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type inequality involving one higher-order derivative function is given. The
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1. Introduction
Suppose that p > 1, 1p + 1

q = 1, am, bn ≥ 0, 0 <
∑∞
m=1 a

p
m <∞ and 0 <

∑∞
n=1 b

q
n <

∞.The following Hardy-Hilbert’s inequality with the best possible constant factor
π

sin(π/p)was given by (cf. [4], Theorem 315):

∞∑
m=1

∞∑
n=1

ambn
m+ n

<
π

sin(π/p)

( ∞∑
m=1

apm

) 1
p
( ∞∑
n=1

bqn

) 1
q

. (1.1)

A more accurate form of (1.1) was provided as follows (cf. [4], Theorem 323):.

∞∑
m=1

∞∑
n=1

ambn
m+ n− 1

<
π

sin(π/p)

( ∞∑
m=1

apm

) 1
p
( ∞∑
n=1

bqn

) 1
q

. (1.2)

By means of Euler-Maclaurin’s summation formula, in 2006, Krnic et al. [4]
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provided an extension of (1.1) as follows:

∞∑
m=1

∞∑
n=1

ambn
(m+ n)λ

< B(λ1, λ2)

[ ∞∑
m=1

mp(1−λ1)−1apm

] 1
p
[ ∞∑
n=1

nq(1−λ2)−1bqn

] 1
q

,

(1.3)
where, λi ∈ (0, 2] (i = 1, 2), λ1 + λ2 = λ ∈ (0, 4], and the constant factor B(λ1, λ2)
is the best possible,

B(u, v) =

∫ ∞

0

tu−1

(1 + t)u+v
dt (u, v > 0)

is the beta function. For λ = 1, λ1 = 1
q , λ2 = 1

p in (1.3), we have (1.1); for p = q = 2,
λ1 = λ2 = λ

2 , (1.3) reduces to the published inequality in Yang [25].
In 2019, by applying (1.3) and Abel’s summation by parts formula, Adiyasuren

et al. [1] gave a Hilbert-type inequality with the kernel as 1
(m+n)λ

involving two
partial sums. Inequalities (1.1)-(1.3) play an important role in analysis and its
applications (cf. [2, 3, 5, 6, 13,16,21–23,26,32]).

In 1934, Hardy et al. [4] published a half-discrete Hilbert-type inequality in Theo-
rem 351: If K(t) (t > 0) is decreasing, p > 1, 1p+

1
q = 1, 0 < ϕ(s) =

∫∞
0
K(t)ts−1dt <

∞, an ≥ 0, such that 0 <
∑∞
n=1 a

p
n <∞, then∫ ∞

0

xp−2(

∞∑
n=1

K(nx)an)
pdx < ϕp(

1

p
)

∞∑
n=1

apn. (1.4)

Some new extensions of (1.4) were provided by [17–19,27,28].
By the use of the techniques of real analysis, in 2016, Hong et al. [7] gave

an equivalent condition of the best possible constant factor related to several pa-
rameters in the general form of (1.1). The other similar results were provided
by [8–11, 20, 24, 29, 30]. Recently, Yang et al. [31] also gave a new result of the
reverse half-discrete Hilbert-type inequality.

In this paper, following the way of [1] and [7], by means of the weight func-
tions, Hermite-Hadamard’s inequality and the techniques of real analysis, a new
more accurate half-discrete Hilbert-type inequality with the kernel as 1

[x+(n−ξ)α]λ

involving one higher-order derivative function is given. The equivalent conditions of
the best possible constant factor related to a few parameters, the equivalent forms,
several particular inequalities and the operator expressions are also considered. The
lemmas and theorems provided an extensive account of this type of inequalities.

2. Some lemmas
In what follows, we suppose that p > 1, 1p+

1
q = 1,N := {1, 2, · · · },m ∈ N ∪ {0},α ∈

(0, 1], ξ ∈ [0, 12 ], λ > 0, λ1 ∈ (0, λ), λ2 ∈ (0, λ) ∩ (0, 1
α ], kλ(λi) := B(λi, λ − λi)

(i = 1, 2), λ̂1 := λ−λ2

p + λ1

q , λ̂2 := λ−λ1

q + λ2

p . We also assume that f(x) := f (0)(x)

is a continuous derivative function of m-order unless finite points in R+ := (0,∞),
such that f (k)(x) ≥ 0, f (k)(0+) = 0 (k = 0, 1, · · · ,m), and f (m)(x), an ≥ 0,

0 <

∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx <∞ and 0 <

∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn <∞.
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Lemma 2.1. Define the following weight function:

ϖλ(λ2, x) := αxλ−λ2

∞∑
n=1

(n− ξ)αλ2−1

[x+ (n− ξ)α]λ
(x ∈ R+). (2.1)

We have the following inequalities

kλ(λ2)−
1

λ2

[
(1− ξ)α

x

]λ2

< ϖλ(λ2, x) < kλ(λ2) (x ∈ R+). (2.2)

Proof. For fixed x ∈ R+, the function (t−ξ)αλ2−1

[x+(t−ξ)α]λ
is strictly decreasing and strictly

convex in ( 12 ,∞). In fact, for α ∈ (0, 1], ξ ∈ [0, 12 ], λ2 ∈ (0, λ)∩ (0, 1
α ], t ∈ ( 12 ,∞), we

have

∂

∂t

(t− ξ)αλ2−1

[x+ (t− ξ)α]λ
=

−(1− αλ2)(t− ξ)αλ2−2

[x+ (t− ξ)α]λ
− λα(t− ξ)αλ2+α−2

[x+ (t− ξ)α]λ+1
< 0,

∂2

∂t2
(t− ξ)αλ2−1

[x+ (t− ξ)α]λ
=

(1− αλ2)(2− αλ2)(t− ξ)αλ2−3

[x+ (t− ξ)α]λ

+
λα(3− 2αλ2 − α)(t− ξ)αλ2+α−3

[x+ (t− ξ)α]λ+1
+
λα2(λ+ 1)(t− ξ)αλ2+2α−3

[x+ (t− ξ)α]λ+2
> 0.

By the decreasingness property of series and Hermite-Hadamard’s inequality
(cf. [14]), we have∫ ∞

1

(t− ξ)αλ2−1dt

[x+ (t− ξ)α]λ
<

∞∑
n=1

(n− ξ)αλ2−1

[x+ (n− ξ)α]λ
<

∫ ∞

3
2

(t− ξ)αλ2−1dt

[x+ (t− ξ)α]λ
. (2.3)

Setting v = (t−ξ)α
x (dt = 1

αx
1
α v

1
α−1dv), for 1

2 − ξ ≥ 0, we obtain∫ ∞

3
2

(t− ξ)αλ2−1dt

[x+ (t− ξ)α]λ
=

1

αxλ

∫ ∞

( 1
2
−ξ)α

x

(xv)
1
α (αλ2−1)

(1 + v)λ
x

1
α v

1
α−1dv

≤ 1

αxλ−λ2

∫ ∞

0

vλ2−1dv

(1 + v)λ
=

1

αxλ−λ2
kλ(λ2).

By (2.1) and (2.3), we have

ϖλ(λ2, x) < αxλ−λ2
1

αxλ−λ2
kλ(λ2) = kλ(λ2).

On the other hand, we find∫ ∞

1

(t− ξ)αλ2−1dt

[x+ (t− ξ)α]λ
=

1

αxλ−λ2

∫ ∞

(1−ξ)α

x

vλ2−1

(1 + v)λ
dv

=
1

αxλ−λ2

[∫ ∞

0

vλ2−1dv

(1 + v)λ
−
∫ (1−ξ)α

x

0

vλ2−1dv

(1 + v)λ

]

≥ 1

αxλ−λ2

[
kλ(λ2)−

∫ (1−ξ)α

x

0

vλ2−1dv

]
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=
1

αxλ−λ2

{
kλ(λ2)−

1

λ2
[
(1− ξ)α

x
]λ2

}
,

and then by (2.1) and (2.3), we have

ϖλ(λ2, x) > kλ(λ2)−
1

λ2

[
(1− ξ)α

x

]λ2

.

Hence, inequalities (2.2) follow.
The lemma is proved.

Lemma 2.2. We have the following Hilbert-type inequality:

I0 :=

∫ ∞

0

∞∑
n=1

anf
(m)(x)dx

[x+ (n− ξ)α]λ
< (

1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

×
[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn

] 1
q

. (2.4)

Proof. Setting v = x/(n− ξ)α, we can obtain the following another weight func-
tion:

ωλ(λ1, n) := (n− ξ)α(λ−λ1)

∫ ∞

0

xλ1−1dx

[x+ (n− ξ)α]λ

=

∫ ∞

0

vλ1−1dv

(1 + v)λ
= kλ(λ1) (n ∈ N). (2.5)

By Hölder’s inequality (cf. [14]), we have

I0 :=

∫ ∞

0

∞∑
n=1

1

[x+ (n− ξ)α]λ

[
x(1−λ1)/qf (m)(x)

(n− ξ)(1−αλ2)/p

] [
(n− ξ)(1−αλ2)/pan

x(1−λ1)/q

]
dx

≤

{∫ ∞

0

∞∑
n=1

1

[x+ (n− ξ)α]λ
x(1−λ1)(p−1)(f (m)(x))p

(n− ξ)1−αλ2
dx

} 1
p

×

{ ∞∑
n=1

∫ ∞

0

1

[x+ (n− ξ)α]λ
(n− ξ)(1−αλ2)(q−1)

x1−λ1
aqndx

} 1
q

=

{
1

α

∫ ∞

0

ϖλ(λ2, x)x
p(1−λ̂1)−1(f (m)(x))pdx

} 1
p

×

{ ∞∑
n=1

ωλ(λ1, n)(n− ξ)q(1−αλ̂2)−1aqn

} 1
q

. (2.6)

We show that (2.6) does not keep the form of equality. Otherwise (cf. [14]),
there exist constants A and B, such that they are not both zero and

A
x(1−λ1)(p−1)(f (m)(x))p

(n− ξ)1−αλ2
= B

(n− ξ)(1−αλ2)(q−1)

x1−λ1
aqn a.e. in R+ ×N.

Assuming that A ̸= 0, there exists a n ∈ N, such that

xp(1−λ1)−1(f (m)(x))p =
B

A

(n− ξ)q(1−αλ2)

x1+(λ−λ1−λ2)
aqn a.e. in R+,
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which contradicts the fact that

0 <

∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx <∞,

based on
∫∞
0

. dx
x1+(λ−λ1−λ2) = ∞. Then by (2.2) and (2.5), we have (2.4).

The lemma is proved.

Lemma 2.3. For t > 0, we have the following inequality:∫ ∞

0

e−txf(x)dx ≤ 1

tm

∫ ∞

0

e−txf (m)(x)dx. (2.7)

Proof. For f (k−1)(0+) = 0 (k = 1, · · · ,m), integration by parts, we find∫ ∞

0

e−txf (k)(x)dx =

∫ ∞

0

e−txdf (k−1)(x)

= e−txf (k−1)(x)|∞0 −
∫ ∞

0

f (k−1)(x)de−tx

= lim
x→∞

e−txf (k−1)(x) + t

∫ ∞

0

e−txf (k−1)(x)dx.

For large enough x > 0, we have e−txf (k−1)(x) ≥ 0. Then by the increasing
property of f (k−1)(x), it follows that limx→∞ e−txf (k−1)(x) ≥ 0 and then∫ ∞

0

e−txf (k)(x)dx ≤ t

∫ ∞

0

e−txf (k−1)(x)dx.

Substitution of i = 1, · · · ,m in the above inequality, we have (2.7).
The lemma is proved.
Note 1. For m = 0, in view of f (0)(x) = f(x), (2.7) keeps the form of equality.

3. Main results
Theorem 3.1. We have the following more accurate half-discrete Hilbert-type in-
equality involving one higher-order derivative function:

I :=

∫ ∞

0

∞∑
n=1

anf(x)dx

[x+ (n− ξ)α]λ+m
<

Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

×
[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn

] 1
q

. (3.1)

In particular, for λ1 + λ2 = λ, we have

0 <

∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx <∞, 0 <

∞∑
n=1

(n− ξ)q(1−αλ2)−1aqn <∞,

and the following inequality:

I =

∫ ∞

0

∞∑
n=1

anf(x)dx

[x+ (n− ξ)α]λ+m
<

Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)
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×
[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− ξ)q(1−αλ2)−1aqn

] 1
q

. (3.2)

Proof. Since we have
1

[x+ (n− ξ)α]λ+m
=

1

Γ(λ+m)

∫ ∞

0

tλ+m−1e−[x+(n−ξ)α]tdt,

by Lebesgue term by term integration theorem (cf. [15]) and (2.7), we obtain

I =
1

Γ(λ+m)

∫ ∞

0

∞∑
n=1

anf(x)

∫ ∞

0

tλ+m−1e−[x+(n−ξ)α]tdtdx

=
1

Γ(λ+m)

∫ ∞

0

tλ+m−1(

∫ ∞

0

e−xtf(x)dx)

∞∑
n=1

e−t(n−ξ)
α

andt

≤ 1

Γ(λ+m)

∫ ∞

0

tλ+m−1(t−m
∫ ∞

0

e−xtf (m)(x)dx)

∞∑
n=1

e−t(n−ξ)
α

andt

=
1

Γ(λ+m)

∫ ∞

0

∞∑
n=1

anf
(m)(x)[

∫ ∞

0

tλ−1e−[x+(n−ξ)α]tdt]dx

=
Γ(λ)

Γ(λ+m)

∫ ∞

0

∞∑
n=1

anf
(m)(x)dx

[x+ (n− ξ)α]λ
=

Γ(λ)

Γ(λ+m)
I0.

Then by (2.6), we have (3.1).
The theorem is proved.

Theorem 3.2. If λ1 + λ2 = λ, then the constant factor
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

in (3.1) is the best possible. On the other hand, if the same constant factor in (3.1)
is the best possible, then for λ− λ1 ≤ 1

α , we have λ1 + λ2 = λ.

Proof. If λ1+λ2 = λ, then (3.1) reduces to (3.2). For any 0 < ε < qmin{λ1, λ2},
we set

f̃ (0)(x) = f̃(x) :=

0, 0 < x < 1,

xλ1+m− ε
p−1, x ≥ 1,

ãn := (n− ξ)α(λ2− ϵ
q )−1 (n ∈ N),

and find

f̃ (m)(x) =

0, 0 < x < 1,

Πm−1
i=0 (λ1 + i− ε

p )x
λ1− ε

p−1, x > 1.

For m = 0, ε ≥ 0, we define Πm−1
i=0 (λ1 + i− ε

p ) = 1.

If there exists a constant M(≤ Γ(λ)
α1/pΓ(λ+m)

kλ(λ1)), such that (3.2) is valid when
we replace Γ(λ)

α1/pΓ(λ+m)
kλ(λ1) by M , then in particular, we have

Ĩ :=

∫ ∞

0

∞∑
n=1

ãnf̃(x)dx

[x+ (n− ξ)α]λ+m
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< M

[∫ ∞

0

xp(1−λ1)−1(f̃ (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− ξ)q(1−αλ2)−1ãqn

] 1
q

. (3.3)

By the decreasingness property of series, we find

Ĩ < MΠm−1
i=0 (λ1 + i− ε

p
)

[∫ ∞

1

xp(1−λ1)−1xp(λ1−1)−εdx

] 1
p

×

[ ∞∑
n=1

(n− ξ)q(1−αλ2)−1(n− ξ)qαλ2−αε−q

] 1
q

= MΠm−1
i=0 (λ1 + i− ε

p
)(

∫ ∞

1

x−ε−1dx)
1
p

×

[
(1− ξ)−αε−1 +

∞∑
n=2

(n− ξ)−αε−1

] 1
q

≤ MΠm−1
i=0 (λ1 + i− ε

p
)(

∫ ∞

1

x−ε−1dx)
1
p

×
[
(1− ξ)−αε−1 +

∫ ∞

1

(y − ξ)−αε−1dy

] 1
q

=
M

ε
Πm−1
i=0 (λ1 + i− ε

p
)

[
ε(1− ξ)−αε−1 +

1

α
(1− ξ)−αε

] 1
q

.

Replacing λ by λ+m, setting λ̃2 := λ2− ε
q ∈ (0, λ+m)∩(0, 1

α ], λ̃1 := λ2+m+ ε
q ∈

(0, λ+m) in (2.1), by (2.2), we have

Ĩ =

∫ ∞

1

{
xλ1+m+ ε

q

∞x∑
n=1

(n− ξ)α(λ2− ϵ
q )−1

[x+ (n− ξ)α]λ+m

}
x−ε−1dx

=

∫ ∞

1

ϖλ+m(λ̃2, x)x
−ε−1dx

>
1

α

∫ ∞

1

{kλ+m(λ̃2)−
1

λ̃2
[
(1− ξ)α

x
]λ̃2}x−ε−1dx

=
1

α
[

∫ ∞

1

kλ+m(λ̃2)x
−ε−1dx−

∫ ∞

1

1

λ̃2
(1− ξ)αλ̃2x−λ̃2−ε−1dx]

=
1

εα
(kλ+m(λ̃2)− εO(1)).

Based on the above results, we find

1

α
(kλ+m(λ̃2)− εO(1))

< εĨ < MΠm−1
i=0 (λ1 + i− ε

p
)

[
ε(1− ξ)−αε−1 +

1

α
(1− ξ)−αε

] 1
q

.

For ε→ 0+, in view of the continuity of the beta function, it follows that

Γ(λ)B(λ1, λ2)

α1/pΓ(λ+m)
=

Γ(λ1)Γ(λ2)

α1/pΓ(λ+m)
=

B(λ1 +m,λ2)

α1/pΠm−1
i=0 (λ1 + i)

≤M.
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Hence, M = Γ(λ)B(λ1,λ2)
α1/pΓ(λ+m)

is the best possible constant factor in (3.2).

On the other hand, for λ̂1 = λ−λ2

p + λ1

q , λ̂2 = λ−λ1

q + λ2

p , we find

λ̂1 + λ̂2 =
λ− λ2
p

+
λ1
q

+
λ− λ1
q

+
λ2
p

= λ,

0 < λ̂1, λ̂2 <
λ

p
+
λ

q
= λ, λ̂2 ≤ 1/α

q
+

1/α

p
=

1

α
,

and Γ(λ)B(λ̂1,λ̂2)
α1/pΓ(λ+m)

∈ R+.Substitution of λ̂i = λi (i = 1, 2) in (3.2), we still have

I =

∫ ∞

0

∞∑
n=1

anf(x)dx

[x+ (n− ξ)α]λ+m
<

Γ(λ)

α1/pΓ(λ+m)
B(λ̂1, λ̂2)

×
[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn

] 1
q

. (3.4)

By Hölder’s inequality (cf. [14]), we have

B(λ̂1, λ̂2) = kλ(
λ− λ2
p

+
λ1
q
)

=

∫ ∞

0

u
λ−λ2

p +
λ1
q −1

(1 + u)λ
du =

∫ ∞

0

1

(1 + u)λ
(u

λ−λ2−1
p )(u

λ1−1
q )du

≤ [

∫ ∞

0

uλ−λ2−1

(1 + u)λ
du]

1
p [

∫ ∞

0

uλ1−1

(1 + u)λ
du]

1
q

= [

∫ ∞

0

vλ2−1

(1 + v)λ
dv]

1
p [

∫ ∞

0

uλ1−1

(1 + u)λ
du]

1
q

= (kλ(λ2))
1
p (kλ(λ1))

1
q . (3.5)

In view of
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

is the best possible constant factor in (3.1), by (3.4), we have the following inequal-
ity:

Γ(λ)

Γ(λ+m)
(kλ(λ2))

1
p (kλ(λ1))

1
q ≤ Γ(λ)

Γ(λ+m)
B(λ̂1, λ̂2) (∈ R+),

namely, B(λ̂1, λ̂2) ≥ (kλ(λ2))
1
p (kλ(λ1))

1
q , and then (3.5) keeps the form of equality.

We observe that (3.5) keeps the form of equality if and only if there exist con-
stants A and B (cf. [14]), such that they are not both zero and Auλ−λ2 = Buλ1

a.e. in R+. Assuming that A ̸= 0, we find uλ−λ1−λ2 = B/A a.e. in R+, namely,
λ− λ1 − λ2 = 0. Hence we have λ1 + λ2 = λ.

The theorem is proved.
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4. Equivalent forms and some particular inequali-
ties

Theorem 4.1. We have the following half-discrete Hilbert-type inequality equivalent
to (3.1):

J :=

{ ∞∑
n=1

(n− ξ)pαλ̂2−1

[∫ ∞

0

f(x)

[x+ (n− ξ)α]λ+m
dx

]p} 1
p

<
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

. (4.1)

In particular, for λ1 + λ2 = λ, we have the following inequality equivalent to (3.2):{ ∞∑
n=1

(n− ξ)pαλ2−1

[∫ ∞

0

f(x)

[x+ (n− ξ)α]λ+m
dx

]p} 1
p

<
Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

. (4.2)

Proof. Suppose that (4.1) is valid. By Hölder’s inequality (cf. [14]), we have

I =

∞∑
n=1

{
(n− ξ)αλ̂2− 1

p

∫ ∞

0

f(x)dx

[x+ (n− ξ)α]λ+m

}[
(n− ξ)−αλ̂2+

1
p an

]

≤ J

[ ∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn

] 1
q

. (4.3)

Then by (4.1), we have (3.1).
On the other hand, assuming that (3.1) is valid, we set

an := (n− ξ)pαλ̂2−1

[∫ ∞

0

f(x)

[x+ (n− ξ)α]λ+m
dx

]p−1

, n ∈ N.

If J = 0, then (4.1) is naturally valid; if J = ∞, then it is impossible that makes
(4.1) valid, namely, J <∞. Suppose that 0 < J <∞. By (3.1), we have

0 <

∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn = Jp = I

<
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

Jp−1 <∞.

J =

[ ∞∑
n=1

(n− ξ)q(1−αλ̂2)−1aqn

] 1
p

<
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

[∫ ∞

0

xp(1−λ̂1)−1(f (m)(x))pdx

] 1
p

,

namely, (4.1) follows, which is equivalent to (3.1).
The theorem is proved.
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Theorem 4.2. If λ1 + λ2 = λ, then the constant factor

Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

in (4.1) is the best possible. On the other hand, if the same constant factor in (4.1)
is the best possible, then for λ− λ1 ≤ 1

α , we have λ1 + λ2 = λ.

Proof. If λ1 + λ2 = λ, then by Theorem 3.2, the constant factor

Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q

in (3.1) is the best possible. By (4.3), the constant factor in (4.1) is still the best
possible. Otherwise, we would reach a contradiction that the constant factor in
(3.1) is not the best possible.

On the other hand, if the same constant factor in (4.1) is the best possible, then,
by the equivalency of (4.1) and (3.1), in view of Jp = I (see the proof of Theorem
4.1), we still can show that the constant factor in (3.1) is the best possible. By the
assumption and Theorem 3.2, we have λ1 + λ2 = λ.

The theorem is proved.

Remark 4.1. (i) For α = 1 in (3.2) and (4.2), we have the following equivalent
inequalities:∫ ∞

0

∞∑
n=1

anf(x)dx

(x+ n− ξ)λ+m

<
Γ(λ)

Γ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n−ξ)q(1−λ2)−1aqn

] 1
q

,

(4.4){ ∞∑
n=1

(n− ξ)pλ2−1

[∫ ∞

0

f(x)

(x+ n− ξ)λ+m
dx

]p} 1
p

<
Γ(λ)

Γ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

. (4.5)

(ii) For ξ = 0 in (3.2) and (4.2), we have the following equivalent inequalities:∫ ∞

0

∞∑
n=1

anf(x)dx

(x+ nα)λ+m

<
Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

nq(1−αλ2)−1aqn

] 1
q

,

(4.6){ ∞∑
n=1

npαλ2−1

[∫ ∞

0

f(x)

(x+ nα)λ+m
dx

]p} 1
p

<
Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

. (4.7)
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Hence, (3.2) (resp. (4.2)) is a more accurate form of (4.6) (resp. (4.7)).
(ii) For ξ = 1

2 in (3.2) and (4.2), we have the following equivalent inequalities:∫ ∞

0

∞∑
n=1

anf(x)dx

[x+ (n− 1
2 )
α]λ+m

<
Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

[ ∞∑
n=1

(n− 1

2
)q(1−αλ2)−1aqn

] 1
q

.

(4.8){ ∞∑
n=1

(n− 1

2
)pαλ2−1

[∫ ∞

0

f(x)

[x+ (n− 1
2 )
α]λ+m

dx

]p} 1
p

<
Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2)

[∫ ∞

0

xp(1−λ1)−1(f (m)(x))pdx

] 1
p

. (4.9)

The constant factors in the above inequalities are all the best possible.

5. Operator expressions
Setting φi(x) := xp(1−i−λ̂1)−1(i = 0, · · · ,m), ψ(n) := (n− ξ)q(1−αλ̂2)−1, where from

ψ1−p(n) := (n− ξ)pαλ̂2−1 (x ∈ R+, n ∈ N),

we define the following normed linear spaces:

Lp,φi(R+) := {f = f(x); ||f ||p,φi := (

∫ ∞

0

φi(x)|f(x)|pdx)
1
p <∞}

(i = 0, · · · ,m),

lq,ψ := {a = {an}∞n=1; ||a||q,ψ := (

∞∑
n=1

ψ(n)|an|q)
1
q <∞},

lp,ψ1−p := {c = {cn}∞n=1; ||c||p,ψ1−p := (

∞∑
n=1

ψ1−p(n)|cn|p)
1
p <∞}.

For any f = f(x) ∈ Lp,φi
(R+), setting

c = {cn}∞n=1 : cn :=

∫ ∞

0

f(x)

[x+ (n− ξ)α]λ+m
dx,

we can rewrite (4.1) as follows:

||c||p,ψ1−p <
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q ||f (m)||p,φ0

,

namely, c ∈ lp,ψ1−p .

Definition 5.1. Define a half-discrete Hilbert-type operator T : Lp,φm
(R+) →

lp,ψ1−p . as follows: For any f ∈ Lp,φm
(R+), there exists a unique representation
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c = Tf ∈ lp,ψ1−p , such that for any n ∈ N. Tf(n) = cn Define the formal inner
product of Tf and a ∈ lq,ψ, and the norm of T as follows:

(Tf, a) :=

∞∑
n=1

an

∫ ∞

0

f(x)

[x+ (n− ξ)α]λ+m
dx = I,

||T || := sup
f (̸=0)∈Lp,φm (R+)

||Tf ||p,ψ1−p

||f (m)||p,φ0

.

By Theorem 4.1 and Theorem 4.2, we have

Theorem 5.1. If f(> 0) ∈ Lp,φm(R+), a(> 0) ∈ lq,ψ, ||f ||p,φm > 0, ||a||q,ψ > 0,
then we have the following equivalent inequalities:

(Tf, a) <
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q ||f (m)||p,φ0 ||a||q,ψ, (5.1)

||Tf ||p,ψ1−p <
Γ(λ)

Γ(λ+m)
(
1

α
kλ(λ2))

1
p (kλ(λ1))

1
q ||f (m)||p,φ0

. (5.2)

Moreover, for λ1+λ2 = λ, the constant factorin (5.1) and (5.2) is the best possible,
namely,

||T || = Γ(λ)

α1/pΓ(λ+m)
B(λ1, λ2).

On the other hand, if the constant factor in (5.1) (or (5.2)) is the best possible,
then for λ− λ1 ≤ 1

α , we have λ1 + λ2 = λ.
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