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BIFURCATIONS AND EXACT TRAVELING
WAVE SOLUTIONS FOR THE GENERALIZED

NONLINEAR SCHRÖDINGER EQUATION
WITH WAVE OPERATOR∗

Quting Chen1, Yadong Shang1,† and Huafei Di1

Abstract In this paper, we investigate the dynamical bifurcations and exact
traveling wave solutions for the generalized nonlinear Schrödinger equation
with wave operator under different parametric conditions by means of the
theory of singular system. We analyse the high order equilibrium point and
give the phase portraits. We obtain many results under different values of
the parameter p reflecting the strength of the nonlinearity in the model. For
p = 1, we find explicit exact solutions of Jacobian elliptic functions type
which is corresponding to the curves given by H(ϕ, y) = h. According to
the qualitative analysis of the phase portraits, we give the conclusions on the
existence of solitary wave solutions and periodic wave solutions when p ≥ 1

2
. In

addition, we obtain the only explicit exact solitary wave solution corresponding
to the curves given by H(ϕ, y) = 0 for any p. Especially, we obtain some
explicit exact double periodic solutions of elliptic functions type for p = 1

2
.
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1. Introduction
In 1980, Matsuuchi considered the nonlinear interaction between monochromatic
waves and proposed one class of nonlinear Schrödinger equations with wave operator
[20]. {

i(At + cgAx) +D+A = (q|A|2 + r|B|2)A,

i(Bt − cgBx) +D−B = −(q|B|2 + r|A|2)B,
(1.1)

where A(x, t), B(x, t) are the complex amplitudes of the two waves and the second
order operators D± are given by

D± ≡ px
∂2

∂x2
± pc

∂2

∂x∂t
+ pt

∂2

∂t2
. (1.2)
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The coefficients px, pc, and pt in Eq. (1.2) are functions of the wave-number char-
acterizing each wave system. They may satisfy the relation

px − cgpc + c2gpt =
1

2

dcg
dk

, (1.3)

where k is the wave-number. The first equation of (1.1) without the coupling term
can be regarded as the Schrödinger equation with wave operator

i(At + cgAx) +D+A = q|A|2A, (1.4)

Eq. (1.4) has a wide range of applications, such as nonrelativistic limit of the Klein-
Gordon equation, the Langmuir wave envelope approximation in plasma and the
modulated planar pulse approximation of the Sine-Gordon equation for light bullets.
As we study the soliton in plasma physics, we can get the same type of equation,
which is satisfied by the transverse velocity of high frequency electron. A lot of
works have been done on qualitative research and numerical methods of nonlinear
Schrödinger equations (systems) with wave operators. In 1983, Guo Boling [3]
first studied the initial boundary value problems of a class of multidimensional
nonlinear Schrödinger equations with wave operators. He proved the existence
and uniqueness of the generalized and strong solution for the problem by means
of Galerkin method, and discussed the regularity of the solution. He obtained the
existence of the smooth solution under weaker assumption for one-dimensional case.
In the same year, Guo and Liang [4] analyzed the initial boundary value problem of
a class of Schrödinger equation with wave operator by using the difference method
in another paper. They proved the convergence of the approximate solution and
the stability of the difference scheme. In a subsequent paper, Guo [5] considered
the blow up problem for the system of nonlinear Schrödinger equations with wave
operator and the existence of soliton solutions for the system. He obtained the
sufficient condition for the blow up problem and the existence of soliton solutions
for this system under some assumptions. In 1989, Guo [6] studied the existence
and nonexistence for the initial boundary value problem of one class of system
of multidimensional nonlinear Schrödinger equations with wave operator and their
soliton solutions.

In recent years, there have been many works on the numerical calculation and
analysis of nonlinear Schrödinger equations with wave operators. The error esti-
mates of local energy conservation law are given in the multisymplectic Fourier
pseudospectral scheme [21]. Some new conservative finite difference schemes are
presented for an initial-boundary value problem [23]. And a fully discrete scheme
by discretizing the space with the local discontinuous Galerkin method and the time
was put forward [7]. For further numerical analysis, please refer to [2, 8, 22,24].

As we all know, exact solution can reflect more global properties than the ap-
proximate solution. Exact solution can also be used to judge the merits of numerical
methods. In applications, exact solutions can be used to explain and predict the
evolution of the physical state of the system. Exact solutions are of great signif-
icance both in mathematics and physics. However, for the nonlinear Schrödinger
equation with wave operator, the results on exact solution are few.

In 2007, Li et al. [12, 13] developed the dynamic system approach of nonlinear
evolution partial differential equation. One of the advantages is that it can handle
the singular dynamical system. From then on, the exact solutions in different types
of nonlinear partial equations were sought out [9–11,14–16,19]. The latest progress
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of this method can be known in references [17, 18]. The dynamic system method
has been proved to be an effective way to deal with nonlinear evolution partial
differential equations.

The main purpose of this paper is to investigate the exact solutions of the
generalized nonlinear Schrödinger equation with wave operator. By applying to
the theory of singular dynamic system, we consider the traveling wave solutions of
generalized nonlinear Schrödinger equation with wave operator

Wu+ iαut + iθux + δ2u+ β|u|2pu = 0, (1.5)

where Wu = utt − uxx + γutx is the wave operator, α, θ, δ, β, γ, and p > 0
are all given constants. |u|2pu is the nonlinear term, the parameter p reflects the
strength of the nonlinearity. We investigate the dynamical bifurcations and exact
traveling wave solutions for the generalized nonlinear Schrödinger equation with
wave operator under different parametric conditions by means of the theory of
singular system. We analyse the high order equilibrium point and give the phase
portraits. We obtain the explicit exact solitary wave solutions and the double
periodic wave solutions by means of Jacobian elliptic function for the generalized
nonlinear Schrödinger equation with wave operator in various cases of parameters.

The paper is built up as follows. In section 2, we transform equation (1.5)
into a plane dynamical system and consider the bifurcations of phase portraits
of plane dynamical system. In section 3, for the case p = 1, corresponding to
real curves defined by H(ϕ, y) = h, we find all possible exact explicit solutions
for equation (1.5). In section 4, for the case p ≥ 1

2 , we obtain the existence of
smooth solitary traveling wave and periodic traveling wave solutions of equation
(1.5). Corresponding to real curves defined by H(ϕ, y) = 0, we give an explicit
expression for the only envelope solitary wave solution for any of p > 0. For p =
1
2 , we also obtain the explicit exact double periodic wave solutions by means of
Jacobian elliptic function, corresponding to real curves defined by H(ϕ, y) = h.

2. Bifurcations of generalized nonlinear Schrödinger
equation with wave operator

To analyze the traveling wave solutions of generalized nonlinear Schrödinger equa-
tion with wave operator (1.5), we introduce a gauge transformation

u(x, t) = φ(x, t) exp [i(kx+ ωt+ ξ0)] , (2.1)

where φ(x, t) is a real-valued function, k, ω are two real constants to be determined,
ξ0 is an arbitrary constant. Substituting (2.1) into (1.5), yields

φtt − φxx + γφtx +
(
−αω − kθ − kωγ + δ2 + k2 − ω2

)
φ

+ βφ2p+1 + i [(α+ kγ + 2ω)φt + (θ − 2k + ωγ)φx] = 0.
(2.2)

Separating the real and imaginary parts, we get

φtt − φxx + γφtx +
(
−αω − kθ − kωγ + δ2 + k2 − ω2

)
φ+ βφ2p+1 = 0, (2.3)

(α+ kγ + 2ω)φt + (θ − 2k + ωγ)φx = 0. (2.4)
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Solving Eq. (2.4), we have

φ(x, t) = φ(ξ) = φ
(
(α+ kγ + 2ω)x− (θ − 2k + ωγ) t+ ξ1

)
, (2.5)

where ξ1 is an arbitrary constant. Substituting (2.5) into (2.3), we get(
− kωγ3 − αωγ2 + k2γ2 − kθγ2 − ω2γ2 − αθγ − 4kωγ

− α2 − 4αω + 4k2 − 4kθ − 4ω2 + θ2
)
φ′′

+ (−kωγ − αω + δ2 + k2 − kθ − ω2)φ+ βφ2p+1 = 0.

(2.6)

Setting M = −kωγ3 −αωγ2 + k2γ2 − kθγ2 −ω2γ2 −αθγ − 4kωγ −α2 − 4αω+4k2

−4kθ − 4ω2 + θ2, N = −kωγ − αω + δ2 + k2 − kθ − ω2, then (2.6) becomes

Mφ′′(ξ) +Nφ(ξ) + βφ2p+1(ξ) = 0. (2.7)

For p > 0, making transformation

φ(ξ) = (ϕ(ξ))
1
2p , (2.8)

we obtain
2Mpϕϕ′′ + (1− 2p)Mϕ′2 + 4p2ϕ2(N + βϕ) = 0, (2.9)

which is equivalent to the system

dϕ

dξ
= y,

dy

dξ
=

(2p− 1)My2 − 4p2ϕ2[N + βϕ]

2Mpϕ
. (2.10)

Apply dξ = 2Mpϕdζ, the singular system (2.10) has the same invariant curve
solutions as the associated regular system

dϕ

dζ
= 2Mpϕy,

dy

dζ
= (2p− 1)My2 − 4p2ϕ2[N + βϕ] (2.11)

with the first integral

H(ϕ, y) = ϕ
1
p−2

(
4p2β

M(p+ 1)
ϕ3 +

4p2N

M
ϕ2 + y2

)
= h, (2.12)

where h is an integral constant.
For p ̸= 1

2 , N ̸= 0, the origin O(0, 0) is a two-order equilibrium point of system
(2.11). To consider the directions that the orbits of system (2.11) tend to the origin
when ζ → −∞ (or ∞), from [17], we have G1(θ) = − cos θ(M sin2 θ+4p2N cos2 θ) =
0. Therefore, there are six sectors lie the different types of orbits of system (2.11)
when MN < 0. When MN > 0, there exist two areas (left phase plane and right
phase plane) laying different orbits of system (2.11).

For p ̸= 1
2 , N = 0, the origin O(0, 0) is a three-order equilibrium point of system

(2.11). Then G2(θ) = −M cos θ sin2 θ = 0, the roots of G2(θ) are 0, π
2 , π, 3π

2 , 2π.
Thus, there exist four areas laying different orbits of system (2.11).

Note that f(ϕ) = N + βϕ, it is obvious that (2.11) has an equilibrium point(
−N

β , 0
)

. Let M(ϕ, 0) be the coefficient matrix of the linearized system of (2.11)
at an equilibrium point and J(ϕ, 0) = detM(ϕ, 0). We have

Trace(M(ϕ, 0)) = 0, (2.13)
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J(0, 0) = det(M(0, 0)) = 0, (2.14)

J(−N

β
, 0) = −8Mp3N3

β2
. (2.15)

We denote that

h1 = H(−N

β
, 0) =

4Np3

M(p+ 1)

(
−N

β

) 1
p

. (2.16)

By using the above information, for p > 1
2 , depending on the change of param-

eters, we have the bifurcations of phase portraits of system (2.11) shown in Figure
1 and Figure 2.

(a) βM > 0, MN > 0 (b) βM < 0, MN < 0 (c) βM < 0, MN > 0 (d) βM > 0, MN < 0

Figure 1. The bifurcations of phase portraits of system (2.11) for N ̸= 0

(a) βM > 0 (b) βM < 0

Figure 2. The bifurcations of phase portraits of system (2.11) for N = 0

3. The exact traveling wave solutions of equation
(1.5) with p = 1

In this section, we investigate the exact solutions of equation (1.5) when p = 1 and
β > 0. Since the transformation (2.8), we only consider the positive solutions of ϕ
in the right phase plane. From (2.12), we have

y2 =
2β

M
ϕ

(
−ϕ2 − 2N

β
ϕ+

Mh

2β

)
, for M > 0,

y2 =
2β

|M |
ϕ

(
ϕ2 +

2N

β
ϕ+

|M |h
2β

)
, for M < 0.

(3.1)
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By using the first equation of system (2.10) and (3.1), we can get bounded exact
solutions of equation (1.5) with p = 1.

Case I M > 0, N > 0(refer to Figure 1(a)).
For h ∈ (0,∞), the curves in the right phase plane defined by H(ϕ, y) = h

are a family of periodic orbits of system (2.11) contact to the singular straight
line at O(0, 0). Now

(
dϕ
dξ

)2
= 2β

M ϕ (ϕ− ϕm) (ϕM − ϕ), where (ϕM , 0) and (ϕm, 0)

are intersections of curves and ϕ-axis, ϕm = −N
β −

√
4N2+2Mhβ

2β , ϕM = −N
β +√

4N2+2Mhβ

2β . Hence, for ϕ ∈ (0, ϕM ), we have the following family of double periodic
wave solutions:

ϕ(ξ) = ϕMcn2 (Ω1ξ,K1) , (3.2)

where Ω1 =

(√
4N2+2Mhβ

2M

) 1
2

, K1 =

√
−2N+

√
4N2+2Mhβ

2
√

4N2+2Mhβ
, sn(·,K), cn(·,K), dn(·,K),

are Jacobian elliptic functions (refer to [1]).
From (2.1), (2.8), and (3.2), we obtain the exact envelope period wave solutions

of equation (1.5) expressed by the Jacobian elliptic cosine function

u(x, t) = ±
√

ϕMcn (Ω1ξ,K1) exp (iη) , (3.3)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

Case II M < 0, N < 0(refer to Figure 1(c)).
(1) For h ∈ (0, h1), the curves in the right phase plane defined by H(ϕ, y) = h

are close branches contact to the singular straight line ϕ = 0 at O(0, 0). We have(
dϕ
dξ

)2
= 2β

|M |ϕ (ϕm − ϕ) (ϕM − ϕ). Here ϕm = −N
β −

√
4N2−2|M |hβ

2β , ϕM = −N
β +

√
4N2−2|M |hβ

2β . Thus, for ϕ ∈ (0, ϕm), we have the following family of double periodic
wave solutions:

ϕ(ξ) = ϕmsn2 (Ω2ξ,K2) , (3.4)

where Ω2 =

(
−2N+

√
4N2−2|M |hβ
4|M |

) 1
2

, K2 =

√
2N+

√
4N2−2|M |hβ

2N−
√

4N2−2|M |hβ
.

Due to (2.1), (2.8), and (3.4), Eq. (1.5) admits the exact envelope period wave
solutions expressed by Jacobian elliptic sine function

u(x, t) = ±
√

ϕmsn (Ω2ξ,K2) exp (iη) , (3.5)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

(2) For h = h1, the curves in the right phase plane is a homoclinic orbit. We
have that

(
dϕ
dξ

)2
= 2β

|M |ϕ
(
−N

β − ϕ
)2

. For ϕ ∈
(
0,−N

β

]
, we get the following exact

solution of system (2.11):

ϕ(ξ) = −N

β

[
1− sech2

(√
− N

2|M |
ξ

)]
. (3.6)
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According to expressions (2.1), (2.8), and (3.6), we obtain the dark soliton so-
lution of Eq.(1.5)

u(x, t) = ±

√
−N

β

[
tanh

(√
− N

2|M |
ξ

)]
exp (iη) , (3.7)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

Case III M > 0, N < 0(refer to Figure 1(d)).
(1) When h ∈ (h1, 0), the curves in the right phase plane defined by H(ϕ, y) =

h are a family of close orbits of system (2.11), enclosing the equilibrium point(
−N

β , 0
)

. In this case, we have
(

dϕ
dξ

)2
= 2β

M ϕ (ϕ− ϕm) (ϕM − ϕ), where ϕm =

−N
β −

√
4N2+2Mhβ

2β , ϕM = −N
β +

√
4N2+2Mhβ

2β . For ϕ ∈ [ϕm, ϕM ], system (2.11)
admits the following exact periodic wave solutions:

ϕ(ξ) = ϕMdn2 (Ω3ξ,K3) , (3.8)

where Ω3 =

(
−2N+

√
4N2+2Mhβ

4M

) 1
2

, K3 =

√
2
√

4N2+2Mhβ

−2N+
√

4N2+2Mhβ
.

Expression (2.1), (2.8), and (3.8) implies that Eq.(1.5) has the exact envelope
periodic wave solutions expressed by Jacobian elliptic function

u(x, t) = ±
√

ϕMdn (Ω3ξ,K3) exp (iη) , (3.9)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

(2) When h = 0, the curve in the right phase plane defined by H(ϕ, y) = h

is a homoclinic orbit to the origin O(0, 0). From (3.1), we have that
(

dϕ
dξ

)2
=

2β
M ϕ2

(
− 2N

β − ϕ
)

. For ϕ ∈
(
0,− 2N

β

]
, it gives rise to the following solution of

system (2.11):

ϕ(ξ) =

(
−2N

β

)
sech2

(√
−N

M
ξ

)
. (3.10)

From (2.1), (2.8), and (3.10), we know that Eq. (1.5) admits the bright soliton
solution

u(x, t) = ±

√
−2N

β
sech

(√
−N

M
ξ

)
exp (iη) , (3.11)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

(3) For h ∈ (0,∞), the curves in the right phase plane defined by H(ϕ, y) = h
has a family of closed branch enclosing the homoclinic orbit defined by H(ϕ, y) = 0.
We have

(
dϕ
dξ

)2
= 2β

M ϕ (ϕ− ϕm) (ϕM − ϕ), where ϕm = −N
β −

√
4N2+2Mhβ

2β , ϕM =

−N
β +

√
4N2+2Mhβ

2β . For ϕ(ξ) ∈ (0, ϕM ], it gives rise to the same exact periodic
solution family of system (2.11) as (3.2), and equation (1.5) has the same exact
periodic wave solutions as (3.3).
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Case IV M > 0, N = 0(refer to Figure 2(a)).
For h ∈ (0,∞), the curves in the right phase plane defined by H(ϕ, y) = h are a

family of periodic orbits of system (2.11). Then
(

dϕ
dξ

)2
= 2β

M ϕ (ϕ− ϕm) (ϕM − ϕ),

where ϕm = −
√

Mh
2β , ϕM =

√
Mh
2β . Hence, for ϕ ∈ (0, ϕM ), we have the following

family of periodic wave solutions:

ϕ(ξ) = ϕMcn2 (Ω4ξ,K4) , (3.12)

where Ω4 =
(

hβ
2M

) 1
4 , K4 =

√
1
2 .

Owing to (2.1), (2.8), and (3.12), we obtain the exact envelope periodic wave
solutions of equation (1.5) expressed by Jacobian elliptic cosine function

u(x, t) = ±
√

ϕMcn (Ω4ξ,K4) exp (iη) , (3.13)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

To sum up, we have the following main conclusion:

Theorem 3.1. For p = 1, under different parameter conditions, corresponding to
the bounded real curves defined by H(ϕ, y) = h, equation (1.5) has the exact explicit
solutions given by (3.3), (3.5), (3.7), (3.9), (3.11), (3.13).

4. The existence of smooth traveling wave solutions
when p ≥ 1

2, β > 0

In section 3, we give a various of different explicit smooth wave solutions of Eq.(1.5)
when p = 1 and β > 0. But for any p, it’s not easily to find the explicit exact
solutions from (2.12). In this section, we discuss the existence of the bounded
solutions of equation (1.5) by singular dynamical system approach [12, 13]. As the
parameters varying, we can also obtain the explicit expressions of solitary wave and
periodic wave in special cases. We draw conclusions as follow.

Theorem 4.1. For p ≥ 1
2 , β > 0, equation (1.5) has the solitary wave solutions,

under one of the following conditions

(1) M<0, N<0, curves correspond to H(ϕ, y) = h1 in (2.12)(refer to Figure 1(c)).
(2) M>0, N<0, curves correspond to H(ϕ, y)=0 in (2.12)(refer to Figure 1(d)).

Especially, in the case (2) of Theorem 4.1, we obtain the unique explicit envelope
solitary wave solution of equation (1.5)

u(x, t) =

(
−N(p+ 1)

β

) 1
2p

sech
1
p

(√
−N

M
pξ

)
exp (iη) , (4.1)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants.

Theorem 4.2. For p ≥ 1
2 , β > 0, equation (1.5) has the bounded periodic wave

solutions, under one of the following conditions
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(1) M > 0, N > 0, curves correspond to H(ϕ, y) = h, h∈ (0,∞) in (2.12)(refer to
Figure 1(a)).

(2) M < 0, N < 0, curves correspond to H(ϕ, y) = h, h ∈ (0, h1) in (2.12)(refer to
Figure 1(c)).

(3) M > 0, N < 0, curves correspond to H(ϕ, y) = h, h ∈ (h1, 0) ∪ (0,∞) in
(2.12)(refer to Figure 1(d)).

(4) M > 0, N = 0, curves correspond to H(ϕ, y) = h, h ∈ (0,∞) in (2.12)(refer to
Figure 2(a)).

In special case of p = 1
2 , we can obtain the explicit exact traveling wave solutions

of Eq.(1.5). For M > 0, N > 0, h ∈ (0, h1) (or M > 0, N < 0, h ∈ (h1, 0)),
Eq.(1.5) has the envelope double periodic wave solutions expressed by Jacobian
elliptic function

u(x, t) =

{
r2 + (r3 − r2) cn

2

(√
β(r3 − r1)

6M
ξ,

√
r3 − r2
r3 − r1

)}
exp (iη) , (4.2)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants. It corresponds to Theorem 4.2 (1) and (3).

For M < 0, N < 0, h ∈ (0, h1), we obtain the envelope double periodic wave
solutions expressed by Jacobian elliptic function

u(x, t) =

{
r1 + (r2 − r1) sn

2

(√
−β(r3 − r1)

6M
ξ,

√
r2 − r1
r3 − r1

)}
exp (iη) , (4.3)

where ξ = (α+ kγ + 2ω)x − (θ − 2k + ωγ) t + ξ1, η = kx + ωt + ξ0, ξ0 and ξ1 are
arbitrary constants. It corresponds to Theorem 4.2 (2).

For M > 0, N > 0, h ∈ (h1,∞) (or M > 0, N < 0, h ∈ (−∞, h1)), we obtain
the envelope double periodic wave solutions expressed by Jacobian elliptic function

u(x, t) =

(
r1 +

√
∆
)
cn(Ω5,K5)−

(
r1 −

√
∆
)

cn(Ω5,K5)− 1
exp (iη) , (4.4)

where ∆ = (r1−b1)
2+a31, Ω5 =

(
2β

√
∆

3M

) 1
2 , K5 =

√√
∆+r1−b1
2
√
∆

, ξ = (α+ kγ + 2ω)x−
(θ − 2k + ωγ) t+ ξ1, η = kx+ ωt+ ξ0, ξ0 and ξ1 are arbitrary constants. It corre-
sponds to Theorem 4.2 (1) and (3).

The above r1, r2, r3 are the real roots of − 2β
3M ϕ3 − N

M ϕ2 + h = 0, r1 < r2 < r3.
b1 + ia1 and b1 − ia1 are the conjugate complex roots of − 2β

3M ϕ3 − N
M ϕ2 + h = 0.

For p ≥ 1
2 , β < 0, we can draw similar conclusions as above.

5. Conclusion
In this paper, we consider the generalized nonlinear Schrödinger equation with
wave operator. This partial differential equation can be transformed into a two-
dimensional integrable system with a singular line. Then we analyze the dynamics
and bifurcation behavior of traveling wave solutions of system by using the theory
of singular systems. Particularly, we analyze the cases of high order equilibrium
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point. Moreover, we find the solitary wave and periodic wave solutions for the
classical nonlinear Schrödinger equation with wave operator. Finally, we obtain the
existence of different type traveling wave solutions and give the explicit expressions
of exact solutions in the special cases by applying singular dynamical system theory.
All above results indicate that the theory of singular systems is very helpful for
studying the traveling wave solution of nonlinear differential equation.
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