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STRUCTURE OF PREY∗

Rongyan Wang1 and Wencai Zhao1,†

Abstract The interaction between predator and prey is an important part
of ecological diversity. This paper presents a stage-structured predator-prey
model to study how stochastic environments affect population dynamics. Holling
II functional response is also incorporated in the proposed theoretical frame-
work. Specifically, by using the theory of stochastic stability, we provide
conditions for the stochastic system to suffer extinction or to have a unique
ergodic stationary distribution. Besides, numerical simulations are also em-
ployed to verify the validity of the theoretical results.
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1. Introduction
In the natural world, the interactions among populations mainly include compe-
tition, predation, parasitism and mutualism [4, 6, 14, 28] and so on. The law of
the jungle is the basic survival rule for predators. The Lotka-Volterra mathemat-
ical model depicting the predator-prey interaction was initially put forward in the
1920s [7]. This classic model has a profound effect on the development of modern
ecological theory. Since then, a large number of mathematical models have been
widely used in the study of various species ecosystems [1, 9, 15,21,23,29].

As we all know, the growth of many animals needs to go through the juvenile and
adult stages. However, when they are young, they are less fertile and are more likely
to be captured by natural enemies. Therefore, mathematical models with the stage
structure have aroused much concern during the past few decades [2,13,17,19]. For
example, the stage-structured predator-prey model was developed by Zhang et al.
[34], in which the prey had two-stage structures and the stage structure of predator
population was no longer subdivided. As the strong side, the predator population
not only has to prey on the bait to maintain its own material needs, because of the
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limited external resources, they will inevitably compete within species for food. As
the relatively weak side, the juvenile prey is in a more passive position and often
has to face the risk of predation alone. The model given in the literature [34] is as
follows: 

ẋ1 = ex2 − d1x1 − αx1 − β1x
2
1 − ηx1y,

ẋ2 = αx1 − d2x2,

ẏ = y(−d+ kηx1 − βy),

(1.1)

where x1, x2, y denote the population densities of juvenile, mature preys and preda-
tors, respectively. The parameter e represents the juvenile prey’s birth rate; the
death rates of juvenile, mature preys and predators are indicated by d1, d2 and d;
α implies the rate at which juvenile preys develop into mature preys; β1 and β are
the intraspecific competition coefficients of juvenile prey population and predator
population, respectively; predators feed on the juvenile preys and so ηx1 shows pre-
dation rate of the predators; k is the nutrient conversion rate for the predator. All
coefficients involved above are positive.

The model (1.1) adopts a linear function as the functional response, which as-
sumes that the amount of predation per predator is proportional to the number
of prey. However, in the real world, even if prey is plentiful, the predation may
reach saturation and thereby the predators reduce the feeding rate. Consequently,
in the research and analysis of biological systems, the Holling type II scheme has
been broadly applied [33,35,36]. The cubs of many animals do not have the ability
to hunt alone, but mainly rely on their parents for feeding. Especially when the
food is sufficient, the intraspecific competition of the cubs is weak. Some amphib-
ians, such as frog larvae, tadpoles do not forage when they just hatch, but mainly
depend on the nutrition brought from the yolk to maintain their lives. At this
time, the intraspecific competition formed by tadpoles competing for food can be
ignored. Literature [22] studied the global stability of a predator-prey system with
stage structure for prey. The author did not consider the intraspecific constraints
of juvenile prey (see model (1.3) in Literature [22]). Therefore, this paper mainly
focuses on the predation effect of predators on juvenile prey without considering
the intraspecific competition of juvenile prey. Based on the above discussion, a
predator-prey model with Holling type II scheme and phase structure of prey is
built as follows: 

ẋ1 = ex2 − d1x1 − αx1 −
ax1

b+ x1
y,

ẋ2 = αx1 − d2x2,

ẏ = y

(
−d+ k

ax1

b+ x1
− βy

)
,

(1.2)

where a is the effect of predation on the juvenile prey and b means the so-called
half-saturation constant, other parameters are the same as the model (1.1).

As species live in nature, they are unavoidably affected by all sorts of environ-
mental noises. For example, environmental factors such as water temperature,
water quality and sunlight can affect tadpole growth and development. Thus,
it is vital to consider the effects of random disturbances on population dynam-
ics [5,8,10,20,24,25,30–32,37]. Considering the influence of white noise and colored
noise, literature [20] established two stochastic non-autonomous SEIS infectious dis-
ease models with latent and active patients, and discussed the existence conditions
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of periodic solution and ergodic stationary distribution of the models. Assuming
that the birth rates of species are disturbed by white noise, literature [37] proposed
a competitive n-species stochastic model with delayed diffusions, and discussed
dynamic behaviors such as persistence in mean and the asymptotic stability in dis-
tribution, as well as optimal harvest strategy. By transforming the Itô’s integral
into an equivalent Stratonovich integral, Chang et al. [5] presented a new method
to study the dynamic behavior of a stochastic SIS model with multiplicative noise.

There are many ways to construct a stochastic differential equation model,
such as adding random perturbations to the parameters of deterministic system
[25, 37], or introducing proportional perturbations to state variables [20, 31]. Ref-
erences [12, 27] provide detailed modeling methods for Itô’s-type stochastic differ-
ential equations disturbed by white noise. Next, on the basis of the determin-
istic model (1.2), we construct the stochastic model. First, we introduce a dis-
crete time Markov chain: For a fixed time increment ∆t > 0, we define a pro-
cess Z(∆t)(t) = (x

(∆t)
1 (t), x

(∆t)
2 (t), y(∆t)(t)) for t = 0,∆t, 2∆t, · · · Let Z(∆t)(0) =

(x1(0), x2(0), y(0)) ∈ R3
+ is a deterministic initial value. Then, assume that on

each interval [k∆t, (k + 1)∆t), the effect of random influences on the species can
be captured by ξ

(∆t)
i (k), i = 1, 2, 3. Here the random variables

{
ξ
(∆t)
i (k)

}∞

k=0
are

identically distributed and for each k satisfy

E
[
ξ
(∆t)
i (k)

]
= 0, E

[
ξ
(∆t)
i (k)

]2
= σ2

i∆t, i = 1, 2, 3; k = 0, 1, · · · .

We make further assumptions that within the same time period [k∆t, (k + 1)∆t),

Z(∆t)(t) = (x
(∆t)
1 (t), x

(∆t)
2 (t), y(∆t)(t)) grows according to the deterministic model

(1.2) and, in addition, by the random amount (ξ
(∆t)
1 (k)x

(∆t)
1 (k∆t), ξ

(∆t)
2 (k)x

(∆t)
2 (k∆t),

ξ
(∆t)
3 (k)y(∆t)(k∆t)), that is

x
(∆t)
1 ((k + 1)∆t) =x

(∆t)
1 (k∆t) + ∆t

{
ex

(∆t)
2 (k∆t)− d1x

(∆t)
1 (k∆t)− αx

(∆t)
1 (k∆t)

− ax
(∆t)
1 (k∆t)

b+ x
(∆t)
1 (k∆t)

y(∆t)(k∆t)

}
+ ξ

(∆t)
1 (k)x

(∆t)
1 (k∆t),

x
(∆t)
2 ((k + 1)∆t) =x

(∆t)
2 (k∆t) + ∆t

{
αx

(∆t)
1 (k∆t)− d2x

(∆t)
2 (k∆t)

}
+ ξ

(∆t)
2 (k)x

(∆t)
2 (k∆t)

and

y(∆t)((k + 1)∆t) =y(∆t)(k∆t) + ∆t

{
y(∆t)(k∆t)(−d+

kax
(∆t)
1 (k∆t)

b+ x
(∆t)
1 (k∆t)

−βy(∆t)(k∆t))
}
+ ξ

(∆t)
3 (k)y(∆t)(k∆t).

The following derivation process is similar to literatures [12,27], and we omit it.
Finally, the random model corresponding to (1.2) is obtained as follows:

dx1 =

(
ex2 − d1x1 − αx1 −

ax1

b+ x1
y

)
dt+ σ1x1dB1(t),

dx2 = (αx1 − d2x2) dt+ σ2x2dB2(t),

dy =

[
y

(
−d+ k

ax1

b+ x1
− βy

)]
dt+ σ3ydB3(t).

(1.3)
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Here, Bi(t), i = 1, 2, 3 are mutually independent standard Brownian motions.

Remark 1.1. Assuming that the mortality parameters of species are disturbed by
environmental noise, model (1.3) can also be obtained by cooperating white noise
directly into model (1.2):

−d1 → −d1 + σ1Ḃ1(t), −d2 → −d2 + σ2Ḃ2(t), −d → −d+ σ3Ḃ3(t).

The remaining parts are indicated as below: Next, the existence and uniqueness
of the global positive solution of model (1.3) will be proved. We derive the criteria
for the existence of ergodic stationary distribution of model (1.3) in section 3. The
fourth part discusses the sufficient conditions for systematic extinction. Ultimately,
the article is concluded by several examples and numerical simulations.

2. Preliminaries
If (x∗

1, x
∗
2, y

∗) is an equilibrium point of system (1.2), then the Jacobian matrix
at (x∗

1, x
∗
2, y

∗) is

J |(x∗
1 ,x

∗
2 ,y

∗) =


−(α+ d1)− aby

(b+x1)
2 e − ax1

b+x1

α −d2 0

kaby
(b+x1)

2 0 −d− 2βy + kax1

b+x1


∣∣∣∣∣∣∣∣∣
(x∗

1 ,x
∗
2 ,y

∗)

.

Thus, the Jacobian matrix of system (1.2) at its trivial equilibrium point (0, 0, 0) is

J |(0,0,0) =


−(α+ d1) e 0

α −d2 0

0 0 −d

 .

Introduce parameter
R1 =

αe

d2(α+ d1)
.

Obviously, when R1 < 1, the equilibrium point P0(0, 0, 0) is locally asymptotically
stable, the system (1.2) becomes extinct.

We now have the following theorem concerning the existence of the solution of
the stochastic system (1.3).

Theorem 2.1. System (1.3) exists a unique solution x1(t), x2(t), y(t) for any initial
value on R3

+, and the solution remains in R3
+ for all t ≥ 0 almost surely.

Proof. Since the coefficients of model (1.3) are locally Lipschitz continuous, there
exists a unique local positive solution (x1(t), x2(t), y(t)) on [0, τe), in which τe means
the explosion time [18].

We take a large enough constant n0 > 0, such that x1(0), x2(0), y(0) all belongs
to [ 1

n0
, n0]. Regarding any integer n ≥ n0, the stopping time is defined as [18]

τn = inf

{
t ∈ [0, τe) : min {x1(t), x2(t), y(t)} ≤ 1

n
or max {x1(t), x2(t), y(t)} ≥ n

}
.
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Evidently, τn increases monotonically. Set τ∞ = limn→∞ τn, then τ∞ ≤ τe a.s.
If τ∞ = ∞ a.s., we get τe = ∞ and the theorem is proved. Otherwise, there exists
T > 0 and ϵ ∈ (0, 1), such that

P {τ∞ ≤ T} > ϵ.

Therefore, existing an integer n1 ≥ n0 meets

P {τn ≤ T} ≥ ϵ, ∀n ≥ n1.

Define the Lyapunov function:

V (x1, x2, y) = (x1 − 1− lnx1) +
e

d2
(x2 − 1− lnx2) +

1

k
(y − 1− ln y).

Using the same method as in reference [26], theorem 2.1 can be proved, which is
omitted here.

3. The existence of stationary solution
Then, the long-term dynamic properties of model (1.3) are discussed, and the

conditions for existence of ergodic stationary distribution are provided. Define the
parameter

RS
0 =

αe(
d2 +

σ2
2

2

)(
α+ d1 +

σ2
1

2 + d+
σ2
3

2

) .
Theorem 3.1. When given initial value on R3

+, if RS
0 > 1, then there exists a

unique stationary distribution for model (1.3) and it possesses ergodicity.

Proof. So as to verify the ergodicity of the system (1.3), it is enough to validate
Lemma 2.1 of [16]. We firstly certify the condition H1 of Lemma 2.1 in [16]. The
diffusion matrix of model (1.3) is presented by

B =


σ2
1x

2
1 0 0

0 σ2
2x

2
2 0

0 0 σ2
3y

2

 .

It is apparent that B is a positive definite matrix on R3
+, so the condition H1 is

true.
Afterwards condition H2 of Lemma 2.1 in [16] will be tested. Define

V1(x1, x2, y) = − lnx1 −Q lnx2 − ln y +
a+ bβ

bd
y,

here Q is a positive value which will be determined later. From Itô’s formula, we
have

LV1 ≤ α+ d1 +
σ2
1

2
− ex2

x1
+

a

b+ x1
y − Qαx1

x2
+Q

(
d2 +

σ2
2

2

)
+ βy − kax1

b+ x1

+d+
σ2
3

2
− a+ bβ

b
y +

ka(a+ bβ)

b2d
x1y
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≤ α+ d1 +
σ2
1

2
− 2
√
Qαe+Q

(
d2 +

σ2
2

2

)
+ d+

σ2
3

2
+

ka(a+ bβ)

b2d
x1y. (3.1)

Choose
Q =

αe(
d2 +

σ2
2

2

)2 ,
next by (3.1), one can get

LV1 ≤ − αe

d2 +
σ2
2

2

+ α+ d1 +
σ2
1

2
+ d+

σ2
3

2
+

ka(a+ bβ)

b2d
x1y

= −
(
α+ d1 +

σ2
1

2
+ d+

σ2
3

2

)
(RS

0 − 1) +
ka(a+ bβ)

b2d
x1y

= −λ+
ka(a+ bβ)

b2d
x1y, (3.2)

where
λ :=

(
α+ d1 +

σ2
1

2
+ d+

σ2
3

2

)
(RS

0 − 1) > 0.

Define

V2(x2) = − lnx2, V3(x1, x2, y) =
1

θ + 2

(
x1 +

me

d2
x2 +

y

k

)θ+2

,

in which θ > 0 is a small enough constant and m > 0 is a sufficiently large value.
Thus we can obtain

LV2 = − 1

x2
(αx1 − d2x2) +

σ2
2

2

= −αx1

x2
+ d2 +

σ2
2

2
, (3.3)

and

LV3 =

(
x1 +

me

d2
x2 +

y

k

)θ+1(
meα

d2
x1 − d1x1 − αx1 − (m− 1)ex2 −

β

k
y2 − d

k
y

)
+
θ + 1

2

(
x1 +

me

d2
x2 +

y

k

)θ (
σ2
1x

2
1 +

m2e2

d22
σ2
2x

2
2 +

σ2
3

k2
y2
)

≤ meα

d2
x1

(
x1 +

me

d2
x2 +

y

k

)θ+1

− (α+ d1)x
θ+2
1 − (m− 1)e

(
me

d2

)θ+1

xθ+2
2

− β

kθ+2
yθ+3 +

θ + 1

2
×
(
x1 +

em

d2
x2 +

y

k

)θ (
σ2
1x

2
1 +

m2e2

d22
+

σ2
3

k2
y2
)

= −α+ d1
2

xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2 − β

2kθ+2
yθ+3 +

meα

d2
x1

×
(
x1 +

me

d2
x2 +

y

k

)θ+1

+
θ + 1

2

(
x1 +

me

d2
x2 +

y

k

)θ

×
(
σ2
1x

2
1 +

m2e2

d22
σ2
2x

2
2 +

σ2
3

k2
y2
)
− α+ d1

2
xθ+2
1 − (m− 1)(1− θ)e
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×
(
me

d2

)θ+1

xθ+2
2 − β

2kθ+2
yθ+3

≤ −α+ d1
2

xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2 − β

2kθ+2
yθ+3 +A, (3.4)

where

A = sup
(x1,x2,y)∈R3

+

{
meα

d2
x1

(
x1 +

me

d2
x2 +

y

k

)θ+1

− α+ d1
2

xθ+2
1

− (m− 1)(1− θ)

(
me

d2

)θ+1

× exθ+2
2 − β

2kθ+2
yθ+3

+
θ + 1

2

(
x1 +

me

d2
x2 +

y

k

)θ (
σ2
1x

2
1 +

m2e2

d22
σ2
2x

2
2 +

σ2
3

k2
y2
)}

.

Next, define another function:

Ṽ (x1, x2, y) = MV1(x1, x2, y) + V2(x2) + V3(x1, x2, y),

here M > 0 is a sufficiently large value, which satisfies

−Mλ+ d2 +
σ2
2

2
+A ≤ −2. (3.5)

We shall observe that Ṽ is both continuous and approaches to ∞ when the norm of
(x1, x2, y) is close to infinity. Thus the function must exist low bound and achieve
it at a point (x0

1, x
0
2, y

0) in the interior of R3
+. Let

V (x1, x2, y) = MV1(x1, x2, y) + V2(x2) + V3(x1, x2, y)− Ṽ (x0
1, x

0
2, y

0).

By (3.2), (3.3) and (3.4), we can get

LV ≤ −Mλ+
Mka(a+ bβ)

b2d
x1y −

αx1

x2
− α+ d1

2
xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2

− β

2kθ+2
yθ+3 + d2 +

σ2
2

2
+A

= −Mλ+
Mka(a+ bβ)

b2d
x1y −

αx1

x2
− α+ d1

4
xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2

− β

4kθ+2
yθ+3 − α+ d1

4
xθ+2
1 − β

4kθ+2
yθ+3 + d2 +

σ2
2

2
+A. (3.6)

Choosing sufficiently small 0 < ϵ < 1 satisfies

ϵ ≤ b2d(θ + 3)

Mka(a+ bβ)(θ + 2)
, (3.7)

ϵ ≤ βb2d(θ + 3)

4Mkθ+3a(a+ bβ)
, (3.8)

ϵ ≤ b2d(θ + 2)

Mka(a+ bβ)(θ + 1)
, (3.9)
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ϵ ≤ (α+ d1)b
2d(θ + 2)

4Mka(a+ bβ)
, (3.10)

− α

ϵ
+G ≤ −1, (3.11)

− α+ d1
4ϵθ+2

+G ≤ −1, (3.12)

− β

4kθ+2ϵθ+3
+G ≤ −1, (3.13)

− (m− 1)mθ+1eθ+2θ

dθ+1
2 ϵ2θ+4

+G ≤ −1, (3.14)

where G can be presented later. To make the condition H2 of Lemma 2.1 [16] hold,
one consider the bounded open set

Uϵ =

{
(x1, x2, y) ∈ R3

+ : ϵ < x1 <
1

ϵ
, ϵ2 < x2 <

1

ϵ2
, ϵ < y <

1

ϵ

}
.

Denote

U1 =
{
(x1, x2, y) ∈ R3

+ : x1 ≤ ϵ
}
, U2 =

{
(x1, x2, y) ∈ R3

+ : y ≤ ϵ
}
,

U3 =
{
(x1, x2, y) ∈ R3

+ : x1 > ϵ, x2 ≤ ϵ2
}
, U4 =

{
(x1, x2, y) ∈ R3

+ : x1 ≥ 1

ϵ

}
,

U5 =

{
(x1, x2, y) ∈ R3

+ : y ≥ 1

ϵ

}
, U6 =

{
(x1, x2, y) ∈ R3

+ : x2 ≥ 1

ϵ2

}
.

Clearly, U c
ϵ = R3

+ \ Uϵ =
6⋃

i=1
Ui

. Then validate LV ≤ −1 for any (x1, x2, y) ∈ U c
ϵ .

Case 1: In domain U1, according to x1y ≤ ϵy ≤ ϵ θ+2+yθ+3

θ+3 = θ+2
θ+3ϵ +

ϵ
θ+3y

θ+3,
we can get

LV ≤ −Mλ+
Mka(a+ bβ)(θ + 2)ϵ

b2d(θ + 3)
−
(

β

4kθ+2
− Mka(a+ bβ)ϵ

b2d(θ + 3)

)
yθ+3

+d2 +
σ2
2

2
+A

≤ −Mλ+
Mka(a+ bβ)(θ + 2)ϵ

b2d(θ + 3)
+ d2 +

σ2
2

2
+A

≤ −2 + 1 = −1, (3.15)

which follows from (3.5), (3.7) and (3.8). Therefore

LV ≤ −1 when (x1, x2, y) ∈ U1.

Case 2: In domain U2, since x1y ≤ ϵx1 ≤ ϵ
θ+1+xθ+2

1

θ+2 = θ+1
θ+2ϵ+

ϵ
θ+2x

θ+2
1 , we have

LV ≤ −Mλ+
Mka(a+ bβ)(θ + 1)ϵ

b2d(θ + 2)
−
(
α+ d1

4
− Mka(a+ bβ)ϵ

b2d(θ + 2)

)
xθ+2
1

+d2 +
σ2
2

2
+A

≤ −Mλ+
Mka(a+ bβ)(θ + 1)ϵ

b2d(θ + 2)
+ d2 +

σ2
2

2
+A
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≤ −2 + 1 = −1, (3.16)

which follows from (3.5), (3.9) and (3.10). Consequently

LV ≤ −1 when (x1, x2, y) ∈ U2.

Back to (3.6), we can also get

LV ≤ −αx1

x2
− α+ d1

4
xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2 − β

4kθ+2
yθ+3 − α+ d1

4

×xθ+2
1 − β

4kθ+2
yθ+3 +

Mka(a+ bβ)

b2d
x1y + d2 +

σ2
2

2
+A

≤ −αx1

x2
− α+ d1

4
xθ+2
1 − (m− 1)θe

(
me

d2

)θ+1

xθ+2
2 − β

4kθ+2
yθ+3 +G, (3.17)

where

G = sup
(x1,x2,y)∈R3

+

{
−α+ d1

4
xθ+2
1 − β

4kθ+2
yθ+3 +

Mka(a+ bβ)

b2d
x1y + d2 +

σ2
2

2
+A

}
.

Case 3: In domain U3, considering about (3.17), one can reach

LV ≤ −αx1

x2
+G ≤ −αϵ

ϵ2
+G

= −α

ϵ
+G ≤ −1, (3.18)

which follows from (3.11). Hence

LV ≤ −1 when (x1, x2, y) ∈ U3.

Case 4: In domain U4, due to (3.17), it follows that

LV ≤ −α+ d1
4

xθ+2
1 +G

≤ −α+ d1
4ϵθ+2

+G ≤ −1, (3.19)

which follows from (3.12). As a result

LV ≤ −1 when (x1, x2, y) ∈ U4.

Case 5: In domain U5, by (3.17), it satisfies

LV ≤ − β

4kθ+2
yθ+3 +G

≤ − β

4kθ+2ϵθ+3
+G ≤ −1, (3.20)

which follows from (3.13). Wherefore

LV ≤ −1 when (x1, x2, y) ∈ U5.
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Case 6: In domain U6, from (3.17), the following inequalities hold

LV ≤ −(m− 1)θe

(
me

d2

)θ+1

xθ+2
2 +G

≤ − (m− 1)mθ+1eθ+2θ

dθ+1
2 ϵ2θ+4

+G ≤ −1, (3.21)

which follows from (3.14). Accordingly

LV ≤ −1 when (x1, x2, y) ∈ U6.

Thus, from (3.15) to (3.21), one can obviously observe that for any sufficiently
small ϵ,

LV ≤ −1 when (x1, x2, y) ∈ R3
+ \ Uϵ.

That is, we finish the proof of assumption H2 of Lemma 2.1 in [16]. As a conse-
quence, model (1.3) admits a stationary distribution and it possesses ergodicity.

4. Extinction of the preys and predators
In the part, we shall provide the sufficient condition for extinction of predators

and preys. The concerned theorems are displayed later.

Theorem 4.1. Let (x1(t), x2(t), y(t)) be the solution of model (1.3) with any initial
value on R3

+. If ka < d+
σ2
3

2 , then the predator population y will become extinguish.

Proof. It can be obtained from the Itô’s formula,

d(ln y(t)) =

(
−d+

kax1

b+ x1
− βy − σ2

3

2

)
dt+ σ3dB3(t). (4.1)

Integrating (4.1) from 0 to t, there is

ln y(t)− ln y(0) =

(
−d− σ2

3

2

)
t+ ka

∫ t

0

x1(s)

b+ x1(s)
ds− β

∫ t

0

y(s)ds+ σ3B3(t)

≤
(
ka− d− σ2

3

2

)
t+ σ3B3(t). (4.2)

Dividing by t on (4.2), we shall obtain

ln y(t)− ln y(0)

t
≤ ka− d− σ2

3

2
+

σ3B3(t)

t
. (4.3)

Note that
lim
t→∞

B3(t)

t
= 0 a.s.

Thus, taking the superior limit of (4.3) yields

lim sup
t→∞

ln y(t)

t
≤ ka− d− σ2

3

2
< 0 a.s.,

which represents that
lim
t→∞

y(t) = 0 a.s.

To put it differently, the predator population will be die out.
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Theorem 4.2. Let (x1(t), x2(t), y(t)) be the solution to model (1.3) with any initial
value on R3

+, there is

lim sup
t→∞

1

t
ln

( √
R1

α+ d1
x1(t) +

R1

α
x2(t)

)
≤ ϱ a.s.,

in which ϱ = min {α+ d1, d2}
(√

R1 − 1
)

I{√R1≤1} +max {α+ d1, d2}
(√

R1 − 1
)

× I{√R1>1} −
(
2
(
σ−2
1 + σ−2

2

))−1. Particularly, while ϱ < 0, three species will die
out exponentially, namely

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) = 0, lim
t→∞

y(t) = 0 a.s.

Proof. Considering Theorem 1.4 of [3], there is√
R1(ω1, ω2) = (ω1, ω2)E0,

in which E0 =

 0
e

α+ d1
α

d2
0

 and (ω1, ω2) =

(√
R1,

e

α+ d1

)
.

A function can be defined as

V (x1, x2) = γ1x1 + γ2x2,

in which γ1 =
ω1

α+ d1
, γ2 =

ω2

d2
. Employing Itô’s formula to lnV , thus there is

d(lnV ) = L(lnV )dt+
1

V
(γ1σ1x1dB1(t) + γ2σ2x2dB2(t)) . (4.4)

Here

L(lnV ) =
γ1
V

(
ex2 − d1x1 − αx1 −

ax1

b+ x1
y

)
+
γ2
V

(αx1 − d2x2)−
γ2
1σ

2
1x

2
1

2V 2
−γ2

2σ
2
2x

2
2

2V 2
.

Besides we can reach that

V 2 =

(
γ1σ1x1

1

σ1
+ γ2σ2x2

1

σ2

)2

≤ (γ2
1σ

2
1x

2
1 + γ2

2σ
2
2x

2
2)

(
1

σ2
1

+
1

σ2
2

)
, (4.5)

and

1

V

{
γ1

[
ex2 − d1x1 − αx1 −

ax1

b+ x1
y

]
+ γ2 [αx1 − d2x2]

}
≤ 1

V

{
ω1

α+ d1
[ex2 − (α+ d1)x1] +

ω2

d2
[αx1 − d2x2]

}
=

1

V
(ω1, ω2)

[
E0(x1, x2)

T − (x1, x2)
T
]

=
1

V

(√
R1 − 1

)
(ω1x1 + ω2x2)

=
1

V

(√
R1 − 1

)
[(α+ d1)γ1x1 + d2γ2x2]
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≤ min {α+ d1, d2}
(√

R1 − 1
)

I{√R1≤1} +max {α+ d1, d2}

×
(√

R1 − 1
)

I{√R1>1}. (4.6)

Combining (4.5) with (4.6), one is able to obtain

L(lnV ) ≤min {α+ d1, d2}
(√

R1 − 1
)

I{√R1≤1} +max {α+ d1, d2}
(√

R1 − 1
)

× I{√R1>1} −
(
2
(
σ−2
1 + σ−2

2

))−1
.

Thence,

d(lnV ) ≤ [min {α+ d1, d2}
(√

R1 − 1
)

I{√R1≤1} +max {α+ d1, d2}
(√

R1 − 1
)

×I{√R1>1} −
(
2
(
σ−2
1 + σ−2

2

))−1
]dt+

γ1σ1x1

V
dB1(t)

+
γ2σ2x2

V
dB2(t). (4.7)

Integrating and then dividing by t, we shall gain

lnV (t)

t
≤ lnV (0)

t
+min {α+ d1, d2}

(√
R1 − 1

)
I{√R1≤1} +max {α+ d1, d2}

×
(√

R1 − 1
)

I{√R1>1} −
(
2
(
σ−2
1 + σ−2

2

))−1
+

M1(t)

t
+

M2(t)

t
. (4.8)

Here Mi(t) =
∫ t

0
γiσixi(s)

V (s) dBi(s)(i = 1, 2) is local martingale and ⟨Mi,Mi⟩t =

σ2
i

∫ t

0
(γixi(s)

V (s) )2ds ≤ σ2
i t. Taking advantage of the strong law of large numbers for

local martingales [18] yields

lim
t→∞

Mi(t)

t
= 0 a.s. (4.9)

Taking the superior limit on both sides of (4.8) and combining with (4.9) lead to

lim sup
t→∞

lnV (t)

t
≤min {α+ d1, d2}

(√
R1 − 1

)
I{√R1≤1} +max {α+ d1, d2}

×
(√

R1 − 1
)

I{√R1>1} −
(
2
(
σ−2
1 + σ−2

2

))−1

:=ϱ.

Consequently,

lim sup
t→∞

1

t
ln

( √
R1

α+ d1
x1(t) +

R1

α
x2(t)

)
≤ ϱ a.s.

Moreover, while ϱ < 0, we shall readily get

lim sup
t→∞

lnx1(t)

t
< 0 and lim sup

t→∞

lnx2(t)

t
< 0 a.s.,

which signifies that

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) = 0 a.s.
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Therefore, existing t0 such that when t ≥ t0, x1

b+ x1
≤ ϵ

b+ ϵ
a.s.

Meanwhile, applying Itô’s formula to ln y, we have

d ln y =

(
−d− βy +

kax1

b+ x1
− σ2

3

2

)
dt+ σ3dB3(t)

≤
(
−d− σ2

3

2
+

kax1

b+ x1

)
dt+ σ3dB3(t). (4.10)

Integrating and then dividing t on both sides of (4.10) yield

ln y(t)− ln y(0)

t
≤ −

(
d+

σ2
3

2

)
+

ka

t

∫ t

0

x1(s)

b+ x1(s)
ds+

σ3dB3(t)

t

≤ −
(
d+

σ2
3

2

)
+

kaϵ

b+ ϵ
+

σ3dB3(t)

t
. (4.11)

Note that

lim
t→∞

B3(t)

t
= 0 a.s.

Hence, the following conclusion is drawn

lim sup
t→∞

ln y(t)

t
≤ −

(
d+

σ2
3

2

)
+

kaϵ

b+ ϵ
.

Letting ϵ → 0 results in

lim sup
t→∞

ln y(t)

t
≤ −

(
d+

σ2
3

2

)
< 0 a.s.

which means
lim
t→∞

y(t) = 0 a.s.

To be specific, all the populations die out exponentially with probability one.

5. Conclusions and numerical simulations
In this paper, Holling type II scheme has been used to model the stochastic

predator-prey model with phase structure of prey. For the corresponding deter-
ministic model, if R1 < 1, the extinction equilibrium point P0(0, 0, 0) of the system
is locally asymptotically stable. For the random system (1.3), while RS

0 > 1, the
system will persist for a long time and there is a unique ergodic stationary distribu-
tion. Theorem 4.1 and Theorem 4.2 also provide new criteria for judging extinction
of the model (1.3).

To make the theoretical analysis more convincing, mathematical software is uti-
lized for numerical simulations. Using Milstein’s Higher-Order method mentioned
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in [11] to get the discretization equations of model (1.3):

xj+1
1 = xj

1 +

(
exj

2 − d1x
j
1 − αxj

1 −
axj

1

b+ xj
1

yj

)
∆t+ σ1x

j
1

√
∆tξ1,j

+
σ2
1

2
xj
1(ξ

2
1,j − 1)∆t,

xj+1
2 = xj

2 +
(
αxj

1 − d2x
j
2

)
∆t+ σ2x

j
2

√
∆tξ2,j +

σ2
2

2
xj
2(ξ

2
2,j − 1)∆t,

yj+1 = yj + yj

(
−d+ k

axj
1

b+ xj
1

− βyj

)
∆t+ σ3y

j
√
∆tξ3,j +

σ2
3

2
yj(ξ23,j − 1)∆t,

(5.1)
where ξi,j , i = 1, 2, 3 are the Gaussian random variables which follow the distribution
N(0, 1). Choose related parameters:

e = 0.5, d1 = 0.1, α = 0.2, a = 0.6, b = 0.07, d2 = 0.05, d = 0.2, k = 1, β = 0.1.

Example 5.1. To get the existence of an ergodic stationary distribution numeri-
cally, choosing σ2

1 = 0.004, σ2
2 = 0.01, σ2

3 = 0.01 and other parameters are as above.
Compute and obtain

RS
0 =

αe(
d2 +

σ2
2

2

)(
α+ d1 +

σ2
1

2 + d+
σ2
3

2

) ≈ 3.586 > 1.

Namely, the condition of Theorem 3.1 is true. It can be concluded that model
(1.3) admits a unique ergodic stationary distribution. In other words, three species
present a state of coexistence for a long time. Fig.1 confirms this and provides the
corresponding phase diagram.

Example 5.2. To illustrate the extinction of the predator population, choosing
σ2
1 = 0.45, σ2

2 = 1.5, σ2
3 = 8 and the other parameters are the same as in Fig.1.

Calculate and note
ka = 0.6 < 4.2 = d+

σ2
3

2
.

Therefore, the condition of Theorem 4.1 holds. According to Theorem 4.1, one can
obtain that the predator population will be die out. Fig.2 demonstrates this and
gives the solution of undisturbed model (1.2) and the corresponding phase diagram.

Example 5.3. To verify the conclusion of theorem 4.2, choosing σ2
1 = 9.2, σ2

2 =
2, σ2

3 = 9 and the other parameters are the same as in Fig.1. After calculations, we
can get

R1 =
αe

d2(α+ d1)
≈ 6.67 > 1,

and

ϱ = max {α+ d1, d2}
(√

R1 − 1
)
−
(
2
(
σ−2
1 + σ−2

2

))−1

≈ 0.475− 1.910 = −1.435 < 0.

In view of Theorem 4.2, we can obtain that the prey and predator populations
become extinct. Fig. 3 displays this. It can be seen that large environmental
interference is not conducive to the survival of population system.
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Figure 1. Three pictures in the left column are the paths of x1, x2, y of system (1.3) with the initial
value (0.1, 0.1, 0.1) under the noise intensities σ2

1 = 0.004, σ2
2 = 0.01, σ2

3 = 0.01. The red lines mean the
solution of (1.3) and the green lines mean the solution of the corresponding undisturbed system (1.2).
Three in the right column show the histograms of the probability density functions of x1, x2, y. The
seventh is the corresponding phase diagram, revealing the interplay of the three populations in phase
space.
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Figure 2. The left figure above shows the paths of x1, x2, y of the deterministic system (1.2) with
initial value (0.1, 0.1, 0.1). The right above is the paths of the corresponding stochastic system (1.3)
under σ2

1 = 0.45, σ2
2 = 1.5, σ2

3 = 8. The third is the corresponding phase diagram, which displays the
interplay of the three populations in phase space.
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Figure 3. The paths of x1, x2, y of system (1.3) with the initial value (0.1, 0.1, 0.1) under σ2
1 = 9.2, σ2

2 =
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3 = 9, which shows that preys and predators are extinguish.
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This paper makes a concrete analysis about how environmental noise affects
the survival of population. We give different criteria for species coexistence and
extinction. The results display that when the noise intensity of the stochastic model
is weak, the survival state of each species is not affected greatly, and they can coexist
in the same ecological environment; as the noise intensity continues to increase
and reaches a critical value, the population will be completely extinct. The above
analysis has practical guiding significance for biological control.
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