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TWO NEW INERTIAL RELAXED GRADIENT
CQ ALGORITHMS ON THE SPLIT EQUALITY
PROBLEM*
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Abstract In order to better solve the split equality problems in Hilbert
spaces, we propose two new algorithms. Combining inertial iteration meth-
ods, we construct an inertial simultaneous relaxed gradient CQ algorithm with
adaptive step size, and prove its weak convergence under simpler and more
straightforward conditions. Combining viscous iteration in the above algo-
rithm, we construct an inertial viscosity simultaneous relaxed gradient CQ al-
gorithm, and prove the strong convergence of the algorithm under simpler and
more straightforward conditions. We also give some numerical experiments to
compare with some known algorithms, which demonstrate the rationality and
superiority of our algorithms in several rates of convergence.
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1. Introduction

The split equality problem is one of the hot study topics in nonlinear analysis,
which was first proposed in 2013 by Moudafi [11]. It is widely used in practical
problems such as analog intensity modulated radiotherapy, game theory, medical
image reconstruction and partial differential equation decomposition method, etc [7,
12,14,15,17]. So, the split equality problem has very important research value.

Let C' and @ be two nonempty closed and convex subsets of real Hilbert spaces
FEy and Fs, respectively. Let Ay : By — E3, As : Fy — E3 be two bounded linear
operators, where Ej3 is also a real Hilbert space. Then the split equality problem
(SEP) is expressed as follows:

Find € C,y € Q, such that Ajz = Asy. (1.1)
All the solutions of SEP (1.1) can denote as €2, i.e.,

O :={(z,y) € C x Q| Az = Asy}. (1.2)
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It can be observed that when F, = FE3 and Ay = I is identity mapping, the
SEP (1.1) degenerates into the famous split feasibility problem (SFP) which was
first proposed by Censor et al. [3] in Euclidean spaces in 1994.

Later, Byrne [1] proposed the CQ algorithm to solve the SFP (1.1) as follows:

For any x, € Fq, let

Tpy1 = Po(zn, —vAT(I — PoAiz,), Vn>1,

where the stepsize 7y is a constant, A} is the adjoint operator of A;, Po: E; — C
and Pg : E» — @ are the metric projections onto C and @, respectively.

But the CQ algorithm can be used to solve the SFP only when the Pc, Py and
|A1]| are calculated. and these calculations are also very difficult to carry out. For
overcoming these difficulties and solving the the SFP | many scholars have proposed
some new algorithms. For example, Kesornprom et al. [8] suggested two gradient-
CQ algorithms in 2019 and they proved the weak and strong convergence of their
algorithms under certain conditions.

While about SEP (1.1), Moudafi [11] gave the following alternating C'Q algo-
rithm to solve it, and he proved the weak convergence of this algorithm.

Algorithm 1.1. The algorithm of Moudafi
Initialization: Choose xg € FE1, yg € Fs arbitrarily.
Iterative step: Compute x,, 41, Ynt1 Via

{xn+1 = PCn [l'n - TAT(Alxn, - A2yn)}7
Yn+1 = Pq,[yn + TAS(A1Zn i1 — A2yn)l,

where

Cp={z€E1 | Mzn) < &nyxn—2)}, & € ONTn),
Qn = {y € Ly ‘ 6(yn) < <Cn7yn - y>}7 Cn € aé(yn%

: 1 1
and 7 € (O,mln { A2 TBT? })

Similar to the C'Q algorithm in the SFP, the step size in the Algorithm 1.1
depends on ||A]| and ||As|, which is not easy to calculate in practice. In order
to better solve the SEP (1.1), Shi et al. [14] improved Algorithm 1.1 and provided
Algorithm 1.2 as follows; and they proved that the sequence generated by the Al-
gorithm 1.2 is strongly convergent.

Algorithm 1.2. The algorithm of Shi et al.
Initialization: Choose zy € E1, yo € Fo arbitrarily.
Iterative step: Compute x,,41, Ynt1 via

{$n+1 = FPc {(1 - ﬂn)[‘rn - VAT(Alxn - A2yn)]} 5
Yn+1 = P {(1 - ﬁn)[yn +vA3 (Alxn - A2yn)]} s

where ,, € (0,1) and satisfied ILm Bn =0, > Bn=o00,and > |Bnr1—LBn| < o0
n—00 n=0 n=0

: [Bny1—Bnl __ : 1 1
or lim g = 0,v¢€ <O,m1n { TA 2 A2 })

n—roo
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Recently, a new Algorithm 1.3 was proposed by Tian et al. [17] to solve the SEP
(1.1) as follows:

Algorithm 1.3. The algorithm of Tian et al.
Initialization: Choose z¢ € E1, yo € E» arbitrarily.
Iterative step: Compute z,,+1, yn+1 via

Uy = Polwy, — AT (A1m, — Agyn)],
Up = PQ [yn + VnAé(Almn - A2yn)]a
Tn+1 = Polzn — AT (A1u, — Agvy,)],
Ynt1 = Polyn + 1 A5(Ar1u, — Agvy)],

where v, = gp™, 0 > 0, p € (0,1), m,, is the smallest nonnegative integer and
w € (0, 1) satisfying the following

VN[HAT(Alxn - A2yn) - AT(Alun - A2vn)”2
A3 (Asyn — Arz) — A(Azv, — Ayuy)|?)
< M(Hxn - unH2 + Hyn - vnHQ)E'

However, these algorithms described above are not good enough and their condi-
tions are too complicated. So, inspired by the above algorithms, we study the split
equality problem (SEP (1.1)) further and construct more effective algorithms in this
paper. We propose two new improved inertial relaxed iterative CQ algorithms for
solving SEP under simpler and more straightforward conditions. We give the proofs
of the weak convergence or strong convergence of the two algorithms. And We use
numerical experiments to reflect the rationality and superiority of the convergence
rates of our algorithms.

2. Preliminaries

Throughout the article, we all suppose that F is a real Hilbert space with its
inner product (-,-) and its norm | - || and C' # §),C C E is closed convex. Some
mathematical symbols, definitions and lemma are given as follows.

Definition 2.1 ( [19]). Let S : E — E be an operator. Then S is called a
p—contractive mapping (p € [0, 1)), if

152 - Syll < pllz — yll, ¥a,y € E.
Definition 2.2 ( [20]). For any u € E, if there is a unique point z € C' satisfying
Ju— 2l| = inf{u— gl sy € C},
then z € C is called the metric projection of u on C, denoted as z = Pcu.

Definition 2.3 ( [8]). Let g : E — R be a convex function. £ € E is said to be a
subgradient of g at z € E if

g(u) > g(z) + (€,u—2), Yu € E.

The subdifferential of g at point z is the set of all subgradients of g at point z,
which can be denoted by dg(z), i.e.,

99(z) ={¢ € E'| g(u) 2 g(2) + (§,u — 2), Vu € E}.
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Definition 2.4 ( [8]). A function G : E — R is called weakly lower semi-continuous
(w-1sc) at xo, if for any {z,} C E and z,, — zo,

G(zp) < liminf G(zp).

n—oo
Lemma 2.1 ( [2,4,6]). For all u € E, the following assertions hold:
(i) (u — Pou,z — Pou) <0, Vz € C,
(ii) ||z — Poul* < |lu — 2> — |lu — Pcul?, Vz € C,
(iii) (u — 2, Pou — Pcz) > ||Pou— Poz||?, Vz € E.
Lemma 2.2 ( [9,10,16,18]). The following equalities or inequalities hold:

(1) Ku, 2)| < [lullll=l, Vu,z € E.
(i) V(a+b)2+ (h+k)2 < Va2 +h2+ Vb2 + k2, Va,b,h,k € R,
(iii) 2(u—byu —v) = |lu—>b|*+ |lu —v|* — ||b —v|]?, Yu,b,v € E.
(iv) lru+ 1 =r)z|? = rllul®>+ (@ =)z =r(1 = 7)||u—2||?, Vr €R, Yu,z € E.
(V) flu+2)? < ||ull®> + 2(u+ 2z, 2), Vu,z € E.

Lemma 2.3 ( [5]). Assume that {¢,}, {0n} and {a,} are three non-negative real
number sequences, and satisfy

<n+1 < (n+ O‘n(Cn - Cn—l) + 5na n>1,

> 0, < 00. If there is a constant « € (0,1) such that 0 < a,, < o < 1, then the

n=0
following assertions hold:

OO

(i) Z [Cn - <n—1}+ < o0, where r € R’ [T]-l- = max{r, 0}7
n=1

(ii) There is ¢* € [0,400), such that lim ¢, = C*.
n—oo

Lemma 2.4 ( [20]). Suppose that a sequence {x,} C E satisfies the following
conditions:

(i) li_>m lzn, — 2| exists, Vz € C;

(ii) Wu(zn) ={z | #n, =z, {zn,} C{zn}} C C.
Then x, = peC.
Lemma 2.5 ( [13]). Let {A,} CR: A, >0, satisfy

An+1 S (1 - §n>An + §n6n>n Z Oa
An+1 <Ay —0p+9m,n >0,

where {op,} CR, {6} CR, {7y} CR and {s,} C (0,1), such that
(1> nll)n;o =0, nz::() Sn = OO,
(if) For all {ny} C {n}, limsupd,, <0 if lim o,, =0.
k—o0 k—o0

Then lim A, =0.
n—oo
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3. Weak convergence theorem

Assume that F,, Fs and F3 are three real Hilbert spaces. Let C' C E; and Q C E»
be nonempty closed and convex subsets, respectively. Suppose that A : F; — Ej,
B : E5; — FE3 are two bounded linear operators. Let

fle.y) = 514z~ Byl
Then
VJ(,y) = (A°(Ax — By), ~B*(Az — By)),

and
IV f(z,y)|I> = |A*(Az — By)|* + || B*(Az — By)||>.

We next propose our weak convergence algorithm and theorem.

Algorithm 3.1. Inertial simultaneous relaxed gradient-CQ algorithm

Initialization: Choose zg,z1 € E1, yo,y1 € Eo arbitrarily.
Iterative step: Compute z,,41, Yn+1 Via

Zn = XTp + (T — Tpo1),

Wn = Yn + O (Yn — Yn—1),

Up = 2, — ThA*(Az, — Bw,,),

Up = Wy, + T B*(Az, — Bwy,),

i1 = Pe, [vn — pn A*(Av, — Buy,)],
Ynt1 = Pg, [un + ¢ B*(Avy, — Buy)],

where

Cn={z € Ey | XNzn)
Qn = {y € b ‘ 6(?}”)

ay, C [0, a] for some a € (0,1) and

Enyxn — )}, &n € ON(y),

<
< <Cn7yn - y>}> Cn € 35(%)7

_ Prf (2n, wn)
IV f (2, wn)|12 + 0,

on = P f (Vn; un)
Vv w2+ 0,

Tn

0<p,<4,0<6, <1

Theorem 3.1. Assume that inf p,(4 — p,) > 0, lim 6, = 0 and 0 < @, <
n n— 00

min{a,, &y} with

3 €n €n y
_ min {a’ Zn—2n—1]2" [[zn—Tn—1]| } ’ Zf Tn ?é In—1,
Qpy =
Q, Zf Tn = Tp—1,
3 €n €n y
4 _ Jmin {O" Ton—eaT® Tonm ol } o W Yn F Yo,
"=

«, ifyn = Yn—1,
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where {e,} C [0,00) , > €, < 0.
n=1
Then the sequence pairs {(x,,yn)} generated by Algorithm 3.1 weakly converge
to a solution (¢,p) € 2 of the SEP (1.1).

Proof. Let’s take (¢,p) € 2. By Lemma 2.1 (ii) and Lemma 2.2 (iii), we have

241 — ql?

= || Pc, [vn — on A" (Avy, — Buy)] — C]”2

< [lvn — pnA*(Avn — Buy) — q”2 — |lznt1 — vn + @A (Avy, — Bun)||2

= [lon —all* + ¥l A*(Avy — Bup)|1? = 204 (vs — ¢, A*(Avn, — Buy))
—[Tny1 — v + @n A" (Avy, — Bun)H2

= [jvn — QHz + ‘pngA*(Avn - Bun)”2 — 2¢n(Av, — Aq, Av, — Buy,)
—[|Tpi1 — Un + @nA*(Av, — Buy,)|?

= llon —all* + ¥l A*(Avy — Bun)|? = @ (|| Ave — Ag|l? + || Avy, — Buy||?

—||Buyp — Aq||?) = |[#ns1 — vn + n A" (Avy, — Buy)|*. (3.1)
Similarly,
[yn+1 = pII?
< lun = plI* + @3 1B* (Ave = Bun)|I* = ¢n(l| Bun — Bp||* + | Avy — Buy|®
~[Avn = Bpl*) = [lyn+1 — un — 0u B (Av, — Buy)||. (3.2)

Adding (3.1) and (3.2), since Aq = Bp, we get

lzn+1 = all® + [yns1 — pl1?
< flon — Q||2 + [lun _pH2 = 2¢n || Avy, — BunH2 + ‘Pi[”A*(AUn - Bun)H2
+(B* (Av,, — Bun)HQ] —Znt1 — v + @A™ (Avy — Bun)H2
~NYn+1 — wun — n B (Avy, — Bun)HQ
= [lvn = all* + llun = plI* = 400 f (Vn, un) + @3 |V (0n, un)|®
—N|Zn41 — vn + @r A" (Av, — Bun)”2 = yn+1 — un — nB* (Av,, — Bun)||2

4Pn(f(vnaun))2

2 2
= ||Un — q||” + ||ltun —Dp|" —
| 17+l | % f(om w2 + 6
Py (f (Vn; un))?

(% 7 om a8 1 )

~NTpni1 — vn + @ A" (Avy — Bun)”2 — [[Yng1 — Un — @n B* (Avy, — B“n)||2
4pn(f(Vn, un))Q p?z(f('”m un))2

IV f(vn, un) >+ 00 [V f(vn, un)||* + 00

—[[ i1 = v + Pu A (Avn = Bun)|? = [[yns1 = un — pnB*(Av, — Bu,,)|?

(f (vn, un))?

IV f(vn, un)||* + O

*”xn+1 —Un + @ A" (Avn - Bun)”2

—[1Yn+1 = tn — @n B*(Av, — Buy)|*. (3.3)

+

< lon = all” + lfun = pl* =

= |lvn — C]||2 + [Jun _pH2 = pn(4 = pn)

Moreover, we see that

lon — qll®
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= |lzn — ThA*(Az, — Bw,) — qH2

= llzn — qll? + 72| A* (A2 — Bwy)||? = 270 (20 — ¢, A*(Azy, — Bwy,))

= |lzn — q||2 + T,QLHA*(Azn — Bwn)H2 — 27, (Az, — Aq, Az, — Bwy,,)

= Hzn - q||2 + Tr%“A*(Azn - Bwn)H2 - Tn(HAZn - A(I||2 + || Azp — Bwn‘lz

— || Bw, — Aq|]?). (3.4)
Similarly,
lun — pl”
= |lw, = pl* + T2l B*(Azn — Bwy)||* = 7u (| Bwn — Bpl|* + || Az, — Buw,|®
—[ Az, — Bp|)*). (3.5)

Adding (3.4) and (3.5), since Aq = Bp, we obtain

[vn = all? + [un — pl®
= llzn = all* + llwn = plI* = 270]| Azn — Bwpl|* + 72 [| A" (A2n — Buw,)||?
+[|B*(Azn — Bwy)||’]
= |20 = ql? + lwn = plI* = 470 f (20, wn) + T2V f (20, w3) ||
4pn (f (20, wn))? P (f (Zns wn))?
IVf Gz wn) 2 4 6n IV f (20, wn) || + O
(f (20, wn))?
IV f (2ns wn) |12 + 0

< llzn = all* + llwn = plI* -

= ”Zn*QHZWLHwn*p”Q *pn(4*pn)| (3.6)

Combining (3.3) and (3.6), we deduce

lzns1 = all* + lyns1 — pII?
(f (20, wn))?
IV f(zn, wn)||? + 6

< lzn — ‘I||2 + [lwn 7p||2 = pn(4—pn)
(f(vnvun))Q

|V f (U wn) |2 + O

_||yn+1 — Up — QonB*(A'Un - Bun)H2 (37)

_pn(4_pn)| - Hxn‘f'l _Un_‘_SOnA*(AU’ﬂ_Bu”)HQ

From Lemma 2.2 (iv), we see that

Iz — ql®
- ||xn + an(xn - xnfl) - CI||2
= |1+ an)(@n — ) — an(zn1 = @)|?

=1+ an)l|zn — qH2 — i ||Tn—1 — q”2 + an(1+ O‘n)Hxn - xn—1||2

< (1 +ap)llen — QHQ —aplTn—1 — Q||2 + 20 ||z, — xnflllz
< wn = all® + anlllan — all? = |zn-1 — qll*) + 2€n. (3-8)
Similarly,
lwn = plI* < llyn = pI? + an(llyn — plI* = [lyn—1 — plI*) + 265 (3.9)

Adding (3.8) and (3.9), we get

12 = al” + [lwn — pI|?
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< an = qll? + llyn = plI* + anlllzn — gl* + lyn — plI* = l20—1 — qll?
—llyn—1 = plI?) + 4en. (3.10)

Using (3.10) and (3.7), we can obtain
1 = all® + lynsr — pII?
Iz = gll* + l|wn — pII?

20 = all® + llyn — pII* + cn(2n = all* + lyn — pI> = 201 — gl
—llyn—1 = plI?) + 4en. (3.11)

<
<

By using Lemma 2.3, we obtain that there exists lim (||, — ¢||*> + |lyn — p||?). So
n—roo

{z,} and {y,} are all bounded.
Again from (3.7), it follows that

(f(zn, wn))Q (f (vn, Un))2
IV f(zn, wn)[? + 0n IV f (v, un)|[? + O

H|zn+1 — vn + A" (Av, — Bun)||2 + 1Ynt1 — un — on B (Avy, — Bun)||2
< llzn = all® + llwn = 2l = lznt1 — all* = [lyn+1 — plI®
< lwn = all® + lyn = 2lI” = l2ns1 = all* = lynsr = plI* + an(llzn — gl
Hlyn = plI* = l2n-1 = gl = lyn—1 — plI*) + 4en. (3.12)

So we obtain

(f (2, U/n))2

li (4 — pn =0, 3.13
e P GG w4 0, (319
. (f(vnyun))Q
lim pn(4 — =0, 3.14
Jim_p, (4= pn) T Fom a2 16, (3.14)
lim ||2p41 — vn + @n A% (Av, — Buy)|| =0, (3.15)
n—oo
and
nh_)rr;o lyn+1 — un — @nB*(Av, — Buy)|| = 0. (3.16)
From our assumptions, we conclude that
o (f(znswn))?
lim —————%— =0, 3.17
e TV oy )P (317
and
2

im " —
n=00 ||V f (v, un)||?
Obviously {||Vf(zn,wy)|} is bounded. So lim f(z,,wy,) = 0. This means
n—oo

lim ||Az, — Bw,|| = 0. Similarly, we also get lim f(v,,u,) =0. So
n— oo n— oo

Pnf(vnaun)
IV f(n, un)[? + On

onllV f(vn, un)|| = IV f (v, un)|| — 0, as n — oo,

which means
ILm on||A* (Av, — Buy,)|| =0, (3.19)
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and

li_>m ©n||B*(Av,, — Buy,)|| = 0. (3.20)
Hence, by (3.15), (3.16), (3.19) and (3.20), we obtain

Tna1 — Up — 0, as m — 00, (3.21)
and

Yn+1 — Un — 0, as m — 00, (3.22)

Similarly, we have 7,||A*(Az, — Bw,)|| — 0 and 7,||B*(Az, — Bwy,)|| — 0 as
n — oo. Hence, by the expression of v,, and u,, we have

Up — 2n — 0, as n — 0o, (3.23)
and
Up — Wy, — 0, when n — oo. (3.24)
On the other side,
[zn = @nll = anl|®n — Tp-1]| < €, (3.25)
and
”wn - yn” = an”yn - yn71|| < é€n. (326)
Hence
Zn — Ty — 0, as n — 00, (3.27)
and
Wy, — Yn — 0, as n — oo. (3.28)

Combining (3.21), (3.22), (3.23), (3.24), (3.27) and (3.28), we know
Tpy1 — Tp — 0, as 1 — 00, (3.29)

and
Ynt1 — Yn — 0, when n — oo. (3.30)

Since {z,} and {y,} are bounded, we conclude that Wy, (z,,y,) # 0. Taking
(2°,y°) € Wy(xn,yn), there exist {z,,} C {z,} and {yn,} C {yn} such that
Tp, — 2° and y,, — y°. Next, we show that (2°,y") € Q. Since z,, +1 € Cy,, by
the definition of C,, , we get

AM@ny) < (nps Ty, — Tog41) (3.31)
where &,, € OA(zy, ). It follows that, by the boundedness of A,
A@n,) < [l&nll#ny, = Tngiall = 0, as k — oc. (3.32)

By the w-Isc of A, z,, — 2% and (3.32), we conclude that

Mz < lim inf Az, ) < 0. (3.33)
Thus 2° € C. Similarly, we have y° € Q. By (3.25), (3.26) and Jim. | Az, — Bw,| =
0, we obtain nh_)rrgo |Az, — Byn| = 0. We can easily see that Axz,, — By,, —
Ax? — By®. Tt follows from the w-Isc of the norm that
|Az® — By®|| < liminf ||Az,, — Byn, || =0, (3.34)
k— o0

hence (2%, y°) € Q. By using Lemma 2.4, the sequence {(x,,,y,)} weakly converges
to a solution in €. O
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4. Strong convergence theorem

We next give our strong convergence theorem about our second new Algorithm 4.1
as following.

Algorithm 4.1 Inertial viscosity simultaneous relaxed gradient-CQ algorithm
Initialization: Choose zg,z1 € E1, yo,y1 € FEo arbitrarily.
Iterative step: Compute x,,41, Yn+1 Via

Zn = Tp + Qp(Tn — Tp1),

Wy = Yn + an(yn - yn71)7

Uy = zp — ThA*(Az, — Bwy,),

Up = Wy, + T B* (A2, — Bwy,),

Tpt1 = ﬂnh(zn) + (1 - ﬂn)PCn [vn - ‘pnA* (AUn - Bun)]a
Ynt1 = Buh(yn) + (1 — 5n)PQn [upn + ©n B*(Av, — Buy,)],

where
Cpo={z€E1 | Man) < &nyxn—2)}, & € ON(Tn),
Qn={y € E2[0(yn) < (Cns¥n — )}, Cn € 3(yn),

h is p-contractive mapping, {a,} C [0, a] for some a > 0, {8,} C (0,1) and

_ pnf(zn>wn)
IV f(zn,wn)||? 4 0n'

Tn

and
On = pnf(vnaun)
AV (nyun) |2 + 0,

0<pp<4,0<6,<1.

Theorem 4.1. Assume that lim 6, =0, inf p,(4—p,) >0, lim 5, =0, > 5, =
n—00 n n—oo =1
o, 0<a, <a, with

a, Zf Tp==Tp_1 and Yn=Yn—-1,

min {a, en/\VTn — Tn_1]2 + [[yn — yn_1||2} , otherwise,

where €, = o(By): lm €,/B, =0.
n—oo
Then the sequence pairs {(zn,yn)} generated by Algorithm 4.1 strongly converge
to a solution (z°,y°) € Q, and the solution (z°,y°) is also the unique solution of
the following variational inequality problem:

O — h(zY),x — 2% >0,

w

Y(z,y) € Q.

Proof. Since lim €,/8, = 0, so there exists M; > 0 such that €, < 8, M;. Let
n—oo
(¢,p) € Q, from Algorithm 4.1 and Minkowski Inequality (Lemma 2.2 (ii)), we have

Vllizn = all? + llwn — pl?
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(lzn = qll + anllzn = zn-11)? + (lyn = pll + @nllyn — yn-all)?
[2n = qll* + llyn = PI? + €n
l2n = all* + llyn — pII* + Bn Mi. (4.1)

<V
<V
<V

Set s, = P, [vn — pnA*(Av, — Buy,)] and t, = Py, [un + ©nB*(Av, — Buy,)].
It can be known from the proof of Theorem 3.1

lsn = all* + lltn — p*

(f(znawn))2
IV f (zn; wn) || + 0n,

< Hzn - Q||2 + Hwn _p”2 - pn(4 - pn)
(fn(vnvun))2

—pn(4 — pp, — 18y, — Uy, + O A*(Av,, — Buy)|?
ol =) ) | ond'( )
—|ltn — un — @nB*(Av,, — Bun)||2, (4.2)
hence
VlIsn = all? + Itn — Pl < V20 — gl + lwn — plI?. (4.3)

Combining (4.1), (4.3) and using Algorithm 4.1, Minkowski Inequality (Lemma 2.2
(ii)), we get

Viznst — >+ Tynsr — pI?
< [(Bullh(xn) = gll + (1 = Ba)llsn — qll)?
+(Balll(yn) = pll + (1 = Ba) Itn — pl)?]2
< B/ I(zn) — a2 + [A(ya) — ol
+(1 = Bu) VT30 — a2 + [t — I

< L= = p)BalV e — al* + lyn — pII? (4.4)
8 (/@) = alP + h(p) = oI + M)
< max { /e = P + g — pIP, Mo (45)

where My = (1/]|k(q) — q||2 + [[h(p) — p||> + M1)/(1 — p). We can use induction to
obtain

VIzw = al+ Ty = #? < max {v/er —alP+ llon — P Ma} . (46)

So, {x,} and {y,} are bounded.
From Algorithm 4.1 and Lemma 2.2 (v), we have

[E2 _Q||2
< lzn — ‘IH2 + 200 (Tn — Tr—1,2n — q)
< lzn — gl + 2€nllzn — g (4.7)
Similarly,
[wn = plI* < llyn — plI* + 2€nllwn — pll. (4.8)

From the expression of z,1, we have

1 — 2°|?
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= [|Bn(h(xn) = 2°) + (1 = Ba)(sn — 2°)||?
= (1= B80)%llsn = 2°I” + Brlh(@n) — 2°|” + 28, (1 = Ba) (h(2n) — 2°, 5, — 2°)
= (1= Bn)?[lsn — onz + Ballh(en) = 2% + 285 (h(xn) — 2°, 5, — 2°)
—26%(h(xy,) — 2°, 5, — 2°)
< (1= B0)?|lsn — OHQ + Ballh(zn) — 20| + 28, (h(zp) — h(2°), 50 — 2°)
+28, (h(2”) = a°, s, — 2°) + 282 |h(wn) — 2°|| |50 — 2|
< (1= 50)%|lsn — onQ + Ballh(zn) = 2°l* + Bupllzn — %01 + Bupllsn — 2°|?
+28, (h(2®) = a°, s — 2°) + 282 |h(wn) — 20|50 — 2. (4.9)

Similarly, from the expression of y,,41, we get

[Ynt1 — y°|?
< (1= B0)?Itn = ¥° 17 + B2lI(yn) — ¥°11> + Bubllyn — ¥° 117 + Buplltn — 3°|1?
+28n (h(y°) = 4°, tn — y°) + 282 h(yn) — ¥l It — ¥°1I. (4.10)

Adding (4.9) and (4.10), we can obtain

[Zn+1 — 2°% + llyngr — 4°I17
< (1= Bn)*(Isn = 2°17 + [[tn — 4°17) + Bo(Ih(zn) — 2°11% + I1h(yn) — v°|1%)
+Bnp([|2n = 2°1% + llyn = ¥°12) + Bup(llsn — 2°)1* + [[tn — °[I%)
+2Bn ((R(2°) — 2°, 5 — 2°) + (h(y°) — °, tn — 1°))
+282(|1h(zn) — 2°([[|sn — 2°| + [|B(yn) — YO [ll[tn — °I1)- (4.11)

Substituting (4.3), (4.7) and (4.8) into (4.11), we deduce
[zn41 = 201 + lyns1 — y°|1?
< [1=2(1 = p)Bal(lzn — 2°l> + lym — ¥°|1%)
28, ((h(2°) = 2%, 5 — %) + ((Y°) = 4°, tn —3"))
+B5 M3 + 4ep(||zn — 2°| + lwn — 3°|])
= [1 =201 = p)Bal(|lzn — 21 + [lyn — y°I1?)
+Bn [2<h(x°) —a% 50 —2%) +2(h(y°) —3° tn — y°) + B M3
461’1 0 0
50 Ulen =l + flon = 51
= (L= ) ([lzn — 212 + llyn — 4°[I*)
1
_— 9 0y _ 20 o _ 20y 49 0y _ .04+ _ .0
+cn2(1_p)[ (h(2”) = 2%, sn — %) + 2(h(y") =y tn —Y")
4e
00 Ms + 2 (2 = 2l + o — 3] (412)

where M3 > 0 is constant, ¢, = 2(1 — p)S,.
On the other side,
21 — 20|
= [[Bnh(@n) + (1 = Bp)sn — 2°|?
= ”(Sn - xO) + Bn(h(wy) — 5n)||2
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< llsn = 2°* + 2Ballh(n) = sulll@nss — 2°. (4.13)
Similarly, we have

lym1 = 9217 < lltn = 5°1* + 2B8ullh(yn) — tallllyner — 4 Il (4.14)
Combining (4.2), (4.7), (4.8), (4.13) and (4.14), we know
lzns1 =212 + lynsr — oI
< lsn = 217 + litn = 4°17 + 28 (1 1(zn) = snlllzns1 — 2°
+HIh(yn) = tallllynsr — 4’1
(f (zny wn))?

< lan = 2° + llyn — ¥°11° = pn(4 = pn
< o = 21° + llyn —4°1° — pu(4 = p )||Vf(zmwn)||2+9n
(f(vnau’ﬂ))2 2
n(4 — pn = lisn — vn + @A™ (Avy, — Bup
o e I o un) B 8| Pt !
It =t = 9u B (Avy = Bus)|[2 + 20 — 2 + s — 7]
428, (I(wa) = sulllanes = 1+ Ih) = talllgss =3l (415)
Set
An = llan = a1 + lyn — ° 1%

(=7]

no= (11*,0) [2<h(330) — 2% 5, — 2°) +2(h(y°) — ¥, tn —y°) + Bu M3
+ 52z — 20 + lwa = y°ID |5

— (f(zn “’n)) (f(vn’“n))z
on = puld = ) ot T, T Pe(d = P et e,

+[sn = vn + @n AT (Avy, — Bun)”2 +[tn — un — @nB* (Avy, — Bun)H2§

T = 26n([lzn — 2% + lwn = ¥°1) + 2Bn(11(2n) = snlllznrs — 27|
+hyn) = talllynsr — y°I)-

Then (4.12) and (4.15) can be rewritten as

An+1 S (1 - gn)An + gn(sna (416)
and
It is easy to know that hm sn =0, Z $n, = 00 and hm ¥, = 0. So, we can seen

from Lemma 2.5 that we prove that hm A, = 0 if we shovv that limsup d,, <0
n—00 k— o0
whenever lim o, =0 for any {ns} C {n}.
k—o0

Let’s take {ny} C {n} with klim on, = 0. From assumptions, we can get
—00

( (anawnk))Q
lim =0, 4.18)
k—o00 ||Vf(znk,wnk)“2 (

( (Unk?Unk))
im o e U)o 419
koo [V f (U, un, )7 Y
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B [[sn, = v, + @0, A" (Avp, — Bug,)| =0, (4.20)
and

klim ltn, — tn, — @n, B (Av,, — Buy, )| = 0. (4.21)

—00

Obviously {||Vf(zn,ws)||} is bounded, so klim f(zn,, wn,) = 0, ie. klim Az, —
—00 — 00

Bwy, || = 0. Similarly, we also get klim f(vn,,un,) = 0. Note that
— 00

P f (Vny,, Un
@nk”vf(vnkaunk)” = ||Vf(1}k (u . )IQk‘i)‘ 0 ”vf(vnkaunk)” — 0, as k — oo,

which means

lim ¢,, ||A*(Av,, — Bug, )| =0, (4.22)
k—o0

and
lim ¢, ||B*(Av,, — Buy, )| = 0. (4.23)
k—o0

Hence, by (4.20), (4.21), (4.22) and (4.23), we obtain
Sny, — Un, — 0, as k — oo, (4.24)

and
tn, — Un, — 0, as k — oo. (4.25)

Similarly, we have 7, ||A*(Az,, — Bwy,)|| = 0 and 7, || B*(Az,, — Bwy,, )| = 0 as
n — 0o. Hence

Un, — 2n, — 0, as k — oo, (4.26)
and
Up,, — Wn, — 0, as k — o0. (4.27)
In addition,
20 = #nll = || — 2n-1]| < €n, (4.28)
and
”wn - yn” = O‘nHyn - yn—ln < €. (4.29)
Hence
Zny, — Tn, — 0, as k — oo, (4.30)
and
Wn, — Yn, — 0, as k — oo. (4.31)

Combining (4.24), (4.25), (4.26), (4.27), (4.30) and (4.31), we obtain

Spy, — Tn, — 0, as k — oo, (4.32)

k

and
tn, — Yn, — 0, as k — oo. (4.33)
Since {x,} and {y,} are bounded, we conclude that Wy, (z,, yn,) # 0. Taking
(Z,7) € Wy(n,, Yn, ), there exist subsequences {xnkJ} C {xy,, } and {ynkj } C {Yn, }

such that z,, — T, yn, =7, jlirgo(h(mo)—mo,mnkj> = limsup(h(2°) -2, z,, ) and
k—o0
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lim (h(y°) — 4%, yn, ) = limsup(h(y°) — y°, yn, ). As the same proof in Theorem
J—o0 7 k—o0

3.1, Wy (Zn,, Yn, ) C Q, ie., (Z,7) € Q. From assumption, we have

limsup(h(z®) — 2°, 5,,, — 2°)
k—o0

= limsup(h(2°) — 2°, 2,,, — 2°)

k—o0
= lim (h(2%) — 2°,2,, —2°)
Jj—o0 J

= (h(z°) — 2%,z — 2°)

<o. (4.34)
Similarly, we have

lim Sup<h(y0) - yovtnk - y0> <0. (435)

k—o0

Hence limsup§,, < 0. So we obtain lim A, = 0. It means (z,,y,) — (2°,1°) as
k— 00 n—oo

n — 00. O

5. Numerical results

Now, by using an example, we compare our weak convergence Algorithm 3.1 with
Moudafi’ Algorithm 1.1 and Tian’s Algorithm 1.3, and our strong convergence Algo-
rithm 4.1 with Shi’s Algorithm 1.2 in this section. All the programmes are written
in Matlab 9.0 and performed on PC Desktop Intel(R) Core(TM) i5-1035G1 CPU
@ 1.00GHz 1.19GHz, RAM 16.0GB.

Example 5.1. Let E; = E, = R?, E5 = R*. Define two linear operators A : B, —
Es3 and B : E5 — E3 by the following 4 x 2 matrixes

21 5—1

1-3 06
A= and B =

0 2 1-2

1 4 7 —6

Where, the operator A (similar for B) is defined by, for any « = (21, z2) € Ej,

T
21

1-3
Ax = ($1,$2)T € F3 = R4.
0 2

14

c((zqy,z2)") = afy + afy — 25, and ¢((y),Y2))") = Y1) + ¥(ay — 100. Then
C={{xeR| |z <5} and Q = {y € R? | |ly| < 10}. It is obvious that
Q= {((0,0)T,(0,0)T)}. Denote z* = (0,0)* and y* = (0,0)*. We use ||z, —z*||* +
lyn — y*||* < e for stopping criterion.

AN
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Firstly, we compare Algorithm 3.1 with Algorithm 1.1 and Algorithm 1.3. Let
20 =(2,2)T, 5o = (LT, a =05, €, = 75, pu = 725, On = + in Algorithm 3.1,
T = %min{W, ﬁ} in Algorithm 1.1, and 0 = 1, p = u = 0.3 in Algorithm 3.
The numerical results are shown in Figure 1 and Table 1.

e Alg1LT
— =Agl.3
— Aiga.1

weees AlTL1
- —Aig13
—Alg3.1

XIP+lly y'11*

=[x

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 ) 0.1 0.2 03 0.4 05 06 0.7 08 09
Elapsed Time [sec] Elapsed Time [sec]

(@) 1 =(1,1)",y1 = (-1, -7 () z1 = (2,3)T, 51 = (=2,-3)7T
Figure 1. The error versus the elapsed time of Algorithm 1.1, Algorithm 1.3 and Algorithm 3.1 for

Example 5.1

Table 1. Numerical results of Algorithm 3.1, Algorithm 1.1 and Algorithm 1.3 as regards Example 5.1

Alg. 3.1 Alg. 1.1 Alg. 1.3

(@1,3) y Tter. Time [s] Iter. Time [s] Iter. Time [s]
= (1L1)7 1074 115 0.0352 7459 0.4457 2930  0.3545
" 1: (_1:_1)T 1075 184  0.0396 9675  0.5831 3785  0.4463
1075 270  0.0472 11892  0.7096 4640  0.5523

. (2.3)" 1074 94 0.0349 8858 0.5829 3384  0.4264
" 1: (_2:_3)T 1075 143 0.0389 10805 0.6863 4239  0.5241

107 239  0.0450 13022 0.8358 5094  0.6312

Secondly, we compare Algorithm 4.1 with Algorithm 1.2. Let zo = (2,2)T,
yo=(1,10D)T, a=05 6 =25, pp = it On = L and h = 0 in Algorithm 3.1,
v = %min{w, W} in Algorithm 1.2, and 3, = 5~ in these two algorithms. The
numerical results are shown in Figure 2 and Table 2.

It can be clearly observed from Figure 1 and Table 1 that the weak convergence
algorithm we proposed has shorter elapsed time and less iterative number than
Algorithm 1.1 and Algorithm 1.3 under the same conditions. Similarly, it can be
seen that our strong convergence algorithm is more superior than Algorithm 1.2 in
terms of elapsed time and iterative number from Figure 2 and Table 2.

6. Conclusions
In this paper, we propose two new inertial relaxed iterative CQ algorithms for

solving the split equality problem (SEP) under simpler and more straightforward
conditions. Our main content is divided into three modules:
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XIP+lly 1P

=[x

Dv

— =Agi.2
—— Alga.1

7 L L L L L L L L
001 002 003 004 005 006 007 008 009

0.1

— —Agt2
—— Aigd.1

001 002 003 004 005 006 007 008 009 01 011

Elapsed Time [sec] Elapsed Time [sec]

(@) 1= (1, 1), y1 = (-1, -7 (b) z1 = (2,3)T, 41 = (-2,-3)7

Figure 2. The error versus the elapsed time of Algorithm 1.2 and Algorithm 4.1 for Example 5.1

)

Table 2. Numerical results of Algorithm 4.1 and Algorithm 1.2 as regards Example 5.1

(1, 11) Alg. 4.1 Alg. 1.2
Iter. Time [s] Tter. Time [s]
o= (117 10~* 28 0.0319 425 0.0487
LSy e 070 s 00376 779 00641
10-¢ 256 0.0493 1260  0.0926
5= (2,3)7 10~* 110 0.0325 670 0.0637
(5 gm 1070235 00422 1054 0.0851
10-¢ 581 0.0647 1562  0.1043

By introducing inertia, we propose the inertial simultaneous relaxed gradient-C'Q)
algorithm with adaptive step size (Algorithm 3.1). Compare with the algorithm
of Tian et al. (Algorithm 1.3), we extend the algorithm from two-step iteration
to three-step iteration, and at the same time, greatly simplify the conditions that
the step-size needs to meet, and still get the weak convergence of the Algorithm
3.1.

On the basis of Algorithm 3.1, combining with viscous iteration, we propose
the inertial viscosity simultaneous relaxed gradient-C'@ algorithm (Algorithm
4.1), and prove the strong convergence of the Algorithm 4.1.Compare with the
algorithm of Shi et al. (Algorithm 1.2), we extend the algorithm from two-step
iteration to many-step iteration with a contractive mapping h, and at the same
time, greatly simplify the conditions that the step-size needs to meet, and still
get the strong convergence of the Algorithm 4.1.

We use an example to compare Algorithm 3.1 with the algorithm of Moudafi
(Algorithm 1.1) and the algorithm of Tian et al. (Algorithm 1.3), and compare
Algorithm 4.1 with the algorithm of Shi et al. (Algorithm 1.2). The numerical
results in the figures and tables show that our algorithms have faster convergence
speed. Therefor our results here generalize and improve on the corresponding
results of many authors (such as [8,11,14,15,17,19] ) in recent times.
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