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MODELLING THE EFFECTS OF THE
VACCINATION ON SEASONAL INFLUENZA

IN GANSU, CHINA∗

Hai-Feng Huo1,†, Kai-Di Cao1 and Hong Xiang1

Abstract Seasonal influenza is still prevalent and poses a huge health bur-
den, which is the most worth considerable issue that causes economic pressure
on the government. Investigating the essential characteristics of seasonal in-
fluenza can assist to improve people’s vigilance. A new influenza model with
vaccination and periodic transmission rate is introduced in this essay. The ba-
sic reproduction number R0 is derived, and formulate that R0 is an important
indicator to measure whether seasonal influenza can spread in the population.
Furthermore, the explicit consequences for the implementation of optimal con-
trol and the corresponding optimal solutions to alleviate the spread of influenza
virus are explored and derived. The best fitting parameters in our model are
determined from the seasonal influenza case data reported in Gansu Province
via MCMC procedure. The value of R0 is 1.2266(95%CI : (1.2230, 1.2302)) by
estimating unknown parameters. The different vigorous control strategies for
controlling the transmission of seasonal influenza are also studied and simu-
lated. Finally, the uncertainty and sensitivity of some parameters are shown
to determine which critical control strategy is effective. Our numerical results
imply that raising the vaccination rate can availably reduce the spread of sea-
sonal influenza in Gansu Province, and vaccination is a more effective method
than treatment.

Keywords Influenza, parameter estimation, sensitivity analysis, optimal con-
trol, vaccination.
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1. Introduction
The influenza virus which is certain RNA viruses of the Orthomyxoviridae family
causes acute respiratory disease that is highly infectious from person to person [9].
Its main clinical manifestations are fever, headache, weakness of the limbs, coughing
and so on. When human beings are exposed to influenza virus, influenza virus enters
respiratory tract quickly and resides in the human body, which causes people’s
physical discomfort. In the past 20th century, there have been three major influenza
plagues that claimed many lives [19]. The most well-known and deadly of which
was the Spanish flu, which had a global average fatality rate of 2.3%∼5%. So far,
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although seasonal influenza will not cause large-scale deaths, influenza viruses still
pose a serious threat to human life and health. Especially in places where medical
resources are underdeveloped, influenza is particularly serious.

As influenza virus has a high risk to the aged, youngsters, gravidas or other pop-
ulation of impoverished immune systems, it is imperative to find suitable measures
to reduce the risk of influenza infection. Vaccination is one of the effective methods
to alleviate the influences of seasonal influenza epidemics globally [6]. Recently, a
comprehensive investigation of the scientific magazine claimed that the effectiveness
of trivalent influenza vaccine for youngsters (ages 6 months to 8 years) was 83% (95%
CI: (69%, 91%)) [8]. The other literature claimed that the effectiveness of trivalent
inactivated influenza vaccine on healthy grown-ups aged between eighteen to sixty-
five years old was 59% (95% CI: (51%, 67%)) and provided remarkable protection
against influenza [8, 26, 27]. The above data show that influenza vaccination has a
significant effect on reducing the risk of infection.

It is worth mentioning that the mathematical modeling have been played a sig-
nificant role in formulating the prevention and control strategies [12]. Several recent
studies have focused on various models used to forecast and evaluate vaccination
strategies [18, 28, 29]. Qiu and Feng [28] showed an autonomous differential equa-
tion model with antiviral treatment and vaccination, the threshold condition for the
existence of the equilibrium point was given, as well as the stability and uniform
persistence of the system were analyzed. Shi et al. [29] proposed and studied and
EV71 vaccination model of HFMD(hand-foot-mouth disease) , and concluded that
the vaccine was effective in reducing outbreaks of HFMD. Jing et al. [18] proposed
a non-autonomous ordinary differential equation model and took into account the
impacts of ozone in the air and vaccination on the spread of influenza, and studied
the dynamic of proposed mathematical model. Other vaccination models are shown
in [11,14,20] and references cited therein.

The spread of some viruses has a strong seasonal and diversified spatial char-
acteristic. From the perspective of the above reality, it is shown that the rela-
tionship between seasonal periodic outbreaks and epidemic trends can help predict
the long-term health risks of diseases. Therefore, many literatures have introduced
the periodic transmission rate functions [16, 17, 32, 38]. Zhu et al. [38] showed a
mathematical model of SEIQRS to explore the spread of HFMD in Wenzhou re-
gion and evaluate the prevention strategies. Wang et al. [32] established a model
that regards the particles of pollution in free air as indirect transmission rate and
person-to-person contact as direct transmission rate, and concluded that frequent
cleaning and sanitation can availably decrease the prevalence of HFMD. Jing et
al. [17] proposed a novel mathematical model, as well as considered the impact of
meteorological factors and periodic transmission rate on seasonal influenza. Mah-
moud et al. [16] formulated a mathematical model of Zika propagation in periodic
circumstance, including sexual contact propagation and insect vector propagation,
and analyzed the model from the perspective of mathematical dynamics. Other
diseases with periodic transmission are also shown in [5, 15,36].

Since vaccine is only effective against the influenza virus of the year, that is, the
validity period of the influenza vaccine is about one year [7, 24], it is assumed that
some people will still be infected with the influenza virus after being vaccinated.
Motivated by the above, we build up a non-autonomous ordinary differential equa-
tion mathematical model, as well as analyze the model by mathematical methods.
Moreover, we optimized a variety of mitigation strategies to minimize the final scale
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of human infection. Meanwhile, we study the model proposed via adopting the com-
bination of mathematical analysis and certain numerical simulation, focusing on the
influenza case information in Gansu Province.

The organize of the paper is as follows: In Section 2, we set up a standard
non-autonomous mathematical model for influenza. In Section 3, we make the
necessary mathematical investigation of the system. In particular, we obtain the
basic reproduction number R0, which is an important index reflecting the threshold
dynamics of the model that we attempt to investigate. In Section 4, we discuss the
optimal control issue of influenza virus epidemic by evaluating the optimal control
measures and give the control strategy. In Section 5, we employ MCMC algorithm
to evaluate the initial value of the vaccinators and several unknown parameters, we
also simulate the optimal control measures to alleviate the possibility of influenza
transmission. At the same time, we analyze the uncertainty and sensitivity analysis
of some parameters. In Section 6, we summarize all sections and put forward
prospects for the future.

2. The Model Formulation
2.1. System Description
In this paper, we will extend the classical infectious disease model to achieve our
purpose of better studying influenza. The entire population N(t) is composed of six
compartments, which are S(t), V (t), E(t), IN (t), IC(t), R(t), where S(t) means the
size of susceptible individuals, V (t) means the size of vaccinator, E(t) means the
size of exposed individuals, IN (t) refers to individuals who have not been reported
by Gansu provincial CDC after being infected with influenza virus, IC(t) refers to
individuals who have been reported by Gansu provincial CDC after being infected
with influenza virus, and R(t) indicates the population who have recovered after
being infected with influenza viruses. Therefore, we can obtain that the whole
population is

N(t) = S(t) + V (t) + E(t) + IC(t) + IN (t) +R(t).

Based on the above assumptions, we can receive the compartment diagram of
the system is described as

Figure 1. The schematic diagram for the dynamics of influenza system (2.1).

In the proposed model, human infection with influenza virus is divided into two
situations, one of which is β1(t) refers to the probability that susceptible groups
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will be infected after being exposed to the virus released by an infected person, and
the other β2(t) represents the probability that vaccinated population will get sick
after being exposed to the virus released by an infected person after the vaccine
fails. And the detailed parameter meaning is shown in Table 1.

Table 1. The detailed description of parameters of the influenza system (2.1).

Parameter Description(Units)
Λ The average number of people entering the susceptible population (month−1)

d Natural mortality rate (month−1)

θ Modification factor of reported infected individuals (none)

δ Covered rate of infected individuals by CDC in Gansu Province (none)

1/ρ The average incubation period (month)

q Progression rate from R(t) to S(t) (month−1)

γ1 Progression rate from IN (t) to R(t) (month−1)

γ2 Progression rate from IC(t) to R(t) (month−1)

κ Treatment rate of uncovered infectious (month−1)

β1 The periodic transmission rate between S(t) and infectious (none)

β2 The periodic transmission rate between V (t) and infectious (none)

c Vaccination rate of susceptible individuals (month−1)

σ Vaccination failure rate (month−1)

According to the Fig. 1, the following influenza model is established.

dS
dt = Λ+ qR− β1(t)S(θIC + IN )− cS + σV − dS,

dV
dt = cS − β2(t)V (θIC + IN )− σV − dV,

dE
dt = β1(t)S(θIC + IN ) + β2(t)V (θIC + IN )− ρE − dE,

dIN
dt = (1− δ)ρE − γ2IN − κIN − dIN ,

dIC
dt = δρE − γ1IC + κIN − dIC ,

dR
dt = γ1IC + γ2IN − qR− dR.

(2.1)

Next, we will demonstrate whether the solution of the mathematical model is ulti-
mately uniformly bounded, which is illustrated by the following lemma.

Lemma 2.1. Define

Φ =

{
(S, V,E, IN , IC , R) ∈ R6

+; 0 ≤ S, V,E, IN , IC , R ≤ N ≤ Λ

d

}
,

the solutions of the system (2.1) are uniformly, ultimately bounded and the set Φ is
a positive invariant set.
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Proof. Obviously, we can get the following equation from the system (2.1).

dN(t)

dt = Λ− dS − dV − dE − dIN − dIC − dR

= Λ− dN.

Through the above formula, the following inequality is obtained:

0 ≤ N(t) =
Λ

d
+ (N(0)− Λ

d
)e−dt ≤ Λ

d
+N(0)e−dt,

where N(0) denotes the initial value of the entire population, therefore, we obtain
0 ≤ lim

t→∞
supN(t) ≤ Λ

d . Finally, we can a get positive invariant set which is

Φ =

{
(S, V,E, IN , IC , R) ∈ R6

+; 0 ≤ S, V,E, IN , IC , R ≤ N ≤ Λ

d

}
.

This completes the proof.

3. Analysis of the model

3.1. The Basic Reproduction Number for the Periodic System

It is well known that basic reproduction number R0 is a great number of secondary
patients by a case in a whole susceptible population, and R0 will be calculated
in this part. According to calculations, the solution of the system (2.1) is P0 =

(S0, V 0, 0, 0, 0, 0), where S0 = Λ(d+σ)
d(d+c+σ) , V

0 = cΛ
d(d+c+σ) , and it is a periodic solution.

Based on the technical theory of periodic systems generated by Wang and Zhao [33].
Let x = (S, V,E, IN , IC , R)T , therefore, the influenza system is written by the
following equation

dx(t)
dt = F(t, x)− V(t, x),

where

F(t, x) =



β1(t)S(θIC + IN ) + β1(t)V (θIC + IN )

0

0

0

0

0


,
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and

V(t, x) =



ρE + dE

−(1− δ)ρE + (γ2 + d+ κ)IN

−δρE + (γ1 + d)IC + κIN

−γ1IC − γ2IN + qR+ dR

−Λ− qR+ β1(t)S(θIC + IN ) + kS + dS

−kS + β2(t)V (θIC + IN ) + dV


.

Obviously, it can be directly obtained that the conditions (A1)-(A5) are satisfied
[33]. Next, we can introduce f(t, x(t)) = F(t, x)− V(t, x), let

N(t) :=

(
∂fi(t, x

0(t))

∂xj

)
, (5 ≤ i, j ≤ 6)

where x0(t) =
(
0, 0, 0, 0, Λ(d+σ)

d(d+c+σ) ,
cΛ

d(d+c+σ)

)
is the solution of the system (2.1).

Supposing that ΦN (t) is the monodromy matrix of the linear T -period system
dz

dt
= N(t)z, we further get that the spectral radius of ΦN (t) is less than unity.

Therefore, we verify that the system (2.1) meets the condition (A6) in the mathe-
matical technology theory claimed by Wang and Zhao [33].

The following proves that the condition (A7) is satisfied. Through simple cal-
culations, we obtain

F̄ (t) =

(
∂Fi

∂xj

∣∣∣∣
P0

)
=


0 β1S

0 + β2V
0 β2θS

0 + β2θV
0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , 1 ≤ i, j ≤ 4,

and

V̄ (t) =

(
∂Vi

∂xj

∣∣∣∣
P0

)
=


ρ+ d 0 0 0

−(1− δ)ρ γ2 + d+ κ 0 0

−δρ −κ γ1 + d 0

0 −γ2 −γ1 q + d

 , 1 ≤ i, j ≤ 4.

From the above matrix, we can directly get that F̄ (t) is non-negative, and −V̄ (t)
is cooperative. That is to say, the F̄ (t)− V̄ (t) is irreducible for all time t.

Suppose Y (t, s)(t ≥ s) be the evolution operator of the linear T -periodic system

dy
dt = −V̄ (t)y. (3.1)

For each s ∈ R, let 4× 4 matrix Y (t, s) meets

dY (t, s)

dt = −V̄ (t)Y (t, s),∀t ≥ s, Y (S, S) = I, (3.2)
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where I is the 4× 4 identity matrix. Therefore, the monodromy matrix Φ−V̄ (T ) of
(3.1) and Y (t, 0) have the same meaning. Hence, the condition (A7) can be satisfied.

Next, according to the theory submitted by Wang and Zhao [33], let ϕ(s), T -
periodic, be the initial distribution of infectious individuals at this periodic circum-
stance, then F (s)ϕ(s) is the rate of new infections generated by infected individuals
who are produced at time s, considering t ≥ s, Y (t, s)F (s)ϕ(s) represents the dis-
tribution of those newly infected by ϕ(s) and remain in the infected compartments
at time t, then∫ t

−∞
Y (t, s)F (s)ϕ(s)ds =

∫ ∞

0

Y (t, t− a)F (t− a)ϕ(t− a)da (3.3)

gives the distribution of cumulative new infections at time t owning to all infected
individuals ϕ(s) introduced at time fewer than t.

We define CT be the ordered Banach space of T -periodic functions from R to
R4, which is involved in the maximum norm || · || and introduce the positive cone
C+

T = (ϕ ∈ CT : ϕ(t) ≥ 0,∀t ∈ R} . Therefore, a linear operator L : CT −→ CT is
defined as

(Lϕ)(t) =

∫ ∞

0

Y (t, t− a)F (t− a)ϕ(t− a)da,∀t ∈ R,ϕ ∈ CT . (3.4)

It is known as the next generation infection operator. The spectral radius of L is
equal to the basic reproduction number R0. That is,

R0 := ρ(L). (3.5)

Next, to explore the stability of our model (2.1), we attempt to use the following
lemma.

Lemma 3.1 (Theorem 2.2, [33]). The following statements hold:
(i) R0 = 1 iff ρ(ΦF̄−V̄ (T )) = 1.

(ii) R0 < 1 iff ρ(ΦF̄−V̄ (T )) < 1.
(iii) R0 > 1 iff ρ(ΦF̄−V̄ (T )) > 1.

Therefore, if R0 < 1 the disease-free periodic solution P0 of system (2.1) is
locally asymptotically stable and unstable if R0 > 1. Supposing that W (t, s, λ) is a
evolution operator of the following linear T -period system

dω
dt =

(
−V̄ (t) +

F̄ (t)

λ

)
ω, (3.6)

with parameter λ ∈ R, t ∈ R+. It is straightforward to get that ΦF̄−V̄ (t) =
W (t, 0, 1), therefore, we derive

Φ F̄
λ −V̄ (t) = W (t, 0, λ), t ≥ 0, (3.7)

where

−V̄ (t) +
F̄ (t)

λ
=


−(ρ+ d) β1(t)S

0+β2(t)V
0

λ
β1(t)θS

0+β2(t)θV
0

λ 0

(1− δ)ρ −(γ2 + d+ κ) 0 0

δρ κ −(γ1 + d) 0

0 γ2 γ1 −(q + d)

 .
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In the light of comprehensive mathematical technology theory and means offered by
Wang and Zhao in [33], we can clearly know that the basic reproduction number R0

is the unique solution of ρ(W (T, 0, λ)) = 1. In subsequent proofs, we will employ it
to characterize the basic reproduction number R0.

3.2. Extinction of the Influzeza
We will make the following preparations for the next proof. Firstly, supposing that
A(t) is a continuous, cooperative, irreducible, and assume directly that ΦA(T ) is
the fundamental solution matrix of the system (3.8), the system (3.8) is represented
as

dx(t)
dt = A(t)x(t). (3.8)

We can introduce ρ (ΦA(T )) be the spectral radius of ΦA(T ). Therefore, this
means that every element of ΦA is positive [4,13]. By Perron-Frobenius theorem [30],
ρ(ΦA(T )) is the principle eigenvalue of ΦA, which implies that it is simple and has
an eigenvector v∗ ≫ 0. Finally, the following conclusions help us to demonstrate
the threshold dynamics of system (2.1).

Lemma 3.2 (Lemma 2.1, [35]). Let µ = 1
T lnρ(ΦA(T )), then there exists a positive

T -periodic function V (t) such that eptv(t) is a solution of dy

dt
= A(t)x(t).

Theorem 3.1. If R0 < 1, the disease-free periodic solution P0(S
0, V 0, 0, 0, 0, 0) of

the system (2.1) is globally asymptotically stable in Φ; if R0 > 1, then it is unstable.

Proof. From Lemma 3.1, we know that if R0 < 1, then P0 is local asymptotically
stable, but if R0 > 1, then P0 is unstable. Therefore, it is only necessary to
obtain that P0 is globally attractive when R0 < 1. From system (2.1) and V (t) ≤
N(t)− S(t), we can obtain

dS
dt ≤ Λ + σN − (c+ d+ σ)S,

dV
dt ≤ cN − (c+ d+ σ)V.

(3.9)

Thus, for ∀ε > 0, there exists t0 > 0 such that S(t) ≤ S0 + ε, V (t) ≤ V 0 + ε, for
t > t0. We can introduce the following comparison system

dẼ
dt = β1(t)(S

0 + ε)(θĨC + ĨN ) + β2(t)(V
0 + ε)(θĨC + ĨN )− ρẼ − dẼ,

dĨN
dt = (1− δ)ρẼ − γ2ĨN − dĨN − κĨN ,

dĨC
dt = δρẼ − γ1ĨC + κĨN − dĨC ,

dR̃
dt = γ1ĨC + γ2ĨN − qR̃− dR̃.

(3.10)

We define x = (Ẽ, ĨN , ĨC , R̃)T , the system (3.10) can be described by the following
system

dx(t)
dt = (F̄ (t)− V̄ (t) + εMε)x, (3.11)
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where

Mε =


0 β1(t) + β2(t) β1(t)θ + β2(t)θ 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

According to Lemma 3.2, there is a positive T periodic function v(t) = (v1, v2, v3, v4)
such that eµtv(t) is a solution of system (3.10), where µ = 1

T lnρ
(
ΦF̄−V̄+εMε

(T )
)
,

then we choose t1 > t0 and a small number α to satisfy the following inequality

Ẽ(t1) ≤ αv1(0), ĨN (t1) ≤ αv2(0), ĨC(t1) ≤ αv3(0), R̃(t1) ≤ αv4(0),

so we can get

Ẽ(t) ≤ αeµ(t−t1)v1(t− t1), ĨN (t) ≤ αeµ(t−t1)v2(t− t1),

ĨC(t) ≤ αeµ(t−t1)v3(t− t1), R̃(t) ≤ αeµ(t−t1)v4(t− t1).

By the comparison principle, we have

E(t) ≤ Ẽ(t) ≤ αeµ(t−t1)v1(t− t1), IN (t) ≤ ĨN (t) ≤ αeµ(t−t1)v2(t− t1),

IC(t) ≤ ĨC(t) ≤ αeµ(t−t1)v3(t− t1), R(t) ≤ R̃(t) ≤ αeµ(t−t1)v4(t− t1),∀t > t1.

The Lemma 3.1 means that ρ(ΦF̄−V̄ (T )) < 1 is obtained, when R0 < 1. Select
sufficiently small number ε > 0 so that ρ(ΦF̄−V̄−εMε(T )) < 1, so it’s easy to get
µ < 0, which implies the following equation is established.

lim
t→∞

E(t) = 0, lim
t→∞

IN (t) = 0, lim
t→∞

IC(t) = 0, lim
t→∞

R(t) = 0.

According to the theory of asymptotically autonomous system [31], we can obtain
lim
t→∞

S(t) = S0, lim
t→∞

V (t) = V 0. Therefore, when R0 < 1, the disease-free periodic
solution P0 is globally asymptotically stable. This completes the proof.

3.3. Uniform Persistence of the system
We will continue the mathematical analysis to explore the uniform persistence of
the model in this subsection, it will be proved by the theory proposed by Zhao [37].
Firstly, let

X :=
{
(S, V,E, IN , IC , R)T : S ≥ 0, V ≥ 0, E ≥ 0, IN ≥ 0, IC ≥ 0, R ≥ 0

}
,

X0 :=
{
(S, V,E, IN , IC , R)T ⊆ X : S > 0, V > 0, E > 0, IN > 0, IC > 0, R > 0

}
,

∂X0 := X \X0.

And u(t, x0) is defined as the solution of system (2.1), and the system (2.1) is
equipped with initial condition x0, where x0 = (S(0), V (0), E(0), IN (0), IC(0), R(0)).
From the fundamental existence-uniqueness theorem of the solution [23], we can ob-
tain that u(t, x0) is unique. Next, we define f : X → X be the Poincaré map related
to system (2.1), so we can get f(x0) = u(T, x0),∀x0 ∈ X. Obviously, we can ob-
tain fm(x0) = u(mT, x0), then the solution of system (2.1) is uniformly ultimately
bounded. In other words, the mapping f is a point dissipative on X.
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Lemma 3.3. If R0 > 1, then there exists a constant ε > 0 such that for any x0 ∈ X0

with ∥x0 −P0∥ < ε, we obtain lim
m→∞

sup d (fm(x0), P0) ≥ ε, where d (fm(x0), P0) is
distance between fm(x0) and P0.

Proof. From Lemma 3.1, if R0 > 1, then ρ(ΦF̄−V̄ (T )) > 1. So we select a
number ε > 0 sufficiently small such that ρ

(
ΦF̄−V̄+εMε

(T )
)
> 1. Next, we use the

contradiction method to prove the result, assuming that

lim
m→∞

sup d [fm(x0), P0] ≥ ε.

Otherwise, we can obtain

lim
m→∞

sup d [fm(x0), P0] < ε,

for any x0 ∈ X0. Without losing generality, there exists m > 0 such that d [fm(x0) ,
P0] < ε. From the continuity of the solutions with respect to the initial value
condition, when ∥x0 − P0∥ < ε, we can get

∥u(t̄, fm(x0))− u(t̄, P0)∥ < ε∗,m ≥ 0, t̄ ∈ [0, T ]

for ∀t ≥ 0, we can obtain

∥u(t, x0)− u(t, P0)∥ = ∥u(t̄, fm(x0))− u(t̄, P0)∥ < ε∗,

where t = t̄+mT, and m =
[
t
T

]
, which is the largest integer less than or equal to[

t
T

]
. It follows from Lemma 2.1 that there exists t2 > 0 that S0 − ε∗ ≤ S(t) ≤

S0 + ε∗, V 0 − ε∗ ≤ V (t) ≤ V 0 + ε∗, 0 ≤ E(t) ≤ ε∗, 0 ≤ IN (t) ≤ ε∗, 0 ≤ IC(t) ≤
ε∗, 0 ≤ R(t) ≤ ε∗ for t > t2. Then

dE
dt ≥ β1(t)(S

0 − ε∗)(θIC + IN ) + β2(t)(V
0 − ε∗)(θIC + IN )− ρE − dE. (3.12)

Next, it is similar to the demonstrate of Theorem 3.1, considering the following
auxiliary system

dÊ
dt = β1(t)(S

0 − ε∗)(θÎC + ÎN ) + β2(t)(V
0 − ε∗)(θÎC + ÎN )− ρÊ − dÊ,

dÎN
dt = (1− δ)ρÊ − γ2ÎN − dÎN − κÎN ,

dÎC
dt = δρÊ − γ1ÎC + κÎN − dÎC ,

dR̂
dt = γ1ÎC + γ2ÎN − qR̂− dR̂.

(3.13)
We define x = (Ê, ÎN , ÎC , R̂)T , the system (3.13) can be described by the following
equation

dx(t)
dt = (F̄ (t)− V̄ (t) + εMε)x, (3.14)
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where

Mε =


0 β1(t) + β2(t) β1(t)θ + β2(t)θ 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

According to Lemma 3.2, there is a positive T periodic function w(t) = (w1, w2, w3,
w4) such that eµtw(t) is a solution of system (3.13), where µ = 1

T lnρ
(
ΦF̄−V̄+εMε

(T )). then we choose t3 > t2 and a small number ᾱ to satisfy the following inequality

Ê(t3) ≤ ᾱw1(0), ÎN (t3) ≤ ᾱw2(0), ÎC(t3) ≤ ᾱw3(0), R̂(t3) ≤ ᾱw4(0),

so we can get

Ê(t) ≤ ᾱeµ(t−t3)w1(t− t3), ÎN (t) ≤ ᾱeµ(t−t3)w2(t− t3),

ÎC(t) ≤ ᾱeµ(t−t3)w3(t− t3), R̂(t) ≤ ᾱeµ(t−t3)w4(t− t3),∀t > t3.

By the comparison principle, we can derive

E(t) ≤ Ê(t) ≤ ᾱeµ(t−t3)w1(t− t3), IN (t) ≤ ÎN (t) ≤ ᾱeµ(t−t3)w2(t− t3),

IC(t) ≤ ÎC(t) ≤ ᾱeµ(t−t3)w3(t− t3), R(t) ≤ R̂(t) ≤ ᾱeµ(t−t3)w4(t− t3),∀t > t3.

It implies that the following equation is established. lim
t→∞

E(t) = ∞, lim
t→∞

IN (t) =

∞, lim
t→∞

IC(t) = ∞, lim
t→∞

R(t) = ∞. Which is a contradiction. Thence, we have
directly completed the proof.

Theorem 3.2. If R0 > 1, then there exists η > 0 such that any solution (S(t), V (t),
E(t), IN (t), IC(t), R(t)) with respect to the initial values x0 = (S(0), V (0), E(0),
IN (0), IC(0), R(0)) ∈ X0 satisfies the following inequality

lim
t→∞

inf (E(t), IN (t), IC(t), R(t)) ≥ (η, η, η, η),

and has at least one positive periodic solution.

Proof. To demonstrate that system (2.1) is uniformly persistence with respect
to (X0, ∂X0), for ∀x0 ∈ X0, solving system (2.1), it is obvious that the following
inequality can be obtained.

S(t) =e−
∫ t
0
[β1(τ)(θIC(τ)+IN (τ))+c+d]dτ

[
S(0) +

∫ t

0

(Λ + qR(τ) + σV (τ))

e
∫ t
0
[β1(τ)(θIC(τ)+IN (τ))+c+d]dτdτ

]
,

V (t) =e−
∫ t
0
[β2(τ)(θIC(τ)+IN (τ))+σ+d]dτ

[
V (0) +

∫ t

0

cS(τ)

e
∫ t
0
[β2(τ)(θIC(τ)+IN (τ))+σ+d]dτdτ

]
,

E(t) =e−(ρ+d)t

[
E(0) +

∫ t

0

[β1(τ)S(τ)(θIC(τ) + IN (τ))

+β2(τ)V (τ)(θIC(τ) + IN (τ))]e(ρ+d)τdτ
]
,

(3.15)
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IN (t) = e−(γ2+d+κ)t

[
IN (0) +

∫ t

0

(1− δ)ρE(τ)e(γ2+d+κ)τdτ
]
,

IC(t) = e−(γ1+d)t

[
IC(0) +

∫ t

0

(δρE(τ) + κIN (τ))e(γ2+d+κ)τdτ
]
,

R(t) = e−(q+d)t

[
R(0) +

∫ t

0

(γ1IC(τ) + γ2IN (τ)e(q+d)τdτ
]
.

So X and ∂X0 is a positive invariant set, and ∂X0 is relatively closed in X0. Let

M∂ := {x0 ∈ ∂X0 : fm(x0) ∈ ∂X0,∀M > 0} .

Now, we prove that

M∂ :=
{
(S, V, 0, 0, 0, 0)T ∈ ∂X0 : S ≥ 0, V ≥ 0

}
≜ M

′

∂ .

From the definition of the above formula, we can know M
′

∂ ⊆ M∂ , all we need
to be proved is that M∂ ⊆ M

′

∂ . Firstly, we assume that the conclusion is not true,
that is, for x0 = (S(0), V (0), E(0), IN (0), IC(0), R(0))T ∈ ∂X0, we have IN (mT ) =
IC(mT ) = E(mT ) = R(mT ) = 0. If not, there exists an m1 ≥ 0 such that
(E(mT ), IN (mT ), IC(mT ), R(mT ))T ≥ 0. If by putting initial time t = 0 instead of
t = m1T , and it follows from (3.15) that E(t) > 0, IN (t) > 0, IC(t) > 0, R(t) > 0,
for ∀t > m1T , now we have fm(S(0), V (0), E(0), IN (0), IC(0), R(0)) /∈ ∂X0, which
is a contradiction, hence, we have M∂ ⊆ M

′

∂ .
According to Lemma 3.3, we know that P0 is a unique fixed point of f in M∂ ,

further, from the above description, we get that P0 is an isolated invariant set in
X and W s(P0)

⋂
X0 = ∅, where W s(P0) is the stable manifold of P0, we can infer

that P0 is uniformly persistent with respect to (X0, ∂X0), in order to do this, there
exists η > 0 such that any solution u(t, x0) of the system (2.1) with initial value
condition x0 meets

lim
t→∞

inf (E(t), IN (t), IC(t), R(t)) ≥ (η, η, η, η).

Next, we can testify that S∗(0) > 0, T ∗(0) > 0. Theorem 1.3.6 in [37] means
that f has a fixed point (S∗(0), V ∗(0), E∗(0), I∗N (0), I∗C(0), R

∗(0)) ∈ X0. Therefore,
we can get S∗(0) ≥ 0, V ∗(0) ≥ 0, E∗(0) > 0, I∗N (0) > 0, I∗C(0) > 0, R∗(0) > 0, now,
we prove that S∗(0) > 0. Suppose not, assuming that S∗(0) = 0. From the first
formula of the model, we can get

dS
dt ≥ Λ− β1(t)S(θIC + IN )− cS − dS = Λ− (β1(t)(θIC + IN + c+ d))S.

Through the comparison principle, we can derive

S(t) ≥e−
∫ t
0
[β1(τ)(θIC(τ)+IN (τ))+c+d]dτ1

×
[
S∗(0) +

∫ t

0

Λe
∫ τ1
0 [β1(τ)(θIC(τ)+IN (τ))+c+d]dτdτ1

]
=e−

∫ t
0
[β1(τ)(θIC(τ)+IN (τ))+c+d]dτ1

[∫ t

0

Λe
∫ τ1
0 [β1(τ)(θIC(τ)+IN (τ))+c+d]dτdτ1

]
.

Consequently, through the above formula, we can receive the following inequality

S∗(nT ) ≥e−
∫ nT
0

[β1(τ)(θIC(τ)+IN (τ))+c+d]dτ1
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×

[∫ nT

0

Λe
∫ τ1
0 [β1(τ)(θIC(τ)+IN (τ))+c+d]dτdτ1

]
.

Owning to the periodicity of T , we can get S∗(0) = S∗(nT ) = 0, n = 1, 2, 3, ..., a
contradicts. So we can obtain that S∗(0) > 0. Similarly, V ∗(0) > 0. Hence we have
completed the demonstrate of the theorem.

4. The Optimal Control Problems
We conducted necessary mathematical research and exploration on the proposed
mathematical model in the previous section. And we discussed that R0 is the key
threshold parameter to determine whether the influenza virus is epidemic or not.
In the next work, we will apply the optimal control to the projected mathematical
model. we are going to analyze our model by including four time-dependent con-
trol variables, which correspond to four intervention strategies of the system (2.1).
Taking into account the real situation of influenza infection in Gansu Province, we
introduce u1(t), u2(t), u3(t), u4(t) related to the four strategies as control param-
eters to reduce the number of influenza cases. Supposing that one of the control
functions u1(t) indicates that in order to reduce the prevalence of influenza, the sus-
ceptible person maintains the necessary social distance from the infected person for
their own safety, and the other control function u2(t) indicates that the vaccinated
population intends to avoid contact with the infected person as much as possible
for their own safety. For example, wearing a mask, maintaining social distancing,
increasing self-protection, etc. The control functions u3(t) refers to people are more
willing to choose vaccination to cut down the probability of infection. The control
functions u4(t) refers to receiving treatment after infection so that the intensity of
infection is reduced. Such as taking medical, going to the hospital for treatment,
or going to a designated place for influenza vaccination.

Based on the above assumption, the system (2.1) consists of four control mea-
sures, which are controlled by:

dS
dt = Λ+ qR− (1− u1(t))β1(t)S(θIC + IN )− (1 + u3(t))cS + σV − dS,

dV
dt = (1 + u3(t))cS − (1− u2(t))β2(t)V (θIC + IN )− σV − dV,

dE
dt = (1− u1(t))β1(t)S(θIC + IN ) + (1− u2(t))β2(t)V (θIC + IN )− ρE − dE,

dIN
dt = (1− δ)ρE − γ2IN − (1 + u4(t))κIN − dIN ,

dIC
dt = δρE − γ1IC + (1 + u4(t))κIN − dIC ,

dR
dt = γ1IC + γ2IN − qR− dR,

(4.1)
with initial conditions

S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, IN (0) ≥ 0, IC(0) ≥ 0, R(0) ≥ 0.

To figure out the optimal control issue of the system (4.1), our target is to cut down
the amount of infected individuals with the least cost in the interval [0, T ], where
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T refers to control set, and the objective function is defined as

J(u1, u2, u3, u4) =

∫ T

0

B1IN +B2IC +
1

2

4∑
i=1

Wiu
2
i (t)dt, (4.2)

where B1, B2 represent associated adjoints of the IN and IC , respectively, W1,W2,
W3, and W4 are associated adjoints of the control function. We introduce the control
variables u(t) = (u1, u2, u3, u4) correspond to the state variables S, V,E, IN , IC , R,
it is can be measured by

Ω = {(u1, u2, u3, u4)|ui ∈ L[0, 1], 0 ≤ ui ≤ 1, t ∈ [0, T ], (i = 1, 2, 3, 4)} .

The optimal control strategy that minimizes the reported infection individuals
and the unreported infection individuals is obtained. Under initial conditions, the
system (4.1) has an optimal control pair U∗ = (u∗

1, u
∗
2, u

∗
3, u

∗
4) such that the following

formula holds.
J(U∗) = min

Ω
J(u1, u2, u3, u4).

Next, based on the conclusions of Fleming and Rishel [10], the relevant state
and control variables are non-negative and linear function of Ω, the integral of the
objective function J associated with u1, u2, u3, u4 on Ω is convex, consequently, we
can get the following conclusion.

Theorem 4.1. Provided there exists optimal control pair U∗ of the control system,
and Y ∗(t) is a solution of the state system (4.1), so that the objective function J
is minimized on Ω , In order to verify its correctness, then there are continuous
functions λi(t)(i = 1, 2, 3, 4, 5, 6) which satisfying

dλ1

dt = (λ1 − λ3)(1− u1(t))β1(t)(θIC + IN ) + (λ1 − λ2)(1 + u3(t))c+ dλ1,

dλ2

dt = (λ2 − λ3)(1− u2(t))β2(t)(θIC + IN ) + (λ2 − λ1)σ + dλ2,

dλ3

dt = (λ4 − λ5)δρ+ (λ3 − λ4)ρ+ dλ3,

dλ4

dt = −B1 + (λ1 − λ3)(1− u1(t))β1(t)S + (λ2 − λ3)(1− u2(t))β2(t)V

+ (λ4 − λ5)(1 + u1(t))κ+ (λ4 − λ6)γ2 + dλ4,

dλ5

dt = −B2 + (λ1 − λ3)(1− u1(t))β1(t)Sθ + (λ2 − λ3)(1− u2(t))β2(t)V θ

+ (λ5 − λ6)γ1 + dλ5,

dλ6

dt = (λ6 − λ1)q + dλ6,

(4.3)

with the transversality conditions λi(T ) = 0(i = 1, 2, 3, 4, 5, 6). Furthermore, the
expression of optimal control are

u∗
1 = max{min{1, (λ3 − λ1)β1(t)S

∗(θI∗C + I∗N )

W1
}, 0},

u∗
2 = max{min{1, (λ3 − λ2)β2(t)V

∗(θI∗C + I∗N )

W2
}, 0}, (4.4)
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u∗
3 = max{min{1, (λ1 − λ2)cS

∗

W3
}, 0},

u∗
4 = max{min{1, (λ4 − λ5)kI

∗
N

W4
}, 0}.

Proof. To prove the theorem above, a Hamiltonian function is constructed, and
we choose the Pontryagin maximum principle [25] to explore optimal control issue.
The Hamiltonian function H is described by

H =B1IN (t) +B2IC(t) +
1

2
W1u

2
1(t) +

1

2
W2u

2
2(t) +

1

2
W3u

2
3(t) +

1

2
W4u

2
4(t)

+ λ1[Λ + qR− (1− u1(t))β1(t)S(θIC + IN )− (1 + u3(t))cS + σV − dS]

+ λ2[(1 + u3(t))cS − (1− u2(t))β2(t)V (θIC + IN )− σV − dV ]

+ λ3[(1−u1(t))β1(t)S(θIC+IN )+(1−u2(t))β2(t)V (θIC+IN )−ρE − dE]

+ λ4[(1− δ)ρE − γ2IN − dIN − (1 + u4(t))κIN ]

+ λ5[δρE − γ1IC + (1 + u4(t))κIN − dIC ]

+ λ6[γ1IC + γ2IN − qR− dR]. (4.5)

Then, the adjoint equations with transversality satisfy λ
′

1 = −∂H
∂S , λ

′

2 = −∂H
∂V , λ

′

3 =

−∂H
∂E , λ

′

4 = − ∂H
∂IN

, λ
′

5 = − ∂H
∂IC

, λ
′

6 = −∂H
∂R , with λi(T ) = 0(i = 1, 2, 3, 4, 5, 6). Taking

the derivative of the above Hamiltonian function with respect to U∗ on the control
set, we can get that the following equation holds

∂H

∂u1
= W1u

∗
1(t) + β1(t)S

∗(θI∗C + I∗N )λ1 − β1(t)S
∗(θI∗C + I∗N )λ3 = 0,

∂H

∂u2
= W2u

∗
2(t) + β2(t)V

∗(θI∗C + I∗N )λ2 − β2(t)S
∗(θI∗C + I∗N )λ3 = 0,

∂H

∂u3
= W3u

∗
3(t)− cS∗λ1 + cS∗λ2 = 0,

∂H

∂u4
= W4u

∗
4(t)− κI∗Nλ4 + κI∗Nλ5 = 0.

(4.6)

For system (4.6), we can get

u∗
1 =

(λ3 − λ1)β1(t)S
∗(θI∗C + I∗N )

W1
, u∗

2 =
(λ3 − λ2)β2(t)V

∗(θI∗C + I∗N )

W2
,

u∗
3 =

(λ1 − λ2)cS
∗

W3
, u∗

4 =
(λ4 − λ5)kI

∗
N

W4
.

(4.7)

This completes the proof.

5. A Case Study
5.1. Data Sources
In this section, we will evaluate some parameters in the system (2.1) through the
influenza data of each month from January 2012 to December 2019 obtained from
Gansu CDC, which is estimated by MCMC algorithm. We show the monthly num-
ber of people infected with influenza from 2012 to 2019 in the form of histogram [2],
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as shown in the Fig. 2. Through the Fig. 2, it is revealed that the peak of influenza
outbreak is from December last year to January that year. According to the number
of patients in this period, we have been informed that relevant departments should
take preventive and control measures during this period.
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Figure 2. Number of monthly cases of seasonal influenza revealed by Gansu CDC from January 2012
to December 2019.

5.2. Parameter Estimation and Model Fitting
The outbreak of influenza virus presents periodic characteristics. Therefore, from a
realistic perspective, the periodic transmission function could be taken into account
in system (2.1). The periodic transmission function from the infected to susceptible
groups is described as the following function

β1(t) = a1(1 + a2 sin(
π

6
t+ ϕ)),

its period is twelve months. a1 and a2 mean the transmission coefficients of suscep-
tible individuals and the infected. In addition, the periodic transmission function
from the infected to vaccinators is characterized as the following function

β2(t) = a3(1 + a4 sin(
π

6
t+ ϕ)),

its period is twelve months. a3 and a4 mean the transmission coefficients of the
vaccinated and the infected. The ϕ is the phase of the above sinusoidal function.

In order to make better use of the actual number of influenza patients to reflect
the practicability of our mathematical model, we take the actual number of people
suffering from influenza in Gansu Province as an example for numerical simulation.
The unreported cumulative infection cases and reported cumulative infection cases
are defined by the following equation, respectively.

dCN

dt = (1− δ)ρE − κIN ,
dCC

dt = δρE + κIN . (5.1)

Therefore, from equation (5.1), the unreported new infection cases and the reported
new infection cases are described by the following equation, respectively.

PN = CN (t)− CN (t− 1), PC = CC(t)− CC(t− 1), (5.2)
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in addition, the unit of time is month.
Based on the data of Gansu CDC, there are still many people suffer from sea-

sonal influenza each year. Therefore, it is particularly important to characterization
the basic reproduction number R0 and provide theoretical basis for relevant depart-
ments and susceptible groups to prevent influenza. In our proposed mathematical
model, some parameters and the initial value of vaccinators can be derived from the
remaining data by the MCMC algorithm. Next, we will give a detailed description
of the parameters:

(1) The average number of people entering the susceptible population per month
(i.e., Λ): The data show that the total population at the end of 2011 was
25,641,900, and the birth rate was 12.08 per thousand [1]. Therefore, through
simple calculations, we can obtain that the number of births per month is
approximately 25,813.

(2) the natural mortality rate (i.e., d): The data show that the mean life ex-
pectancy of the population in Gansu Province is 73 [3], therefore, it is about
d = 1/(73× 12) in 2012.

(3) Progression rate from R(t) to S(t) (i.e., q): Based on Jing’s paper, supposing
that the progress rate of the recovered individual is 30/365 [18].

(4) Progression rate from IN (t) to R(t) (i.e., γ1): Supposing the reported average
recovery period of individuals infected with influenza is 7 days [22,34], so the
recovery rate per month is about 30/7.

(5) Progression rate from IC(t) to R(t) (i.e., γ2): Supposing the unreported av-
erage recovery period of individuals infected with influenza is 10 days [22,34],
so the recovery rate per month is about 30/10.

(6) the average incubation period (i.e., 1/ρ): We realize that the incubation period
influenza ranges from a few hours to four days in different literatures, and the
more common is 4 days [21]. Therefore, we presume that the incubation period
of influenza is 4 days, and the average monthly incubation period is 4/30.

(7) the vaccination failure rate of susceptible individuals (i.e., σ): Influenza gen-
erally has life-long immunity against its infected strains, but because the
influenza virus mutates quickly and a vaccine is only effective against the
influenza virus of the year, the validity period of the influenza vaccine is
generally one year. Therefore, we suppose that the failure rate of influenza
vaccination is 1/12 [7, 24].

(8) the coefficient of infected individuals reduced due to a great sum of reported
influenza cases (i.e.,θ), the rate of the infected were covered by CDC in Gansu
Province (i.e.,δ), the treatment rate of unreported infectious (i.e.,κ): Based
on the estimation of Jing [17], we suppose that θ = 0.3184, δ = 0.04211,
κ = 0.09102.

(9) the initial value of the system (2.1):Based on the estimation of Jing [17], we
obtain that S(0) = 18295942, E(0) = 579, IC(0) = 562, IN (0) = 1083, R(0) =
2706, the initial value of the vaccinated individuals and other parameters of
the system (2.1) will be evaluated via the MCMC algorithm, see the Table 2.

Next, we will make a reasonable fitting for the number of people suffering from
influenza in our model from January 2012 to December 2019, which is obtained
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via the MCMC procedure. In addition, through these actual data, we estimated
the unknown parameters in the system (2.1) and the initial values of the vaccinated
individuals, the algorithm runs through 15000 iterations until the convergence result
is good. By using MCMC algorithm, we get the mean value and the standard
deviation of the estimated parameter values. One of the advantages of MCMC
algorithm is that it can calculate the 95% CI, so we can get it, see the Table 2.
We can see from the parameter value that β1 is greater than β2, which indicates
that influenza vaccination will protect individuals. Finally, the fitting outcomes are
indicated in Fig. 3.
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Figure 3. It presents the fitting outcomes of influenza cases, in which the red dot indicates the actual
number of infection individuals, the black line indicates the fitted cases, and the gray area from the
brightest to the darkest indicates the 50%, 90%, 95%, and 99% posterior limits of the system.
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Figure 4. (a) The Markov chain samples of R0. (b) The distribution of R0 is derived by the Markov
Chain Monte Carlo (MCMC) algorithm. The vermilion line is the probability density function of R0.

The basic reproduction number R0 is a very important indicator, which can
directly reflect the possibility of influenza outbreak or extinction. We use the last
15000 Markov chain samples to simulate the value of R0, as shown in Fig. 4(a).
According to the parameters in the Table 2 and the calculation method of periodic
system, we determine that R0 is 1.2266 (95% CI:(1.2230, 1.2302)). In addition, it
satisfies a normal distribution, as shown in Fig. 4(b) and R0 is greater than unity,
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which also means that influenza cannot be ignored in Gansu Province. This also
means that influenza is still an epidemic in Gansu Province, with the possibility
of outbreak every year. Considering the seasonal flow of influenza, government
departments can remind the public of the danger at the peak of influenza epidemic.

Table 2. The parameters and initial values of the system (2.1).

Parameters Mean value Std 95% CI Reference
Λ 25813 - - [1]
d 1/(73× 12) - - [3]
q 30/365 - - Estimate
γ1 30/7 - - [22, 34]
γ2 30/10 - - [22, 34]
1/ρ 4/30 - - [21]
σ 1/12 - - [7, 24]
θ 0.3184 - - [17]
δ 0.04211 - - [17]
κ 0.09102 - - [17]
c 0.025167 0.0014708 [0.0223, 0.0280] MCMC
a1 1.8367×10−07 1.9052×10−09 [0.1799×10−06, 0.1874×10−06] MCMC
a2 0.19802 0.017471 [0.1638, 0.2323] MCMC
a3 1.3749×10−07 5.1366×10−09 [0.1274×10−06, 0.1476×10−06] MCMC
a4 0.26355 0.051986 [0.1617, 0.3654] MCMC
ϕ 2.4808 0.055845 [2.3713, 2.5903] MCMC
S(0) 18295942 - - [17]
V (0) 80607 31271 [14190, 19320] MCMC
E(0) 579 - - [17]
IN (0) 1083 - - [17]
IC(0) 562 - - [17]
R(0) 2706 - - [17]

5.3. Numerical Simulation of Optimal Control
In this section, we will use the fourth-order Runge-Kutta means to numerically
simulate the system (2.1) and adjoint system (4.3). Starting with initial guesses for
the controls, the forward fourth-order Runge-Kutta means is utilized for calculate
the state value, and the backward fourth-order Runge-Kutta means is utilized for
calculate the adjoint value. Through the use of optimal conditions to achieve the
goal of continuous update of the control variables, this simulation process will be
repeated until the convergence effect is good. For numerical simulation, assume that
the initial value of the system (2.1) is recorded as S(0) = 18295942, V (0) = 80607,
E(0) = 579, IN (0) = 1083, IC(0) = 562, R(0) = 2706, the other parameter values
are β1(t) = 1.8367 × 10−7[1 + 0.19802 sin(π6 ) + 2.4808], β2(t) = 1.3749 × 10−7[1 +
0.26355 sin(π6 ) + 2.4808], Λ = 25813, d = 1/(73 × 12), q = 30/365, θ = 0.3184,
ρ = 30/4, δ = 0.04211, γ1 = 30/7, γ2 = 30/10, κ = 0.09102, c = 0.025167, σ = 1/12,
and the control period T is 96 months. We choose the weight constant value of the
objective function as B1 = 100, B2 = 300, W1 = 400, W2 = 20, W3 = 20, W4 = 200.
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To evaluate different control measures to relieve stress on the public health
sector during an influenza epidemic, we will simulate the evolution diagram of the
reported infected individuals (IN ) and unreported infected individuals (IN ) over
time under different control measures. Fig. 5(a) and Fig. 5(b) describe that when
a single control measure u3 is given, in other words, when the vaccination rate c is
increased, the number of people infected with influenza shows a downward trend,
which demonstrates that vaccination is a valid means to control influenza outbreaks,
but just relying on vaccination cannot completely control influenza. Fig. 6(a) and
Fig. 6(b) show that when the single variable u4 is controlled, the number of people
infected will decrease, but the rate of reduction is not as effective as controlling
the single variable u3. This suggests that vaccination is a more effective way than
treatment, so people with weak physical fitness can choose to vaccinate. Fig. 7(a)
and Fig. 7(b) illustrate that when only considering the two control measures of
increasing the number of vaccinations and treatments, the number of people infected
with the influenza will drop faster within a period of time, which means that people
should receive treatment in time when they are infected with the influenza and take
vaccination measures in advance.
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Figure 5. Time varying plots of reported infected individuals and unreported infected individuals under
the implementation of one control measure u3.
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Figure 6. Time varying plots of reported infected individuals and unreported infected individuals under
the implementation of one control measure u4.
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Figure 7. Time varying plots of reported infected individuals and unreported infected individuals under
the implementation of two control measures u3 and u4.
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Figure 8. Time varying plots of reported infected individuals and unreported infected individuals under
the implementation of three control measures u2, u3 and u4.

To further elaborate as many control measures as possible to cut down the
infected groups, we also explored the impact of three control measures: reducing
contact rate β2, increasing vaccination rate c and treatment rate κ on influenza
transmission. Fig. 8(a) and Fig. 8(b) reflect the numerical simulation of the three
control measures u2, u3, u4. The influenza will be under control in the 18th month.
Next, Fig. 9(a) and Fig. 9(b) reflect the intensity of infection mitigation when
we consider four control measures, namely, reducing the exposure rate β1, reducing
the exposure rate β2, and increasing the vaccination rate c and treatment rate κ.
Finally, Fig. 10(a) and Fig. 10(b) reflect the optimal control strategy, and we
can see that it is better than the above strategies, the influenza will be governed
within one and a half months. And the time-varying optimal control parameters
u1, u2, u3, u4, of optimal measures as shown in Fig. 11.

5.4. Sensitivity Analysis
We use some parameters such as vaccination rate c to determine the size of new
infections and study sensitivity analysis of our proposed mathematical model in this
section. It is well known that vaccination is an effective immunization measure,
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Figure 9. Time varying plots of reported infected individuals and unreported infected individuals under
the implementation of four control measures u1, u2, u3 and u4.
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Figure 10. Time varying plots of reported infected individuals and unreported infected individuals
under the implementation of the optimal control measures.

so we evaluate the influence of seasonal influenza vaccination rates on influenza
outbreaks. In addition, we also assess the impact of human-to-human contact rates
on the spread of influenza. From Fig. 12 (a) and Fig. 12 (b), it can be seen that
the contact rate β1(t), β2(t) is negatively correlated with the scale of new cases,
which reveals that the sick person should pay attention to hygiene and keep social
distance with others to reduce the contact rate with susceptible individuals. Fig.
12 (c) means that the vaccination rate c is positively associated with the scale of
new cases, vaccination can effectively reduce the proportion of infected individuals
to a certain extent.

To test the sensitivity of our results for different parameter changes. In the next
part, the uncertainty and sensitivity analysis of parameter values will be studied
via applying Latin Hypercube Sampling (LHS) and the Partial Rank Correlation
Coefficients (PRCC). LHS is a kind of stratified sampling technique, which is an
approximate random sampling method from multivariate parameter distribution. In
order to generate an LHS matrix, we performed two thousand stratified samplings
on the parameters within a reasonable range. The value of PRCC is calculated
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Figure 11. The optimal control variables ui (i=1, 2, 3, 4) of the optimal control measures.
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Figure 12. (a) indicates that the change of contact rate function β1(t) has an impact on the size of
new cases. (b) indicates that the change of contact rate function β2(t) has an impact on the size of new
cases. (c) The impact of vaccination rate c on the size of new cases.

(a) (b)

Figure 13. (a) The system (2.1) outputs the results of 2000 runs, the abscissa represents the variable
IN (t), the ordinate represents the time (months). (b)The system (2.1) outputs the results of 2000 runs,
the abscissa represents the variable IC(t), the ordinate represents the time (months)
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and plotted based on time, which enables the sensitivity of the parameter to be
assessed during the whole time, a positive PRCC value reveals the degree of positive
correlation between the two variables, otherwise it is the opposite. These properties
will be reflected in our simulation.
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Figure 14. (a) The effect of parameter sensitivity changes over time on unreported infected individuals
(IN (t)). (b) The effect of parameter sensitivity changes over time on unreported infected individuals
(IC(t)).
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Figure 15. The p-value of each parameter of IN (t) at the 80th month.
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Figure 16. The p-value of each parameter of IC(t) at the 80th month.

Fig. 13 (a) and Fig. 13 (b) show the 2000 output variables of unreported infected
individuals (IN (t)) infected individuals and reported infected individuals (IC(t))
from January 2012 to December 2019, respectively. It is easy to see that the samples
of output variables show periodicity. Fig. 14 (a) and Fig. 14 (b) show the impact
on infected individuals when several parameter variables change over time. We can
see that the parameter values a1 and a3 have a strong positive correlation, which
indicates that individuals who have been infected with influenza should actively
reduce their contact with other people. At the same time, the parameter θ also
has a strong positive correlation, indicating that influenza patients should take the
initiative to strengthen self-protection measures. The parameters c and δ show a
strong negative correlation with infected individuals, which indicates that people
with weak physical fitness can be vaccinated to avoid influenza infection. At the
same time, the government can enhance the public’s awareness of influenza via
raising the coverage of seasonal influenza. There is a moderate correlated negatively
between parameter κ and infected individuals, which indicates that even in areas
with relatively poor medical conditions such as Gansu Province, they should actively
receive treatment. Fig. 15 shows the P value of each parameter of IN (t), specifically
expressed as a1 (p−value = 0), a3 (p−value = 0), θ (p−value = 1.8579×10−215),
κ (p−value = 9.343×10−55), δ (p−value = 0) and c (p−value = 7.7661×10−226).
Fig. 16 shows the P value of each parameter of IC(t), specifically expressed as
a1 (p−value = 0), a3 (p−value = 0), θ (p−value = 8.3152×10−254), κ (p−value =
2.4737×10−22), δ (p−value = 1.6482×10−211) and c (p−value = 1.1417×10−267).
The results showed that the parameters a1, a3, c, θ and δ have great influence on
the infected individuals.

Finally, we use the LHS matrix generated from the sensitivity analysis of IN
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and IC to calculate the 2000 samples of R0. Note that the parameter value has
varying degrees of impact on R0, so we explore the impact of estimated value on R0

through PRCC. Figure 17 (a) shows that the parameters that are highly positively
correlated with R0 are the transmission rate coefficient a1 and the transmission rate
coefficient a3. Therefore, the research results indicate that influenza patients should
actively maintain social distancing and wear masks in public. The parameter with
high negative correlation with R0 is the vaccination rate c. It shows that people
can go to the vaccination site for vaccination to reduce the possibility of influenza
virus infection. Fig. 17 (b) shows the distribution of R0, we can directly see that
R0 satisfies a normal distribution.
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Figure 17. (a) The PRCCs of the basic reproduction number R0 in the system (2.1). (b) The 2000
samples of R0 is derived by the Latin hypercube sampling. (c) The distribution of R0 is derived by the
Latin hypercube sampling.

6. Concluding remarks
In this paper, the main research work is to analyze the impact of vaccination on the
spread of influenza virus from the aspects of mathematics and numerical simulation.
We concluded that vaccination was one of our priority strategies and it is a critical
strategy to alleviate the severity of influenza to a certain extent. Moreover, we have
discussed the threshold theory of the system (2.1) by the basic reproduction number
R0: If R0 < 1, the disease-free periodic solution is globally asymptotically stable;
while R0 > 1, influenza will always exist and at least has a positive periodic solution,
as shown in Fig. 18 and Fig. 19. Further, our study emphasizes that the number
of infected people is different under different interventions and gives the optimal
solution, we conclude that vaccination is a better method than treatment. Next,
we obtained detailed influenza data to fit the model that can reflect the influenza
trend in Gansu Province for a long time through the MCMC algorithm. And the
unknown parameters of the system (2.1) and the initial values of the vaccinators
are revealed by our research results. To find effective control measures, it is worth
mentioning that exploring the sensitivity of unknown parameters further confirms
our conjecture that the contact rate and vaccination rate control the process of
influenza transmission. And further conclude that vaccination is one of the most
effective methods to control the spread of influenza.

Since the outbreak of COVID-19 in 2020 makes the data of influenza out of gen-
erality, we only take the data from January 2012 to December 2019. And we did not
consider the impact of meteorological factors (such as rainfall, air humidity, ozone
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concentration in the air, etc.) on the spread of influenza. In the follow-up work,
we will explore the impact of COVID-19’s Non-pharmacological intervention (such
as keeping social distance, wearing masks, limiting population mobility, etc.) on
influenza. If possible, we will also consider the impact of meteorological conditions,
which will be a very interesting study.
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Figure 18. Numerical simulation will be used to verify some theoretical results of the system (2.1).
This figure means that when R0 is less than unity, the influenza will eventually die.
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Figure 19. Numerical simulation will be used to verify some theoretical results of the system (2.1).
This figure means that when R0 is greater than unity, the influenza will always exist.
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