, pPu®) converges strongly to (p,pu) as & — 0, and there exist uniform bounds
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for p® in H([0,T]; L?/?(Q)) and for pou® in WH4/3([0, T); (H*(Q))*). Thus, up to
subsequences, as 6 — 0,

pg:p6(70)4p(70) Weakly in L3/2(Q)7
piud = pPuP(,0) = (pu)(0) weakly in (H*(2))".

This shows that p(-,0) = pp and pu(-,0) = poug in the sense of distributions. We
conclude the proof of Theorem 1.1. O
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