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Abstract This paper studies traveling wave solutions of the homogeneous
Camassa-Holm type equations introduced by Hay et al. in 2019. Under given
parameter conditions, the corresponding traveling system is a singular system
of the first class defined by [16]. The bifurcations of traveling wave solutions
in the parameter space are investigated from the perspective of dynamical
systems. The existence of solitary wave solution, periodic peakon solution and
peakon, pseudo-peakon as well as compacton solution is proved. Possible exact
explicit parametric representations of various solutions are given.
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1. Introduction
Recently, [14] considered the following integrable Camassa-Holm type equations
(1.1) with homogeneous nonlinear terms.

ut − uxxt = αukux + βukuxxx + γuk−1uxuxx + δuk−2u3x. (1.1)

This type of nonlinearities have been considered in [1] and [13]. Here α, β, γ, δ, k are
arbitrary constants. Generally, we assume that α, k ̸= 0. In [14], Hay, et al. proved
that known integrable examples of Camassa-Holm type equations (1.1) correspond
to k = 1 and k = 2, which are the only possible degrees of nonlinearity under the
above assumptions.

As a nonlinear generalization of the Camassa-Holm equation with peakon solu-
tions, [2] and [6] discussed the following equation:

ut − uxxt=
1
2 (k+1)(k+2)ukux− 1

2k(k−1)uk−2u3x−2kuk−1uxuxx−ukuxxx,

k ̸= 0,
(1.2)

which is the special case of equation (1.1) with α = 1
2 (k + 1)(k + 2), β = −1, γ =

−2k, δ = − 1
2k(k − 1).
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In [1,13,15], the authors considered the generalized b-family equations as follows:

ut − uxxt = −(b+ 1)upux + bup−1uxuxx + upuxxx, b ̸= 0, p ̸= 0, (1.3)

which is the special case of equation (1.1) with k = p, α = −(b + 1), β = 1, γ =
b, δ = 0.

For p = 1, equation (1.3) includes both the Camassa-Holm(CH) equation (b = 2)
and the Degasperis-Procesi(DP) equation (b = 3). In addition, for p = 2, equation
(1.3) includes the Novikov equation (b = 3).

However, we notice that these authors did not study the bifurcations and possible
exact solutions for the corresponding traveling wave systems of equations (1.1), (1.2)
and (1.3). In this paper, we consider these problems depending on the parameters
of systems for the corresponding traveling wave systems of equations (1.1) and (1.2),
respectively.

We have

(ukuxx)x = kuk−1uxuxx + ukuxxx, (uk−1u2x)x = (k − 1)uk−2u3x + 2uk−1uxuxx.

For equation (1.1), we assume that γ = kβ + 2δ̃, δ = (k − 1)δ̃. Then, (1.1) can be
written as

ut − uxxt = αukux + β(ukuxx)x + δ̃(uk−1u2x)x. (1.4)
To study the traveling wave solutions of equations (1.1) and (1.2), we set u(x, t) =

u(x+ ct) ≡ ϕ(ξ), where ξ = x+ ct and c is the wave speed. We always assume that
c > 0 in this paper. Substituting u(x, t) = u(x + ct) ≡ ϕ(ξ) into (1.4) and (1.2),
integrating the obtained equations once, we obtain

(βϕk + c)ϕ′′ = −δ̃ϕk−1(ϕ′)2 − α

k + 1
ϕk+1 + cϕ+ g, (1.5)

and
(ϕk − c)ϕ′′ = −1

2
kϕk−1(ϕ′)2 +

(
1

2
k + 1

)
ϕk+1 − cϕ+ g, (1.6)

where g is integral constant, and the prime stands for the derivative with respect
to ξ. Equations (1.5) and (1.6) are equivalent to the following planar dynamical
systems:

dϕ

dξ
= y,

dy

dξ
=

−δ̃ϕk−1y2 − α
k+1ϕ

k+1 + cϕ+ g

βϕk + c
, k > 0, (1.7)

dϕ

dξ
= y,

dy

dξ
=

−δ̃y2 + ϕ2
(
cϕp + gϕp−1 + α

p−1

)
ϕ(cϕp + β)

, k < 0, p = −k, p ̸= 1, (1.8)

and

dϕ

dξ
= y,

dy

dξ
=

− 1
2kϕ

k−1y2 +
(
1
2k + 1

)
ϕk+1 − cϕ+ g

ϕk − c
, k > 0, (1.9)

dϕ

dξ
= y,

dy

dξ
=

− 1
2py

2 + ϕ2
(
cϕp − gϕp−1 +

(
1
2p− 1

))
ϕ(cϕp − 1)

, k < 0, p = −k. (1.10)

These four systems have the following first integrals, respectively:

H1(ϕ, y)=y
2(βϕk+c)

2δ̃
kβ +2

∫
(βϕk+c)

2δ̃−kβ
kβ

[
α

k+1
ϕk+1−cϕ−g

]
dϕ=h, (1.11)
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H2(ϕ, y) =y
2ϕ

2δ̃
β (cϕp + β)−

2δ̃
pβ − 2

∫
ϕ1+

2δ̃
β (cϕp + β)−(1+ 2δ̃

pβ )

×
[
cϕp + gϕp−1 +

α

p− 1

]
dϕ = h,

(1.12)

H3(ϕ, y) = y2(ϕk − c)− (ϕk+2 − cϕ2 + 2gϕ) = h, (1.13)

H4(ϕ, y) =
(cϕp − 1)y2

ϕp
− cϕ2 + 2gϕ+ ϕ2−p = h. (1.14)

When δ̃ = 1
2kβ, the first integral H1(ϕ, y) = h becomes the following algebraic

integral:

H10(ϕ, y) = y2(βϕk + c)− 2gϕ− cϕ2 +
2α

(k + 1)(k + 2)
ϕk+2 = h. (1.15)

When δ̃ = − 1
2pβ, p ̸= 1, 2, the first integral H2(ϕ, y) = h becomes the following

algebraic integral:

H20(ϕ, y) =
(cϕp + β)y2

ϕp
+

[
−2gϕ+ cϕ2 +

2α

(p− 1)(p− 2)
ϕ2−p

]
= h. (1.16)

Because systems (1.9) and (1.10) are the special systems of (1.7) and (1.8)
with α = 1

2 (k + 1)(k + 2), β = −1, δ̃ = − 1
2k. The first integrals H10(ϕ, y) = h and

H20(ϕ, y) = h have the similar forms as H3(ϕ, y) = h and H4(ϕ, y) = h, respectively.
Therefore, we only need to investigate the solutions of systems (1.7) and (1.8) with
the parameter group (k, c, α, β, δ̃).

Clearly, for cβ < 0, on the curves βϕk + c = 0 and cϕp + β = 0, respectively,
systems (1.7) and (1.8) are discontinuous. Such systems are called the singular
traveling wave systems of the first class defined by [16] and [17].

It is interesting to find that the singular traveling systems have peakon, pseudo-
peakon, periodic peakon and compacton solution families. Periodic peakon is a
classical solution with two time-scales of a singular traveling system. Peakon is
a limit solution of a family of periodic peakons or a limit solution of a family of
pseudo-peakons under two classes of limit senses (see [20]). Compacton family is
a solution family of a singular system, for which all solutions ϕ(ξ) have finite sets
of support, i.e., the defined region of every ϕ(ξ) with respect to ξ is finite and the
value region of ϕ is bounded. Corresponding to different types of phase orbits,
in [16,17,19], a classification for different wave profiles of ϕ(ξ) was given.

In this paper, the above-mentioned theory of singular traveling wave systems
is used to analyze the wave profiles of the wave function ϕ(ξ) in the solutions of
systems (1.7) and (1.8).

The following relationships of a wave profile of ϕ(ξ) with some phase orbits of
these planar dynamical systems are known today.

(1) A smooth homoclinic orbit to a saddle point of a traveling wave system gives
rise to a smooth solitary wave solution of a PDE.

(2) A smooth heteroclinic loop connecting two saddle points of a traveling wave
system gives rise to a kink wave solution and an anti-kink wave solution of a PDE.

(3) For a homoclinic orbit, if there exists a segment which completely lies in a left
(or right) small strip neighborhood of a singular straight line, then this homoclinic
orbit defines a pseudo-peakon solution of the system.
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(4) If there exists a curve triangle connecting saddle points and surrounding
a periodic annulus of a center in the corresponding traveling wave system, in the
neighborhood of a singular straight line (for which a segment is an edge of the
triangle), then as a limit curve of a family of periodic orbits, this curve triangle
gives rise to a peakon solution of the system.

(5) For a family of periodic orbits, if there exists a segment of every orbit which
completely lies in a left (or right) small strip neighborhood of a singular straight
line, then these periodic orbits determine a family of periodic peakon solutions of
the system.

(6) For a family of open orbits, if they tend to a singular straight line as |y| → ∞,
then this family gives rise to a family of compactons.

By considering the dynamics of the traveling wave solutions determined by the
travelling wave system (1.7), all possible exact explicit parametric representations
for the traveling wave solutions of equation (1.7) will be given under different pa-
rameter conditions. More precisely, more than 8 exact explicit parametric repre-
sentations are obtained by using the elliptic functions and hyperbolic functions.

This paper is organized as follows. In section 2, we discuss the bifurcations of
phase portraits of systems (1.7) and (1.8) depending on the changes of parameter
α when c > 0, β, δ̃ are fixed. In sections 3, 4 and 5, we investigate the existence of
solitary wave solution, peakon, periodic peakons, pseudo-peakons as well as com-
pacton solutions and give possible exact explicit parametric representations for these
solutions.

2. Bifurcations of phase portraits of systems (1.7)
and (1.8)

Without loss of generality, we assume that the integral constant g = 0 and c > 0 in
this paper.

2.1 We first consider all possible phase portraits of system (1.7). It is known
that system (1.7) has the same invariant curve solutions as the associated regular
system:

dϕ

dζ
= y(βϕk + c),

dy

dζ
= −δ̃ϕk−1y2 − α

k + 1
ϕk+1 + cϕ, (2.1)

where dξ = (βϕk + c)dζ, for βϕk + c ̸= 0.
Obviously, when α > 0 and k is an odd number, system (2.1) has two equilibrium

points O(0, 0) and E1(ϕ1, 0) on the ϕ−axis, where ϕ1 =
(

(k+1)c
α

) 1
k ; while when k

is an even number, system (2.1) has three equilibrium points O(0, 0), E1(ϕ1, 0) and
E2(−ϕ1, 0) on the ϕ-axis.

When β < 0 and k is an odd number, on the straight line ϕ = ϕs =
(
− c
β

) 1
k

,

system (2.1) has two equilibrium points S+
∓(ϕs,∓ys), where ys =

√
Ys, if Ys =(

c− α
k+1ϕ

k
s

)
(δ̃ϕk−2

s )−1 ≥ 0. In addition, when k is an even number, on the straight
line ϕ = −ϕs, system (2.1) has two equilibrium points S−

∓(−ϕs,∓ys). When α >
0, β < 0, and α = −β(k + 1), ϕ1 = ϕs.

Let M(ϕj , 0) be the coefficient matrix of the linearized system of (2.1) at the



396 Y. Zhou & J. Li

equilibrium point Ej(ϕj , 0). We have

J(0, 0) = detM(0, 0) = −c2 < 0, J(ϕ1, 0) = detM(ϕ1, 0) = kc2
(
1 + (k + 1)

β

α

)
,

J(ϕs, ys) = detM(ϕs, ys) = −2kβδ̃y2sϕ
2k−2
s . (2.2)

By the theory of planar dynamical systems (see [17]), for an equilibrium point of a
planar integrable system, if J < 0, then the equilibrium point is a saddle point; If
J > 0 and (TriceM)2 − 4J < 0 (> 0), then it is a center point (a node point); if
J = 0 and the Poincaré index of the equilibrium point is 0, then this equilibrium
point is a cusp.

We see from the above discussion that the equilibrium point O(0, 0) ia a saddle
point. When α > 0, β < 0, if α < −β(k + 1), then ϕs < ϕ1, the equilibrium
point E1(ϕ1, 0) is also a saddle point. While if α > −β(k + 1), then ϕ1 < ϕs, the
equilibrium point E1(ϕ1, 0) is a center point. When δ̃β > 0, the equilibrium point
S+
∓(ϕs,∓ys) are saddle points, otherwise, they are node points.

We write that h0 = H1(0, 0), h1 = H1(ϕ1, 0), hs = H1(ϕs, ys), where H1 is given
by (1.11).

(i) When βδ̃ < 0, we have δ̃ ̸= 1
2kβ. The equilibrium point S+

∓(ϕs,∓ys) are node
points of system (2.1). By using the above result, applying the numerical method,
and making the parameter α change, for a fixed parameter group (c, β, δ̃), we have
the bifurcations of phase portraits of system (1.7) shown in Fig.1.

(a) 0 < α < −β(k + 1) (b) α = −β(k + 1) (c) α > −β(k + 1)

Figure 1. The bifurcations of phase portraits of system (1.7) for β < 0, δ̃ > 0, k is odd.

(ii) When βδ̃ > 0, we consider the case of δ̃ = 1
2kβ. The the equilibrium point

E+
∓(ϕs,∓ys) are saddle points of system (2.1). In this case, we have the first integral

H10(ϕ, y) = h of system (1.7) given by (1.15). Hence, we have

h1 = H10(ϕ1, 0) = −c
(
1− 2

k + 2

)
ϕ21,

hs = H10(ϕs, ys) = −c
(
1 +

2α

(k + 1)(k + 2)β

)
ϕ2s.

Obviously, if and only if α = − 1
2 (k + 1)(k + 2)β, we have hs = 0.

When k is an even number and α > 0, β < 0, for a fixed parameter group (c, β, δ̃),
making the parameter α change, we obtain the bifurcations of phase portraits of
system (1.7) shown in Fig.2.
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(a) 0 < α < |β|(k + 1) (b) α = |β|(k + 1)
(c) |β|(k + 1) < α < 1

2 |β|(k +
1)(k + 2)

(d) α = 1
2 |β|(k + 1)(k + 2) (e) α > 1

2 |β|(k + 1)(k + 2)

Figure 2. The bifurcations of phase portraits of system (1.7) for δ̃ = 1
2kβ, and k is even.

(iii) When k is an odd number and α > 0, β < 0, for a fixed parameter group
(c, β, δ̃), making the parameter α change, we obtain the bifurcations of phase por-
traits of system (1.7) shown in Fig.3.

2.2 We next consider all possible phase portraits of system (1.8). System (1.8)
has the same invariant curve solutions as the associated regular system:

dϕ

dζ
= yϕ(cϕp + β),

dy

dζ
= −δ̃y2 + ϕ2

(
cϕp +

α

p− 1

)
, (2.3)

where p > 2, dξ = ϕ(cϕp + β)dζ, for ϕ(cϕp + β) ̸= 0.
Clearly, when p is an odd number and α < 0, system (2.3) has the equilib-

rium points O(0, 0), E1(ϕ1, 0), where ϕ1 =
(

−α
c(p−1)

) 1
p

. When β < 0 and Ys =

1
δ̃(p−1)

ϕ2s1(−β(p − 1) + α) > 0, on the singular straight line ϕ = ϕs1 =
(
−β
c

) 1
p

,

system (2.3) has two equilibrium points S+
∓(ϕs1,±

√
Ys).

When p is an even number and α < 0, system (2.3) has the equilibrium points
O(0, 0), E1(ϕ1, 0) and E2(−ϕ1, 0). When β < 0 and Ys > 0, on the singular straight
line ϕ = ±ϕs1, respectively, system (2.3) has the equilibrium points S+

∓(ϕs1,±
√
Ys)

and S−
∓(−ϕs1,±

√
Ys).

The point O(0, 0) is a double equilibrium point of system (2.3). To consider
the directions that the orbits of system (2.3) tend to O(0, 0) as ζ → ∞, from
G(θ) =

[
α
p−1 cos

2 θ − β(1− 1
2p) sin

2 θ
]
cos θ = 0, it follows that θ1 = π

2 , θ2 = 3π
2 .
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(a) 0 < α < |β|(k + 1) (b) α = |β|(k + 1)
(c) |β|(k + 1) < α < 1

2 |β|(k +
1)(k + 2)

(d) α = 1
2 |β|(k + 1)(k + 2) (e) α > 1

2 |β|(k + 1)(k + 2)

Figure 3. The bifurcations of phase portraits of system (1.7) for δ̃ = 1
2kβ, and k is odd.

Because ϕ = 0 is a straight line solution of system (2.3), there is no other orbit
tending to the origin O(0, 0).

We have

J(ϕ1, 0) = detM(ϕ1, 0) =
pc

p− 1
ϕ2+p1 (−β(p− 1) + α), J

(
ϕs1,

√
Ys

)
= 2δ̃pβYs.

(2.4)
When δ̃ = − 1

2pβ, we write that h1 = H20(ϕ1, 0), hs = H20(ϕs1, ys), where H20 is
given by (1.16).

When p is an odd number and α < 0, β < 0, for a fixed parameter group (c, β),
making the parameter α change, we obtain the bifurcations of phase portraits of
system (1.8) shown in Fig.4.

When p is an even number and α > 0, β < 0, for a fixed parameter group (c, β, δ̃),
making the parameter α change, we obtain the bifurcations of phase portraits of
system (1.8) shown in Fig.5.

3. Existence of solitary wave solution and compacton
determined by the orbits of system (1.7) when
βδ̃ < 0

In this section, we consider the case βδ̃ < 0, and k is a odd number in system (1.7).
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(a) β(p− 1) < α < 0 (b) α = β(p− 1) (c) α < β(p− 1)

Figure 4. The bifurcations of phase portraits of system (1.8) for δ̃ = − 1
2pβ, and p is odd.

(a) β(p− 1) < α < 0 (b) α = β(p− 1) (c) α < β(p− 1)

Figure 5. The bifurcations of phase portraits of system (1.8) for δ̃ = − 1
2pβ, and p is even.

We know from Fig.1 (a) that for system (1.7) and a fixed paprameter group
(c, β, δ̃) with β < 0, when parameter condition 0 < α < −β(k + 1) holds, then,
in the two triangle regions enclosed by the stable and unstable manifolds of the
origin O(0, 0) and the saddle point E1(ϕ1, 0) with the segment S+

−S
+
+ , there exist

two families of bounded orbits of system (1.7),respectively, which give rise to two
compaction families of equation (1.4).

It is well known that a smooth homoclinic orbit of a traveling system gives rise
to a solitary wave solution of the corresponding nonlinear wave equation. When
0 < −β(k + 1) < α, we see from Fig.1 (c) that there exists a homoclinic orbit of
system (1.7).

Thus, we immediately obtain the following conclusion.

Theorem 3.1. Assume that the parameters in equation (1.1) satisfy the conditions:
γ = kβ + 2δ̃, δ = (k − 1)δ̃. Then, equation (1.1) has the form (1.4), which has the
integrable traveling wave system (1.7) and (1.8).

(i) When βδ̃ < 0 and 0 < α < −β(k + 1), equation (1.4) has two families of
compacton solutions (see Fig.6 (a),(b)).

(ii) When βδ̃ < 0 and 0 < −β(k + 1) < α, equation (1.4) has a smooth solitary
wave solution given by the homoclinic orbit of system (1.7) defined by H1(ϕ, y) =
H(0, 0) = h0. In addition, equation (1.4) has a family of smooth periodic wave
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solutions defined by the closed branch of H1(ϕ, y) = h, h ∈ (h0, h1) (see Fig.6 (c),
(d)).

(a) (b) (c) (d)

Figure 6. The profiles of compactons and solitary wave solution of (1.4) for βδ̃ < 0.

4. Exact Peakon and pseudo-peakon of system (1.7)
when δ̃ = 1

2kβ

In order to obtain exact traveling wave solutions, we need to use the following
conclusion.

Proposition 4.1. Let X(ϕ) = A+Bϕ+Cϕ2. Assume that A > 0,∆ = B2−4AC >

0. Considering the integral ξ =
∫ ϕ
ϕM

dϕ

ϕ
√
X(ϕ)

, i.e., the solutions of the differential

equation dϕ
dξ = ϕ

√
X(ϕ), we have

(1) When X(ϕM ) = 0,

ϕ(ξ) = 2A√
∆cosh(

√
Aξ)−B , if ϕ(0) = −B+

√
∆

2C ,

ϕ(ξ) = − 2A√
∆cosh(

√
Aξ)+B

, if ϕ(0) = −B+
√
∆

2C .

(4.1)

(2) When X(ϕM ) ̸= 0,

ϕ(ξ) =
2A

P coshq(
√
Aξ)−B

, (4.2)

where P = 1
ϕM

(
2
√
AX(ϕM ) +BϕM + 2A

)
, q = ∆

P 2 , and coshq(ξ) is an Arai q-
deformed hyperbolic function (see [7,8]).

When δ̃ = 1
2kβ, we see from (1.15) that y2 =

h+cϕ2− 2α
(k+1)(k+2)

ϕk+2

(βϕk+c)
. By using the

first equation of (1.7), we obtan

ω0ξ ≡

√
2α

|β|(k + 1)(k + 2)
ξ

=

∫ ϕ

ϕ0

(
c
|β| − ϕk

)
dϕ√(

c
|β| − ϕk

) [
h(k+1)(k+2)

2α + c(k+1)(k+2)
2α ϕ2 − ϕk+2

] . (4.3)
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(i) Exact explicit peakon solution
Suppose that α = 1

2 |β|(k + 1)(k + 2). We consider the heteroclinic triangle in
Fig.3 (d) defined by the level curve of H10(ϕ, y) = 0 when k is an odd number, and
k > 2. Now, (4.3) becomes

ξ =

∫ ϕs

ϕ

(
c
|β| − ϕk

)
dϕ

ϕ

√(
c
|β| − ϕk

)2 =

∫ ϕs

ϕ

dϕ

ϕ
. (4.4)

Thus, it follows from (4.4) that the following peakon solution of Camassa-Holm
type equation (1.4) (see [10–12]:

ϕ(ξ) = ϕse
−|ξ|. (4.5)

When k is an even number, there are two heteroclinic triangles in Fig.2 (d).
Besides the peakon solution (4.5), we also have an anti-peakon solution:

ϕ(ξ) = −ϕse−|ξ|. (4.6)

(ii) Exact explicit pseudo-peakon solution and solitary wave solution
Suppose that α > 1

2 |β|(k+1)(k+2). We next consider the the homoclinic orbit
in Fig.3 (e) to the origin O(0, 0) defined by H10(ϕ, y) = 0, when k is an odd number.
Now, (4.3) can be written as

ω0ξ =

∫ ϕM

ϕ

(ϕks − ϕk)dϕ

ϕ
√

(ϕks − ϕk)(ϕkM − ϕk)
=

∫ ψM

ψ

(ψs − ψ)dψ

kψ
√
(ψs − ψ)(ψM − ψ)

, (4.7)

where ψ = ϕk, ψM = ϕkM = c(k+1)(k+2)
2α , ψs =

c
|β| .

By using Proposition 4.1, (4.7) gives rise the following exact solitary wave and
pseudo-peakon solution (when α− 1

2 |β|(k + 1)(k + 2) ≪ 1) of equation (1.4):

ϕ(χ)=(ψ(χ))
1
k =

(
2ψMψs

(ψs−ψM ) cosh
(√
ψMψsχ

)
+(ψM+ψs)

) 1
k

, χ∈(−∞, 0), (0,∞),

ξ(χ) =
1

kω0

[
ψsχ± ln

(√
(ψs − ψ(χ))(ψM − ψ(χ)) + ψ(χ)− 1

2 (ψs + ψM )
1
2 (ψs − ψM )

)]
.

(4.8)
When k is an even number, corresponding to the two homoclinic orbits with

“eight figure” (see Fig.2 (e)) defined by H10(ϕ, y) = 0, there exist a solitary wave
solution and an anti-solitary wave solution (or when α − 1

2 |β|(k + 1)(k + 2) ≪ 1,
a pseudo-peakon solution (4.8) and a pseudo-anti-peakon solution) with the exact
form:

ϕ(χ) = −(ψ(χ))
1
k = −

(
2ψMψs

(ψs − ψM ) cosh
(√
ψMψsχ

)
+ (ψM + ψs)

) 1
k

, (4.9)

where the ξ(χ) is same as (4.8).
By the above discussion, we have the following conclusion.
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Theorem 4.1. Assume that the parameters of equation (1.1) satisfy the condition
γ = kβ + 2δ̃, δ = (k − 1)δ̃ and δ̃ = 1

2kβ, β < 0.
(i) When α = 1

2 |β|(k + 1)(k + 2), and k is an odd number, equation (1.1)
has a peakon solution of Camassa-Holm type given by (4.5). While when k is an
even number, equation (1.1) has a peakon solution and an anti-peakon solutions of
Camassa-Holm type given by (4.5) and (4.6).

(ii) When α > 1
2 |β|(k + 1)(k + 2), and k is an odd number, equation (1.1) has

a solitary solution given by (4.8). While when k is an even number, equation (1.1)
has a solitary wave solution given by (4.8) and an anti-solitary wave solution given
by (4.9).

(iii) When α− 1
2 |β|(k+1)(k+2) ≪ 1, these solitary wave solutions are pseudo-

peakon solutions.

5. Exact Peakon and pseudo-peakon of system (1.8)
when δ̃ = −1

2pβ

When δ̃ = − 1
2pβ, we see from (1.16) that y2 =

(h+cϕ2+ 2α
(p−1)(2−p)

ϕ2−p)ϕp

cϕp+β . By using
the first equation of (1.8), we obtain the integral formula of exact solutions as
follows:

ξ =

∫ ϕ

ϕ0

|ϕp − ϕps1|dϕ

ϕ
√
|ϕp − ϕps1|(ϕp + h

cϕ
p−2 +Bp0)

, (5.1)

where B0 =
(

2α
c(p−1)(p−2)

) 1
p , and p > 2.

5.1. The case when p is an odd number
When p is an odd number, and β(p − 1) < α < 0, system (1.8) has phase por-
trait shown in Fig.4 (a). In this case, when h varies, the level curves defined by
H20(ϕ, y) = h are shown in Fig.7.

(a) h < hs (b) h = hs (c) h ∈ (hs, h1) (d) h > h1

Figure 7. The level curves H20(ϕ, y) = h of equation (1.8) for β(p− 1) < α < 0.

We see from Fig.7 that the following conclusions hold.
(i) For h ∈ (−∞, hs), there exists a family of open orbit branches defined by

H20(ϕ, y) = h on the left of the singular straight line ϕ = ϕs (see Fig.7 (a)), which
tends to the singular straight line, when |y| → ∞. These open orbits give rise to a
family of compacton solutions of equation (1.1) (see Fig.8 (a)).
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(ii) For h = hs, the level curve defined by H20(ϕ, y) = hs is an arch which passes
through the singular straight line ϕ = ϕs (see Fig.7 (b)). This arch gives rise to a
periodic peakon solution (see Fig.8 (b)).

(a) Compactons (b) Periodic peakon (c) Periodic wave

Figure 8. Profiles of equation (1.8) for β(p− 1) < α < 0.

(iii) For h ∈ (hs, h1), the level curves defined by H20(ϕ, y) = h are a family of
closed orbits (see Fig.7 (c)), This family gives rise to periodic wave solutions (see
Fig.8 (c)). Specially, when |h − hs| ≪ 1, these closed orbits give rise a family of
periodic peakons.

Assume that p = 3. Then, for the arch orbit in Fig.7 (b), (5.1) can be written
as

ξ =

∫ ϕ

ϕm

(ϕ3s1 − ϕ3)dϕ

ϕ
√
(ϕ3s1 − ϕ3)(ϕ3 + hs

c ϕ+B3
0)

=

∫ ϕ

ϕm

(ϕ2s1 + ϕs1ϕ+ ϕ2)dϕ

ϕ
√
(ϕ− ϕm)(ϕ− ϕl)(ϕ2s1 + ϕs1ϕ+ ϕ2)

=

∫ ϕ

ϕm

(ϕ2s1 + ϕs1ϕ+ ϕ2)dϕ

ϕ
√
(ϕ− ϕm)(ϕ− ϕl)[(ϕ− b1)2 + a21]

, (5.2)

where ϕl < 0 < ϕm < ϕ1 < ϕs.
Hence, we obtain the following periodic peakon solution:

ϕ(χ) = A0 +
B0

1− α0cn(χ, k) , χ ∈ (−χ0 , χ0),

ξ(χ) =
1√
A1B1

[(
ϕs1 +

ϕ2s1(A1 +B1)

ϕmB1 + ϕlA1
+
ϕmB1ϕlA1

A1 +B1

)
χ (5.3)

+

(
ϕ2s1(B1 −A1)

ϕmB1 + ϕlA1

)(
α̃1 − α0

1− α̃2
1

)(
Π

(
arccos(cn(χ, k)), α̃2

1

α̃2
1 − 1

, k

)
− α̃1f1

)
−
(
ϕmB1−ϕlA1

A1+B1

)(
α̃1−α0

1−α2
0

)(
Π

(
arccos(cn(χ, k)), α2

0

α2
0−1

, k

)
−α0f1

)]
,

where A2
1 = (ϕm − b1)

2 + a21, B2
1 = (ϕl − b1)

2 + a21, A0 = ϕmB1+ϕlA1

A1+B1
, B0 =

−2A1B1(ϕm−ϕl)
A2

1−B2
1

, k2 = (A1+B1)
2−(ϕm−ϕl)

2

4A1B1
, α0 = A1+B1

B1−A1
, α̃1 = ϕmB1+ϕlA1

ϕmB1−ϕlA1
, χ

0
=

cn−1
(

1
α0

(
1− B0

ϕsl−A0

))
and f1 is a special function (see [9], page 215).
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5.2. The case when p is an even number
When p is an even number, and α > |β|(p−1), system (1.8) has phase portrait shown
in Fig.5 (c). In this case, when h varies, the level curves defined by H20(ϕ, y) = h
are shown in Fig.9.

(a) h < hs (b) h = hs (c) h ∈ (hs, h1) (d) h > h1

Figure 9. The level curves H20(ϕ, y) = h of equation (1.8) for β(p− 1) < α < 0

(i) For h ∈ (−∞, hs), there exist two families of open orbit branches defined by
H20(ϕ, y) = h near the two singular straight lines ϕ = ±ϕs1 (see Fig.9 (a)), which
tend to two singular straight linse, when |y| → ∞, respectively. These open orbits
give rise to two families of compacton solutions of equation (1.1).

(ii) For h = hs, the level curves defined by H20(ϕ, y) = hs are two arches (see
Fig.9 (b)), which passing through the singular straight line ϕ = ±ϕs1, respectively.
Two arches give rise to two periodic peakon solutions.

(iii) For h ∈ (hs, h1), the level curves defined by H20(ϕ, y) = h are two families of
closed orbits (see Fig.9 (c)), These families give rise to two families of periodic wave
solutions. Specially, when |h− hs| ≪ 1, these closed orbits give rise two families of
periodic peakon solutions.

Assume that p = 4. For the right arch orbit, (5.1) can be written as

ξ =

∫ ϕ

ϕm

(ϕ4s1 − ϕ4)dϕ

ϕ
√
(ϕ4s1 − ϕ4)(ϕ4 + hs

c ϕ
2 +B4

0)
=

∫ ϕ

ϕm

(ϕ2s1 + ϕ2)dϕ

ϕ
√

(ϕ2s1 + ϕ2)(ϕ2 − ϕ2m)

=

∫ ψ

ψm

(ψs1 + ψ)dψ

2ψ
√
(ψ − ψm)(ψs1 + ψ)

, (5.4)

where 0 < ϕm < ϕ1 < ϕs1, ψ = ϕ2, ψm = ϕ2m, ψs1 = ϕ2s1.
(5.4) implies that the following two periodic peakon solutions:

ϕ(χ) = ±(ψ(χ))
1
2 = ±

(
2ψmψs1

|(ψs1−ψm)+(ψs1+ψm) cos(
√
ψmψs1χ))|

) 1
2

, χ ∈ (−π, π),

ξ(χ) = 1
2

[
ψs1χ± ln

(√
(ψs1−ψ(χ))(ψ(χ)−ψm)+ψ(χ)+ 1

2 (ψs1−ψm)
1
2 (ψs1+ψm)

)]
.

(5.5)

Theorem 5.1. Assume that the parameters of equation (1.1) satisfy the condition
γ = kβ + 2δ̃, δ = (k − 1)δ̃ and δ̃ = 1

2kβ = − 1
2pβ, β < 0.

(i) When β(p − 1) < α < 0, and p is an odd number, corresponding to the
arch branch of the level curves H20(ϕ, y) = hs, equation (1.1) has a periodic peakon
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solution. Specially, for p = 3, this periodic peakon has the exact parametric repre-
sentation given by (5.3).

(ii) When β(p − 1) < α < 0, and p is an even number, corresponding to two
arch branches of the level curves H20(ϕ, y) = hs, equation (1.1) has two periodic
peakon solutions. Specially, for p = 4, this periodic peakon has the exact parametric
representation given by (5.5).
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