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NEW BLOW-UP CRITERIA FOR 3D
CHEMOTAXIS-NAVIER-STOKES EQUATIONS∗
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Abstract In this paper, we consider new blow-up criteria for the chemotaxis-
Navier-Stokes equations in three dimensions. Specifically, by combining the
Prodi-Serrin condition for oxygen concentration ∇c with some condition on
the velocity or vorticity of fluid in Besov space, we establish new blow-up
criteria for local existence of classical solutions for chemotaxis-Navier-Stokes
equations. The scaling invariant blow-up criterion involving cell density n and
gradient of velocity is also investigated.
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1. Introduction
In this paper, we consider the following 3D chemotaxis-Navier-Stokes equations:

∂tn+ u · ∇n = ∆n−∇ · (nχ(c)∇c),

∂tc+ u · ∇c = ∆c− k(c)n,

∂tu+ (u · ∇)u+∇P = ∆u− n∇ϕ,

∇ · u = 0, (t, x) ∈ R+ × R3,

(1.1)

where the unknowns n(t, x) : R+ ×R3 → R+, c(t, x) : R+ ×R3 → R+, u(t, x) :
R+ ×R3 → R3 and P (t, x) : R+ × R3 → R denote the cell density, the oxygen con-
centration, the fluid velocity, and the corresponding scalar pressure, respectively.
The nonnegative function k(c) denotes the oxygen consumption rate, and the non-
negative function χ(c) denotes chemotactic sensitivity. The time-independent func-
tion ϕ = ϕ(x) is the potential function produced by different physical mechanisms,
e.g., the gravitational force or centrifugal force.

The system (1.1) was firstly proposed by Tuval [19] to describe a biological pro-
cess, in which bacteria move by swimming towards higher concentration of oxygen
according to mechanism of chemotaxis while the movement of fluid is under the influ-
ence of gravitational force generated by bacteria themselves. Many researchers made
great efforts to establish the existence theory for system (1.1). Duan etc [7, p11]
were the first to prove the global existence of weak solutions to the Cauchy problems
of (1.1) under some smallness assumptions on potential function and initial data,
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and later Liu and Lorz [14] removed the smallness assumption and obtained global
existence of weak solutions with large data. Winkler [21] established the existence
of a unique global classical solution with arbitrary large initial data in a convex
domain Ω of R2. Subsequently, Winkler proved that the global classical solution
converges to a constant state (n∞, 0, 0) as time goes to infinity in [22]. Based on
Winkler’s work, Jiang etc [12, p11] generalized the result by removing the assump-
tion of convex domain. What is more relevant to this paper is that Chae, Kang and
Lee [4] established local existence of classical solutions (u, n, c) for system (1.1) in
Rd, d = 2, 3, which satisfies

(u, n, c) ∈ L∞(0, T ;Hm(Rd)×Hm−1(Rd)×Hm(Rd)), (1.2)
(∇u,∇n,∇c) ∈ L2(0, T ;Hm(Rd)×Hm−1(Rd)×Hm(Rd)), for some T > 0

with the assumptionsχ, k ∈ Cm(R+), k(0) = 0, ∥∇lϕ∥L∞ < ∞, for 1 ≤ |l| ≤ m,

(u0, n0, c0) ∈ Hm(Rd)×Hm−1(Rd)×Hm(Rd), with m ≥ 3.
(1.3)

Under the same assumptions as in (1.3), the authors in [5] considered the hyperbolic
oxygen concentration equation, and obtained the same results mentioned before.
For other interesting results on system (1.1), we refer to [2, 3, 10, 11, 15, 16, 23] and
the reference therein.

The blow-up criteria on the global regularity of solutions for system (1.1) got
much attention (see [2,4,5,8,24,25]). We collect these blow-up criteria and into two
parts. The first one is based on the concentration term ∇c. For example, Chae,
Kang and Lee [4] proposed a blow-up criterion

∥∇u∥L1(0,T ;L∞) + ∥∇c∥L2(0,T ;L∞) < ∞. (1.4)

Moreover, they proposed a Prodi-Serrin type regularity criterion

∥u∥Lq(0,T ;Lp) + ∥∇c∥L2(0,T ;L∞) < ∞,
3

p
+

2

q
= 1, 3 < p ≤ ∞. (1.5)

Recently, Dai and Liu [8] proposed a low modes blow-up criterion∫ T

0

∥∇c≤Qc(t)(t)∥
2
L∞ + ∥u≤Qu(t)(t)∥B1

∞,∞
dt < ∞, (1.6)

where u≤Qu
and c≤Qc

low frequency part of u and c below the wavenumber 2Qu

and 2Qc respectively, both of which can be clearly defined within the framework of
Littlewood-Paley theory in the upcoming sections. The other one is based on the
density term n. For example, Chae, Kang and Lee [5] obtained a regularity criterion

∥u∥Lγ(0,T∗;Lβ) + ∥n∥Lq(0,T∗;Lp) < ∞, (1.7)

where

3

β
+

2

γ
≤ 1, 3 < β ≤ ∞,

3

p
+

2

q
= 2,

3

2
< p ≤ ∞.
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As for blow-up criteria in Besov space, Choe and Lkhagvasuren [2] gave the exten-
sion for the local in time solution

∥u∥L∞(0,T ;Ḃρ
β,∞) + ∥n∥L∞(0,T ;Ḃσ

λ,∞) < C, (1.8)

with
3

p
− 3

β
+ ρ > 0,

3

p
− 3

λ
+ σ − 1 > 0,

where 1 ≤ p < 6
5 and (n0, c0, u0) ∈ Ḃ

2+ 3
p

p,1 (R3)× Ḃ
3
p

p,1(R
3)× Ḃ

−1+ 3
p

p,1 (R3). Later, Zhai
and Yin [25] extended the local solutions to global solutions under the smallness
assumptions on ∥n0∥

Ḃ
−2+ d

p
q,1

, ∥c0∥
Ḃ

d
r
r,1

and ∥uh
0∥

Ḃ
−1+ d

p
p,1

with uh
0 = (u1

0, u
2
0) proposed

a blow-up criterion: ∫ T∗

0

(∥∇ × u∥
Ḃ

d
p
p,1

+ ∥n∥
Ḃ

d
q
q,1

)dt = ∞. (1.9)

Note that, if the Laplacian term ∆c is removed, then (1.1)2 becomes a hyperbolic
equation. Xie and Ma [24] proposed several blow-up criteria for this parabolic-
hyperbolic type of system (1.1). Their results are as follows: If u satisfies any one
of the following conditions:

u ∈ L2(0, T ; Ḃ0
∞,∞(R3)), (1.10)

u ∈ L
2

1−θ (0, T ; Ḃ−θ
∞,∞(R3)) with 0 < θ < 1, (1.11)

ω := curl u ∈ L1(0, T ; Ḃ0
∞,∞(R3)), (1.12)

P ∈ L
2

2+r (0, T ; Ḃr
∞,∞(R3)) with − 1 ≤ r ≤ 1(r = −1) (1.13)

and n satisfies
n ∈ L2(0, T ;L∞(R3)), (1.14)

then the solution (n, c, u) cannot blow up. In addition, other forms of chemotaxis-
Navier-Stokes equations with the linear diffusion term ∆n is replaced by ∆nm

have also been extensively studied, and we refer to [9, 14, 17]. For the chemotaxis-
Navier-Stokes equations with logistic source, rotating flux term and slow p-Laplacian
diffusion which are shown in [6, 20] and [18], respectively.

The main objectives of this paper are to obtain new blow-up criteria for the
chemotaxis-Navier-Stokes equations (1.1) and to improve or generalize some of the
previous results of [2, 4, 5]. Now we are in position to give our main conclusions.

Theorem 1.1. Let n0 ≥ 0, c0 ≥ 0 and (1.3) hold, and T ∗ be the maximal time
for local existence of classical solutions (u, n, c) of (1.1) as given by (1.2). For any
0 < T < T ∗, Assume there holds for ∇c that∫ T

0

∥∇c∥βLαdt < ∞ with 3

α
+

2

β
= 1, 3 < α ≤ ∞ (1.15)

and one of the following conditions is true:

(1) The velocity u satisfies∫ T

0

∥u(t)∥β
Ḃ0

α,∞
dt < ∞ with 3

α
+

2

β
= 1, 3 < α ≤ ∞. (1.16)
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(2) The gradient of velocity satisfies∫ T

0

∥∇u(t)∥Ḃ0
∞,∞

dt < ∞. (1.17)

(3) The vorticity of velocity ω = ∇× u satisfies∫ T

0

∥ω∥β
Ḃ0

α,∞
dt < ∞,

3

α
+

2

β
= 2,

3

2
< α < 3. (1.18)

Then the solution (u, n, c) can be survived exceed T ∗.

Remark 1.1. The main contribution of this theorem is to improve the condition
∇c ∈ L2(0, T ;L∞) in [4] (see (1.4) and (1.5)) to the general form ∇c ∈ Lβ(0, T ;Lα)
with 3

α + 2
β = 1. Besides, the Prodi-Serrin condition for velocity u and vorticity ω

is also generalized in some suitable Besov space.

Theorem 1.2. Let n0 ≥ 0, c0 ≥ 0 and k′(c) be non-negative satisfying (1.3), and
T ∗ be the maximal time for local existence of classical solutions (u, n, c) of (1.1) as
given by (1.2). Suppose further that n0 satisfies∫

R3

n0| lnn0|dx < ∞

and for any 0 < T < T∗, there holds

sup
0<t<T

∫
R3

n lnndx > 0∫ T

0

(∥n∥qLp + ∥∇u∥Ḃ0
∞,∞

)dt < ∞ with 3

p
+

2

q
= 2,

3

2
< p ≤ ∞. (1.19)

Then the solution (n, c, u) can be survived exceed T ∗

2. Preliminary and Notations
We begin this section with some notations and lemmas, which are useful for us
to prove Theorem 1.1 and Theorem 1.2. In order to define Besov spaces, we first
introduce the Littlewood-Paley decomposition theory. Let S(R3) be the Schwartz
class of rapidly decreasing function, given f ∈ S(R3), its Fourier transformation
Ff = f̂ is defined by

f̂(ξ) =

∫
R3

e−ix·ξf(x)dx,

and its inverse Fourier transform F−1f = f̌ is defined by

f̌(x) = (2π)−3

∫
R3

eix·ξf(ξ)dξ.

More generally, the Fourier transform of any f ∈ S ′(R3), the space of tempered
distributions, is given by

⟨f̂ , g⟩ = ⟨f, ĝ⟩,
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for any g ∈ S(R3). The Fourier transform is a bounded linear bijection from S ′ to
S ′ whose inverse is also bounded. We fix the notation

Sh = {ϕ ∈ S,
∫
R3

ϕ(x)xγdx = 0, |γ| = 0, 1, 2, · · ·}.

Its dual is given by
S ′
h = S ′/S⊥

h = S ′/P,

where P is the space of polynomial. In other words, two distributions in S ′
h are

identified as the same if their difference is a polynomial. Let us choose two non-
negative radial functions χ, φ ∈ S(R3) supported in B = {ξ ∈ R3 : |ξ| ≤ 4/3} and
C = {ξ ∈ R3 : 3/4 ≤ |ξ| ≤ 8/3}, respectively, such that∑

j∈Z

φ(2−jξ) = 1,∀ξ ∈ R3\{0},

and
χ(ξ) +

∑
j≥0

φ(2−jξ) = 1,∀ξ ∈ R3.

Let h = F−1φ and h̃ = F−1χ, and then we define the homogeneous dyadic blocks
∆̇j and the homogeneous low-frequency cut-off operator Ṡj as follows:

∆̇ju = φ(2−jD)u = 23j
∫
R3

h(2jy)u(x− y)dy,

and
Ṡju = χ(2−jD) = 23j

∫
R3

h̃(2jy)u(x− y)dy.

Informally, ∆̇j is a frequency projection to the annulus {|ξ| ∼ 2j}, while Ṡj is a
frequency projection to the ball {|ξ| ∼ 2j}. It is straightforward to verify that
∆̇j∆̇kf = 0 if |j − k| ≥ 2. Especially for any f ∈ L2(R3), we have the Littlewood-
Paley decomposition:

f =

+∞∑
j=−∞

∆̇jf. (2.1)

We now give the definitions of Besov spaces. Let s ∈ R, p, q ∈ [1,∞], the homoge-
neous Besov space Ḃs

p,q(R3) defined via the full-dyadic decomposition. We say that
f ∈ Ḃs

p,q(R3), if f ∈ S′
h and

+∞∑
j=−∞

(2js∥∆̇jf∥Lp)q < ∞,

with the norm

∥f∥Ḃs
p,q

=


(

+∞∑
j=−∞

2qjs∥∆̇jf∥qLp)
1
q , 1 ≤ q < ∞,

sup
j∈Z

2js∥∆̇jf∥Lp , q = ∞.
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It is of interest to note that the homogeneous Besov space Ḃs
2,2(R3) is equivalent to

the homogeneous Sobolev space Ḣs(R3). The following Bernstein inequalities will
be used in the next section.

Lemma 2.1 (Lemma 2.1, [1]). Let B be a ball and C an annulus. A constant
C exists such that for any nonnegative integer k, and couple (p, q) in [1,∞]2 with
1 ≤ p ≤ q, and any function u of Lp(Rd), we have

Supp û ⊂ λB ⇒ sup
|α|=k

∥∂αu∥Lq ≤ Ck+1λk+d( 1
p−

1
q )∥u∥Lp , (2.2)

Supp û ⊂ λC ⇒ C−k−1λk∥u∥Lp ≤ sup
|α|=k

∥∂αu∥Lp ≤ Ck+1λk∥u∥Lp . (2.3)

Lemma 2.2 (Theorem 2.42, [1]). Let 1 ≤ q < p < ∞ and α be a positive real
number. A constant C exists such that

∥f∥Lp ≤ C∥f∥1−θ

Ḃ−α
∞,∞

∥f∥θ
Ḃβ

q,q
, with β = α

(
p

q
− 1

)
and θ =

q

p
. (2.4)

3. Proof of Main results
In this section, we prove our main results. In view of the conditions of 1.1, 1.2 and
(1.3), we see the unique classical solution (n, c, u) satisfying (1.2) for time interval
(0, T ∗) with (n0, c0, u0) ∈ Hm(R3)×Hm−1(R3)×Hm(R3). Our strategy the local
classical solution can be survived the maximal interval (0, T ∗) if the conditions
(1.15) and (1.16), (1.15) and (1.17), (1.15) and (1.18) in Theorem 1.1 or (1.19) in
Theorem 1.2 is satisfied. We prove Theorem 1.1 and Theorem 1.2 in turn.

3.1. Proof of Theorem 1.1
First of all, we give the proof of Theorem 1.1 when the conditions (1.15) and (1.16)
simultaneously hold. Multiplying n to both sides of the equation (1.1)1 and us-
ing integration by parts, we apply the Hölder, Young’s and Gagliardo-Nirenberg
inequalities to get the L2 estimate of n that

d

dt
∥n∥2L2 + 2∥∇n∥2L2 = −

∫
R3

∇ · (nχ(c)∇c)ndx

≤ ∥∇c∥Lα∥n∥
L

2α
α−2

∥∇n∥L2

≤ ∥∇c∥Lα∥n∥
α−3
α

L2 ∥∇n∥
α+3
α

L2

≤ C∥∇c∥
2α

α−3

Lα ∥n∥2L2 +
1

2
∥∇n∥2L2 . (3.1)

Similar to above, by testing −∆c to the equation (1.1)2, we get the estimates of
∥∇c∥L2 as follows:

1

2

d
dt∥∇c∥2L2 + ∥∇2c∥2L2 ≤

∫
R3

|∇u∇c∇c|dx+

∫
R3

|k(c)n∆c|dx

≤ ∥∇c∥Lα∥∇c∥
L

2α
α−2

∥∇u∥L2 + C∥n∥L2∥∇2c∥L2 (3.2)

≤ C∥∇c∥
2α

α−3

Lα ∥∇c∥2L2 + C
(
∥∇u∥2L2 + ∥n∥2L2

)
+

1

2
∥∇2c∥2L2 .
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As to the equation (1.1)3, we have

d
dt∥∇u∥2L2 + ∥∇2u∥2L2 ≤

∣∣∣∣∫
R3

u · ∇u∆udx
∣∣∣∣+ ∫

R3

|∇ϕn∆u|dx

≤ I1 + C∥n∥L2∥∇2u∥L2 , (3.3)

where I1 is bounded

I1 ≤ ∥u∥Lp∥∇u∥
L

2p
p−2

∥∇2u∥L2

≤ C∥u∥1−
2
p

Ḃ
− 3

α
∞,∞

∥u∥
2
p

Ḃ
β1
2,2

∥∇u∥
2
p

Ḃ
−1− 3

α
∞,∞

∥∇u∥1−
2
p

Ḃ
β2
2,2

∥∇2u∥L2

≤ C∥u∥Ḃ0
α,∞

∥u∥
2
p

Ḃ
β1
2,2

∥∇u∥1−
2
p

Ḃ
β2
2,2

∥∇2u∥L2 , (3.4)

where β1 and β2 is given by

β1 =
3

α

(p
2
− 1
)

and β2 =

(
1 +

3

α

)(
p

p− 2
− 1

)
. (3.5)

Now, by the fact 3 < α < ∞, we choose suitable p such that

max

{
6

α
+ 4,

2α

3
+ 2

}
< p <

4α

3
+ 2. (3.6)

It is easy to see that 1 < β1 < 2 and 0 < β2 < 1. Thus by interpolation inequality,
one has

∥u∥
Ḃ

β1
2,2

≤ C∥∇u∥2−β1

L2 ∥∇2u∥β1−1
L2 , (3.7)

∥∇u∥
Ḃ

β2
2,2

≤ C∥∇u∥1−β2

L2 ∥∇2u∥β2

L2 . (3.8)

Inserting (3.7) and (3.8) into (3.4), we obtain

I1 ≤ C∥u∥Ḃ0
α,∞

∥∇u∥
2
p (2−β1)+(1− 2

p )(1−β2)

L2 ∥∇2u∥
2
p (β1−1)+(1− 2

p )β2

L2 ∥∇2u∥L2

= C∥u∥Ḃ0
α,∞

∥∇u∥1−
3
α

L2 ∥∇2u∥1+
3
α

L2

≤ C∥u∥
2α

α−3

Ḃ0
α,∞

∥∇u∥2L2 +
1

4
∥∇2u∥2L2 .

This implies

d
dt∥∇u∥2L2 + ∥∇2u∥2L2 ≤ C∥u∥

2α
α−3

Ḃ0
α,∞

∥∇u∥2L2 + C∥n∥2L2 +
1

2
∥∇2u∥2L2 . (3.9)

Combining (3.1), (3.2) with (3.9), absorbing the small terms on the right hand of
the inequality, we have

d
dt
(
∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2

)
+
(
∥∇n∥2L2 + ∥∇2c∥2L2 + ∥∇2u∥2L2

)
≤C

(
1 + ∥∇c∥

2α
α−3

Lα + ∥u∥
2α

α−3

Ḃ0
α,∞

)(
∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2

)
. (3.10)
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Applying Gronwall’s inequality, we obtain

sup
0≤t≤T

(
∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2

)
+

∫ T

0

(
∥∇n∥2L2 + ∥∇2c∥2L2 + ∥∇2u∥2L2

)
dt

≤C
(
∥n0∥2L2 + ∥∇c0∥2L2 + ∥∇u0∥2L2

)
exp

(∫ T

0

(
1 + ∥∇c∥

2α
α−3

Lα + ∥u∥
2α

α−3

Ḃ0
α,∞

)
dt
)
.

(3.11)

Thus, we get

(n,∇u,∇c) ∈ L∞(0, T ;L2(R3)) and (∇n,∇2u,∇2c) ∈ L2(0, T ;L2(R3)). (3.12)

Next, we multiply both sides of the equation (1.1)2 by ∆2c, thus yielding

1

2

d
dt∥∇

2c∥2L2 + ∥∇3c∥2L2 ≤
∣∣∣∣∫

R3

∆(u · ∇c)∆cdx
∣∣∣∣+ ∣∣∣∣∫

R3

∆(k(c)n)∆cdx
∣∣∣∣

≤ C

∫
R3

∣∣∇u∇c∇3c
∣∣dx+ C

∫
R3

|n∇c∇∆c|dx

+ C

∫
R3

|∇n∇∆c|dx

= J1 + J2 + J3.

We deal with Ji, i = 1, 2, 3 as follows:

J1 ≤ ∥∇c∥Lα∥∇u∥
L

2α
α−2

∥∇3c∥L2

≤ C∥∇c∥
2α

α−3

Lα ∥∇u∥2L2 + C∥∇2u∥2L2 +
1

6
∥∇3c∥2L2 ,

J2 ≤ C∥∇c∥
2α

α−3

Lα ∥n∥2L2 + C∥∇n∥2L2 +
1

6
∥∇3c∥2L2 ,

J3 ≤ C∥∇n∥2L2 +
1

6
∥∇3c∥2L2 .

Therefore, by (3.12) one has

d
dt∥∇

2c∥2L2 + ∥∇3c∥2L2 ≤ C∥∇c∥
2α

α−3

Lα

(
∥∇u∥2L2 + ∥n∥2L2

)
+ C

(
∥∇n∥2L2 + ∥∇2u∥2L2

)
≤ C∥∇c∥

2α
α−3

Lα + C
(
∥∇n∥2L2 + ∥∇2u∥2L2

)
, (3.13)

and then applying (1.15) and (3.10) yields

sup
0≤t≤T

∥∆c∥2L2 +

∫ T

0

∥∇3c(t)∥2L2dt ≤ C < ∞.

Finally, on one hand, by the embedding inequality

∥u∥L6 ≤ C∥∇u(t)∥L2 ,

it is easy to see that

u ∈ L4(0, T ;L6(R3)) with 3

6
+

2

4
= 1. (3.14)
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On the other hand, by (3.10) and (3.13), we have∫ T

0

∥∇c(t)∥2L∞dt ≤
∫ T

0

∥∇c(t)∥
1
2

L2∥∇∆c(t)∥
3
2

L2dt

≤ C(T )

(∫ T

0

∥∇∆c(t)∥2L2dt
) 3

4

≤ C(T ) < ∞. (3.15)

Thus, we apply the blow-up criterion (1.5) to finish the proof when (1.15) and (1.16)
hold.

Secondly, if the assumptions of (1.15) and(1.17) hold, then it is enough for us to
give a new estimate for I1 in (3.3). By using the Littlewood-Paley decomposition
(2.1), we decompose u as follows

u =
∑
j∈Z

∆̇ju =
∑

j<−N

∆̇ju+

N∑
j=−N

∆̇ju+
∑
j>N

∆̇ju,

where N is a positive integer to be chosen later. Substituting this into I1, we have

I1 ≤
∑

j<−N

∣∣∣∣∫
R3

∆̇ju · ∇u∆udx
∣∣∣∣+ N∑

j=−N

∣∣∣∣∫
R3

∆̇ju · ∇u∆udx
∣∣∣∣

+
∑
j>N

∣∣∣∣∫
R3

∆̇ju · ∇u∆udx
∣∣∣∣

= I11 + I12 + I13. (3.16)

For I11, by Hölder’s and Bernstein inequalities (2.3) and (2.2), one has

I11 ≤ C
∑

j<−N

∫
R3

|∆̇ju||∇u||∇2u|dx

≤

 ∑
j<−N

∥∆̇ju∥L∞

 ∥∇u∥L2∥∇2u∥L2

≤ C

 ∑
j<−N

2
1
2 j∥∆̇j∇u∥L2

 ∥∇u∥L2∥∇2u∥L2

≤ C2−
1
2N∥∇u∥2L2∥∇2u∥L2

≤ C02
−N∥∇u∥4L2 +

1

16
∥∇2u∥2L2 . (3.17)

Similar to I11, we apply Hölder’s and Bernstein inequalities (2.3) again to get

I13 ≤

∑
j>N

∥∆̇ju∥L3

 ∥∇u∥L6∥∇2u∥L2

≤ C

∑
j>N

2
1
2 j∥∆̇ju∥L2

 ∥∇2u∥2L2
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≤ C12
− 1

2N∥∇u∥L2∥∇2u∥2L2 . (3.18)

As to I12, by using integration by parts, the property of divergence free for u, it is
easy to see that

I12 ≤

 N∑
j=−N

∥∆̇j∇u∥L∞

 ∥∇u∥2L2 ≤ CN∥∇u∥Ḃ0
∞,∞

. (3.19)

Next, we choose a suitable N such that

max{C0, C1}2−
1
2N∥∇u∥L2 ≤ 1

8
, (3.20)

i.e.

N ≥ log+(max{C0, C1}∥∇u∥L2)

log 2
+ 2, (3.21)

where log+ t = log t for 1 ≤ t and log+ t = 0 for 0 < t < 1. Thus, by combining
(3.16)-(3.21), we have

I1 ≤ C log(∥∇u∥L2 + e)∥∇u∥Ḃ0
∞,∞

∥∇u∥2L2 +
1

4
∥∇u∥2L2 +

1

4
∥∇2u∥2L2 .

Then (3.9) is replaced by

d
dt∥∇u∥2L2+∥∇2u∥2L2 ≤C log(∥∇u∥L2+e)∥∇u∥Ḃ0

∞,∞
∥∇u∥2L2+C∥n∥2L2+

1

2
∥∇2u∥2L2 .

Consequently, it yields that

d
dt
(
∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2

)
+
(
∥∇n∥2L2 + ∥∇2c∥2L2 + ∥∇2u∥2L2

)
≤C log(∥∇u∥L2 + e)

(
∥∇c∥

2α
α−3

Lα + ∥∇u∥Ḃ0
∞,∞

)(
∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2

)
.

Applying Gronwall’s inequality, we obtain for any t < T

∥n∥2L2 + ∥∇c∥2L2 + ∥∇u∥2L2 +

∫ T

0

(
∥∇n∥2L2 + ∥∇2c∥2L2 + ∥∇2u∥2L2

)
dt

≤C
(
∥n0∥2L2 + ∥∇c0∥2L2 + ∥∇u0∥2L2

)
× exp

(∫ t

0

log(∥∇u∥L2 + e)

(
∥∇c∥

2α
α−3

Lα + ∥∇u∥Ḃ0
∞,∞

)
dτ
)
.

Denote W (t) := log(∥n(t)∥2L2 + ∥∇c(t)∥2L2 + ∥∇u(t)∥2L2 + e), then we have

W (t) ≤ C1 + C2

∫ t

0

(
∥∇c∥

2α
α−3

Lα + ∥∇u∥Ḃ0
∞,∞

)
W (τ)dτ.

Applying Gronwall’s inequality again, we get the same results of (3.12). We omit
the remainder of the proof as it can be obtained with obvious modifications from
the previous analysis, and then we finish the proof when (1.15) and (1.17) hold.
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Thirdly, in view of (3.1), we notice that (1.15) implies n ∈ L∞(0, T ;L2(R3)) and
∇n ∈ L2(0, T ;L2(R3)), and then by the equation (1.1)3, we have

d
dt∥u∥

2
L2 + ∥∇u∥2L2 ≤ C∥n∥L2∥u∥L2 ,

then we obtain u ∈ L∞(0, T ;L2(R3)), ∇u ∈ L2(0, T ;L2(R3)). From (3.2), we see
that ∇c ∈ L∞(0, T ;L2(R3)), ∇2c ∈ L2(0, T ;L2(R3)).
Next, we recall the vorticity equation

ωt −∆ω + u∇ω = ω∇u−∇× (n∇ϕ). (3.22)

By testing the equations (3.22) with ω and applying Lemma 2.2, Hölder’s inequality
and integration by parts, we obtain

d
dt∥ω∥

2
L2 + ∥∇ω∥2L2 ≤ ∥u∥Lp∥ω∥

L
2p

p−2
∥∇ω∥L2 + C∥n∥L2∥∇ω∥L2

≤ ∥u∥1−
2
p

Ḃ
1− 3

α
∞,∞

∥u∥
2
p

Ḃ
β1
2,2

∥ω∥
2
p

Ḃ
− 3

α
∞,∞

∥ω∥1−
2
p

Ḃ
β2
2,2

∥∇ω∥L2 + C∥n∥L2∥∇ω∥L2

≤ C∥ω∥Ḃ0
α,∞

∥u∥
2
p

Ḃ
β1
2,2

∥ω∥1−
2
p

Ḃ
β2
2,2

∥∇ω∥L2 + C∥n∥L2∥∇ω∥L2 ,

(3.23)

where α is a real number which belongs to ( 32 , 3), β1 and β2 are given, respectively,
by β1 = ( 3

α − 1)(p2 − 1) and β2 = 3
α (

p
p−2 − 1). We can choose a suitable p such that

max{ 6
α
+ 2,

6

3− α
} < p <

2α+ 6

3− α
.

It’s easy to see that 1 < β1 < 2 and 0 < β2 < 1. Thus by interpolation inequality,

∥u∥
B

β1
2,2

≤ C∥ω∥2−β1

L2 ∥∇ω∥β1−1
L2 , (3.24)

∥ω∥
B

β2
2,2

≤ C∥ω∥1−β2

L2 ∥∇ω∥β2

L2 . (3.25)

Then inserting (3.24) and (3.25) into (3.23), we use the Gargliardo-Nirenberg’s
inequality and Young’s inequality to obtain

d
dt∥ω∥

2
L2 + ∥∇ω∥2L2 ≤ C∥ω∥B0

α,∞
∥ω∥

2
p (2−β1)+(1− 2

p )(1−β2)

L2 ∥∇ω∥
2
p (β1−1)+(1− 2

p )β2+1

L2

+ C∥n∥L2∥∇ω∥L2

≤ C∥ω∥B0
α,∞

∥ω∥2−
3
α

L2 ∥∇ω∥
3
α

L2 + C∥n∥L2∥∇ω∥L2

≤ ∥ω∥
2α

2α−3

B0
α,∞

∥ω∥2L2 +
1

4
∥∇ω∥2L2 + C∥n∥2L2 +

1

4
∥∇ω∥2L2 .

Thanks to the boundedness of n, we obtain

ω ∈ L∞(0, T ;L2(R3)) and ∇ω ∈ L2(0, T ;L2(R3)).

Therefore, we obtain the same results as (3.14) and (3.15). We omit the rest of the
proof, which is analogous to the previous one. Finally, we use a known blow-up
criterion (1.5) to finish the proof when (1.15) and (1.18) hold.
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3.2. Proof of Theorem 1.2
Now, we prove the result of the theorem when assumption (1.19) hold. We denote
vorticity as ω := ∇× u, and recall the vorticity equation (3.22). Then we multiply
both sides of (3.22) by ω and integrate over R3 yielding

1

2

d
dt∥ω∥

2
L2 + ∥∇ω∥2L2 =

∫
R3

ω · ∇uωdx−
∫
R3

∇× (n∇ϕ)ωdx := K1 +K2. (3.26)

For K1, we use the Littlewood-Paley decomposition (2.1), we decompose u as fol-
lows:

u =
∑
j∈Z

∆̇ju =
∑

j<−L

∆̇ju+

L∑
j=−L

∆̇ju+
∑
j>L

∆̇ju, (3.27)

where N is a positive integer to be chosen later. Substituting this into K1, we have

K1 ≤
∑

j<−L

∣∣∣∣∫
R3

ω · ∇∆̇juωdx
∣∣∣∣+ L∑

j=−L

∣∣∣∣∫
R3

ω · ∇∆̇juωdx
∣∣∣∣

+
∑
j>L

∣∣∣∣∫
R3

ω · ∇∆̇juωdx
∣∣∣∣

= K11 +K12 +K13. (3.28)

For K11, integration by parts, the property of divergence free, Hölder’s and Bern-
stein inequalities (2.3), one has

K11 ≤ C
∑

j<−L

∫
R3

|ω||∆̇ju||∇ω|dx

≤

 ∑
j<−L

∥∆̇ju∥L∞

 ∥ω∥L2∥∇ω∥L2

≤ C

 ∑
j<−L

2
1
2 j∥∆̇j∇u∥L2

 ∥ω∥L2∥∇ω∥L2

≤ C2−
1
2L∥∇u∥L2∥ω∥L2∥∇ω∥L2

≤ C22
−L∥∇u∥2L2∥ω∥2L2 +

1

16
∥∇ω∥2L2 . (3.29)

Similar to K11, we apply Hölder’s and Bernstein inequalities (2.3) again to get

K13 ≤

∑
j>L

∥∆̇ju∥L3

 ∥ω∥L6∥∇ω∥L2

≤ C

∑
j>L

2
1
2 j∥∆̇ju∥L2

 ∥∇ω∥2L2

≤ C32
− 1

2L∥∇u∥L2∥∇ω∥2L2 . (3.30)
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As to K12, it is easy to see that

K12 ≤

 L∑
j=−L

∥∆̇j∇u∥L∞

 ∥ω∥2L2 ≤ CL∥∇u∥Ḃ0
∞,∞

∥ω∥2L2 . (3.31)

Next, we choose a suitable N such that

max{C2, C3}2−
1
2L∥∇u∥L2 ≤ 1

8
, (3.32)

i.e.

N ≥ log+(max{C0, C1}∥∇u∥L2)

log 2
+ 2, (3.33)

where log+ t = log t for 1 ≤ t and log+ t = 0 for 0 < t < 1. Thus, by combining
(3.26)-(3.33), we have

K1 ≤ C log(∥∇u∥L2 + e)∥∇u∥Ḃ0
∞,∞

∥ω∥2L2 +
1

4
∥ω∥2L2 +

1

4
∥∇ω∥2L2 .

For K2, we have

K2 ≤ C

∫
R3

|∇n||ω|dx

≤ C∥∇n
1
2 ∥L2∥n 1

2 ∥L2p∥ω∥
L

2p
p−1

≤ C∥∇n
1
2 ∥L2∥n∥

1
2

Lp∥ω∥
2p−3
2p

L2 ∥∇ω∥
3
2p

L2

≤ C∥n∥
2p

2p−3

Lp ∥ω∥2L2 +
1

16
∥∇n

1
2 ∥2L2 +

1

4
∥∇ω∥2L2 .

Combining above two inequalities, we have

d
dt∥ω∥

2
L2 + ∥∇ω∥2L2 ≤ log(∥∇u∥L2 + e)

(
∥∇u∥Ḃ0

∞,∞
+ ∥n∥

2p
2p−3

Lp + 1

)
∥ω∥2L2

+
1

16
∥∇n

1
2 ∥2L2 . (3.34)

Next, we deal with the equation of n. We begin with the equation of n lnn

∂t(n lnn) = −(u · ∇n)(lnn+ 1) + ∆(n lnn)− |∇n|2

n
−∇ · (χ(c)n∇c)(lnn+ 1).

It implies that

d
dt

∫
R3

n lnndx+ 4

∫
R3

|∇n
1
2 |2dx

=

∫
R3

χ(c)∇n∇cdx ≤ C

∫
R3

n
1
2∇n

1
2∇cdx

≤C∥n 1
2 ∥L2p∥∇n

1
2 ∥L2∥∇c∥

L
2p

p−1

≤C∥n∥
1
2

Lp∥∇n
1
2 ∥L2∥∇c∥

L
2p

p−1
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≤C∥n∥Lp∥∇c∥2
L

2p
p−1

+
1

4
∥∇n

1
2 ∥2L2

≤C∥n∥
2p

2p−3

Lp ∥∇c∥2L2 +
1

4
∥∇2c∥2L2 +

1

4
∥∇n

1
2 ∥2L2 . (3.35)

By testing equation (1.1)2 against ∆c, we get another estimates of ∥∇c∥L2 that

1

2

d
dt∥∇c∥2L2 + ∥∇2c∥2L2 =

∫
R3

u · ∇c∆cdx+

∫
R3

k(c)n∆cdx

= H1 +H2.

For H2, by using the same computations as in (3.35), we have

H2 = −
∫
R3

k′(c)n|∇c|2dx−
∫
R3

k(c)∇n∇cdx

≤ −
∫
R3

k(c)∇n∇cdx

≤ C∥n∥
2p

2p−3

Lp ∥∇c∥2L2 +
1

4
∥∇2c∥2L2 +

1

4
∥∇n

1
2 ∥2L2 , (3.36)

where we use the fact that k′ ≥ 0. For H1, we use the Littlewood-Paley decompo-
sition for u as follows in (3.27). Then, we have

H1 ≤

∣∣∣∣∣∣
∑

j<−M

∫
R3

∆̇ju · ∇c∆cdx

∣∣∣∣∣∣+
∣∣∣∣∣∣

M∑
j=−M

∫
R3

∆̇ju · ∇c∆cdx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j>M

∫
R3

∆̇ju · ∇c∆cdx

∣∣∣∣∣∣
= H11 +H12 +H13. (3.37)

By using (3.2), Hölder’s and Bernstein inequalities (2.3), we estimate H1i, i = 1, 2, 3
in turn

H11 ≤

 ∑
j<−M

∥∆̇ju∥L∞

 ∥∇c∥L2∥∇2c∥L2

≤ C

 ∑
j<−M

2
1
2 j∥∆̇j∇u∥L2

 ∥∇c∥L2∥∇2c∥L2

≤ C2−
1
2M∥∇u∥L2∥∇c∥L2∥∇2c∥L2

≤ C42
−M∥∇u∥2L2∥∇c∥2L2 +

1

16
∥∇2c∥2L2 , (3.38)

H12 ≤
M∑

j=−M

∫
R3

|∆̇j∇u||∇c|2dx

≤

 M∑
j=−M

∥∆̇j∇u∥L∞

 ∥∇c∥2L2
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≤ CM∥∇u∥Ḃ0
∞,∞

∥∇c∥2L2 , (3.39)

H13 ≤

∑
j>M

∥∆̇ju∥L3

 ∥∇c∥L6∥∇2c∥L2

≤ C

∑
j>N

2
1
2 j∥∆̇ju∥L2

 ∥∇2c∥2L2

≤ C52
− 1

2M∥∇u∥L2∥∇2c∥2L2 . (3.40)

Next, we choose a suitable N such that

max{C4, C5}2−
1
2M∥∇u∥L2 ≤ 1

8
. (3.41)

Thus, by a similar argument as before, we deduce from (3.37)-(3.41),

H1 ≤ C log(∥∇u∥L2 + e)∥∇u∥Ḃ0
∞,∞

∥∇c∥2L2 +
1

4
∥∇c∥2L2 +

1

4
∥∇2c∥2L2 .

Therefore, in view of (3.36), we can deduce that

1

2

d
dt∥∇c∥2L2 + ∥∇2c∥2L2 ≤ C log(∥ω∥L2 + e)

(
∥∇u∥Ḃ0

∞,∞
+ ∥n∥

2p
2p−3

Lp + 1

)
∥∇c∥2L2

+
1

4
∥∇n

1
2 ∥2L2 . (3.42)

Combining (3.34), (3.35) with (3.42), and then absorbing the small term on the
right hand side, we get

d
dt

(
∥∇c∥2L2 + ∥ω∥2L2 +

∫
R3

n lnndx
)
+ ∥∇2c∥2L2 + ∥∇ω∥2L2 + 2

∫
R3

|∇n
1
2 |2dx

≤C log(∥ω∥L2 + ∥∇c∥L2 + e)

(
∥∇u∥Ḃ0

∞,∞
+ ∥n∥

2p
2p−3

Lp + 1

)(
∥ω∥2L2 + ∥∇c∥2L2

)
,

which implies that

∥∇c(t)∥2L∞
t (L2) + ∥ω(t)∥2L∞

t (L2) + sup
0<τ<t

∫
R3

n lnndx

≤C

∫ t

0

(
∥∇c(t)∥2L∞

t (L2) + ∥ω(t)∥2L∞
t (L2)

)
log(∥ω(τ)∥L2 + ∥∇c(τ)∥L2 + e)

×
(
∥∇u(τ)∥Ḃ0

∞,∞
+ ∥n(τ)∥

2p
2p−3

Lp + 1

)
dτ + C(c0, u0, n0),

then by (1.19) and Gronwall’s inequality, we have

∥∇c(t)∥2L2 + ∥ω(t)∥2L2

≤Cexp

[∫ t

0

log(∥ω(τ)∥L2+∥∇c(τ)∥L2+e)

(
∥∇u(τ)∥Ḃ0

∞,∞
+∥n(τ)∥

2p
2p−3

Lp +1

)
dτ
]
,
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where C = C(n0, ω0, c0). Defined Z(t) := log(∥ω(t)∥L2 + ∥∇c(t)∥L2 + e), above
inequality implies that

Z(t) ≤ C1 + C2

∫ t

0

(
∥∇u(τ)∥Ḃ0

∞,∞
+ ∥n(τ)∥

2p
2p−3

Lp + 1

)
Z(τ)dτ.

Applying the Gronwall’s inequality to Z(t) again, we have

(ω,∇c) ∈ L∞(0, T ∗;L2(R3)) and (∇ω,∇2c) ∈ L2(0, T ∗;L2(R3)). (3.43)

Following the above argument by applying Gronwall’s inequality twice, it yields
(3.43). Next, we can show that ∥∇c∥L2(0,T ;L∞) < ∞ by using the same argument
as (3.14) and (3.15), and then finish the proof when assumption (1.19) holds.
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