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STUDIES ON INDIVIDUAL FLUXES VIA
POISSON-NERNST-PLANCK MODELS WITH

SMALL PERMANENT CHARGES AND
PARTIAL ELECTRONEUTRALITY

CONDITIONS
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Abstract We study a one-dimensional Poisson-Nernst-Planck system for ionic
flows through membrane channels with two ion species, one positively charged
and one negatively charged. Nonzero but small permanent charges are in-
cluded. The cross-section area of the channel is included in the system, which
provides certain information of the geometry of the three-dimensional chan-
nel. This is crucial for our analysis. Of particular interest is to analyze the
qualitative properties of the individual fluxes with partial neutral boundary
conditions, which provides complementary insights and better understanding
of the ionic flow properties. Our study shows that the individual fluxes depend
sensitively on multiple system parameters such as permanent charges, channel
geometry, boundary conditions (concentrations and potentials) and boundary
layers caused by the violation of electroneutrality conditions. Numerical sim-
ulations are further performed to provide a more intuitive illustration of our
analytical results, and it turns out that numerical results are consistent with
our analytical ones.

Keywords PNP, permanent charges, channel geometry, individual fluxes,
boundary layers.
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1. Introduction
The study of electrodiffusion is an extraordinarily plentiful area for multidisciplinary
research with various applications in different research fields, such as physics, chem-
istry and biology. Mathematical analysis plays essential and unique roles for re-
vealing mechanisms of observed biological phenomena and for discovering new ones,
assuming a more or less explicit solution of the associated mathematical model can
be achieved. The recent accomplishments ( [6,7,9,13,15,16,28,30,35,36,38,41,44,
51,52,55]) in analyzing Poisson-Nernst-Planck (PNP) model for ionic flows through
membrane channels provides deep insights and better understanding of qualitative
properties of ionic flows, especially, the internal dynamics.
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In this work, we examine boundary layers effects (due to the violation of elec-
troneutrality boundary concentration conditions) on ionic flows via one-dimensional
classical PNP models with nonzero but small permanent charges. Of particular in-
terest is to characterize the nonlinear interplays among system parameters, such
as channel geometry, small permanent charge, boundary conditions (concentration
and potential) and boundary layers.

We comment that the study of the nonlinear interplays among the physical pa-
rameters involved in the system provides some efficient ways to control the ionic
flows through membrane channels by adjusting boundary conditions, mainly bound-
ary membrane potentials. This is what has been done and doing experimentally
in measuring the so-called current-voltage relations, one of the main tools to study
ionic flow properties. Correspondingly, it is critical to identify some critical mem-
brane potentials (if possible) that split the potential range into subranges, over
which distinct qualitative properties of ionic flows can be observed. The character-
ization of those critical potentials further depending on other system parameters
will provide better understanding of the mechanism of ionic flows though membrane
channels, not only mathematically but also experimentally since some critical po-
tentials actually can be estimated experimentally (see Remark 3.2 for more details).
On the other hand, the identification of those critical potentials and the resulting
subranges will provide excellent choices of initial guessing for numerical studies of
the problem, and will be much easier for one to observe distinct and rich properties
of ionic flows, which in turn will further help the analysis of the topic.

1.1. Ionic flows and the PNP model
Ion channels are large proteins embedded in cell membrane with a hole down their
middle that provides a controllable path for electro-diffusion of ions (mainly Na+,
K+, Ca++ and Cl−) through biological membranes, establishing communications
among cells and the external environment. In this way, ion channels control a wide
range of biological functions. Ionic flows are governed by fundamental physical laws
of electrodiffusion which relate rates of quantities of interest. Two most relevant
biological properties of a channel are permeation and selectivity, both of which
are characterized by the current-voltage relations measured experimentally under
different ionic conditions. However, for applications, it is important to examine
properties of individual fluxes because most experiments (with some exceptions) can
only measure the total flux while individual fluxes contain much more information
on channel functions [23,28].

Considering the structural characteristics, the basic continuum model for ionic
flows is the PNP system which can be extracted as a reduced model from molecular
dynamics ( [46]), Boltzmann equations ( [3]), and variational principles ( [25–27]).
The simplest PNP system is the classical Poisson-Nernst-Planck (cPNP) system
that includes the ideal component µid

k (X) in (2.1) only. The ideal component µid
k

contains contributions by considering ion particles as point charges. For a wide
range of purposes, the classical PNP models have been simulated and analyzed
(see, e.g., [1,3–5,11,12,21,24,43,45,47,48,50,53]) extensively. A major weak point
of the cPNP is that it treats ions as point-charges, which is reasonable only in very
dilute situation. Many important properties of ion channels, such as selectivity, rely
on ion sizes critically. To study the ion size effects on ionic flows, one has to take
into consideration ion-specific components of the electrochemical potential in PNP
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models. PNP-type models with ion sizes have been investigated computationally
for ion channels and have shown great success (e.g., [14, 17,18,21,22,33,34,49]).

For ionic solutions with n ion species, the PNP system reads

∇ ·
(
εr(r)ε0∇Φ

)
= −e

( n∑
s=1

zscs +Q(r)
)
,

∇ · Jk = 0, −Jk =
1

kBT
Dk(r)ck∇µk, k = 1, 2, · · · , n,

(1.1)

where r ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing
the channel, Q(r) is the permanent charge density, ε(r) is the relative dielectric
coefficient, ε0 is the vacuum permittivity, e is the elementary charge, kB is the
Boltzmann constant, T is the absolute temperature; Φ is the electric potential.
Also, for the kth ion species, ck is the concentration, zk is the valence (the number
of charges per particle), µk is the electrochemical potential depending on Φ and
{cj}, Jk is the flux density, and Dk(r) is the diffusion coefficient.

Based on the fact that ion channels have narrow cross-sections relative to their
lengths, reduction of the three-dimensional steady-state PNP systems (1.1) to a
quasi-one-dimensional models was first proposed in [43] and was rigorosely justified
in [40] for special cases. A quasi-one-dimensional steady-state PNP model takes the
form

1

h(x)

d

dx

(
εr(x)ε0h(x)

dΦ

dx

)
= −e

( n∑
s=1

zscs +Q(x)
)
,

dJk

dx
= 0, −Jk =

1

kBT
Dk(x)h(x)ck

dµk

dx
, k = 1, 2, . . . , n,

(1.2)

where x ∈ [0, 1] is the coordinate along the axis of the channel that is normalized
to [0, 1], h(x) is the area of cross-section of the channel over the location x.

For system (1.2), we have the following boundary conditions (see [15] for a
reasoning), for k = 1, 2, · · · , n,

Φ(0) = V, ck(0) = Lk > 0; Φ(1) = 0, ck(1) = Rk > 0, k = 1, 2, · · · , n. (1.3)

1.2. Permanent charges
While some information may be obtained by ignoring the permanent charge and
focusing on the effects of boundary conditions, the charges and sizes of ions, etc., we
believe that different channel types differ mainly in the distribution of permanent
charge ( [19]). For both ion channels and semiconductors, permanent charges add
an additional component-probably the most important one-to their rich behavior, in
particular, for ion channels, a permanent charge reflects the structure of the channel
protein. Permanent charge density may depend on the location of many atoms, the
shape of the protein (channel geometry), and so on ( [16]). In general, the permanent
charge Q(x) is modeled by a piecewise constant function, that is, we assume, for
a partition x0 = 0 < x1 < · · · < xm−1 < xm = l of [0, l] into m subintervals,
Q(x) = Qj for x ∈ (xj−1, xj) where Qj ’s are constants with Q1 = Qm = 0 (the
intervals [x0, x1] and [xm−1, xm] are viewed as the reservoirs without permanent
charges).
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In [15], under the framework of geometric singular perturbation theory, the
existence and uniqueness (local) was established for the boundary value problem
(1.2)-(1.3) with one cation and one anion and the permanent charge function mod-
eled by

Q(x) = 0 if 0 < x < a; Q(x) = Q0 if a < x < b; Q(x) = 0 if b < x < 1, (1.4)

where Q0 is some nonzero constant. Due to the challenge in obtaining explicit
expressions of the I-V relation with nonzero permanent charges, in [30], the au-
thor studied the case with Q0 in (1.4) being small and employed regular pertur-
bation analysis (viewing Q0 as a small perturbation to the solutions of the system
(1.2)-(1.3)) to further study the effects on ionic flows from the permanent charges.
In [9, 55], multiple cations are considered in the PNP model focusing on the com-
petition between cations due to the nonlinear interplays among system parameters,
particularly diffusion coefficients, small permanent charges, channel geometry and
boundary concentrations. Numerical simulations are performed in [55] to provide
more intuitive illustrations for the analytical results. In [51], the authors study the
small permanent charge effects on I-V relations via the PNP system with multiple
cations. In these works, interesting ionic flow properties are observed and mean-
while the analysis indicates the critical role that the permanent charge plays in the
study of ionic flow properties of interest.

1.3. Electroneutrality conditions and boundary layers
To describe the actual behavior of channels or useful transistors, macroscopic reser-
voirs linked by ion channels must be included ( [10,20–22]). Macroscopic boundary
conditions that describe such reservoirs introduce boundary layers of concentration
and charge. If those boundary layers reach into the part of the device that performs
atomic control, they prominently influence its behavior. Particularly, boundary
layers of charge are probably to produce artifacts over long distances because the
electric field spreads a long way.

The boundary layer problem should be considered more carefully in the study
of such problems, particularly, for ion channel problems. However, very often,
when examine the qualitative properties of ionic flows in terms of I-V relations and
individual fluxes, which characterize the two most relevant properties (permeation
and selectivity) of ion channels, electroneutrality boundary conditions are naturally
enforced at both ends of the channel (see, e.g., [1, 6–8, 29–31, 35, 39, 53]), which are
defined as

n∑
s=1

zsLs =

n∑
s=1

zsRs = 0. (1.5)

Under the condition (1.5), the difficulty in analyzing the dynamics of ionic flows is
reduced to a great extent, but the effects on ionic flows from boundary layers that
carries much more rich information cannot be examined.

To better understand the mechanism of ionic flows through membrane channels,
one need to consider the boundary layer effects during the study. Recently, there are
some works focusing on the boundary layer effects on ionic flows via PNP system
with zero permanent charge, and much more rich dynamics were observed (see
[2, 42, 52, 54]). Due to the sensitivity of electric potentials on boundary layers and
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the complexity arising from the nonzero permanent charge, in this work, we consider
the PNP problem under the assumption of partial neutral boundary condition, more
precisely, we assume

−z2L2 = σ(z1L1) and − z2R2 = z1R1, (1.6)

where σ is some positive constant not equal to 1 (σ = 1 in (1.6) implies neutral
state). More precisely, we assume the boundary layer just exists at one end of the
ion channel, and the other end is still neutral.

We comment that in [15, 36, 37], the authors studied the classical PNP system
and established the existence and local uniqueness result for small ε > 0. In the
construction of the singular orbit, the solution to the limiting PNP system (ε → 0),
the boundary layer is characterized (see Corollary 3.3 in [15] for example), However,
the author did not examine the effects on ionic flows from the boundary layers, which
provides complementary information and better understanding of the dynamics of
ionic flows through membrane channels.

2. Problem set-up and some previous results
We set up our problem and recall some results from [30], which will be fundamental
for our analysis later.

2.1. The steady-state boundary value problem and assump-
tions

Our main interest is to examine the boundary layer effect on ionic flows via the
PNP system (1.2)-(1.3) with small permanent charges.

In this work, we take the same setting as that in [30] but without assuming
electroneutrality boundary conditions: z1L1 + z2L2 = z1R1 + z2R2 = 0 on both
ends of the ion channel, which includes:
(A1). We consider two charged particles (n = 2) with z1 > 0 and z2 < 0.
(A2). The PNP model only includes the ideal component µid

i (X) of the electro-
chemical potential defined by

µid
k (x) = zkeΦ(x) + kBT ln

ck(x)

c0
, (2.1)

where c0 is some characteristic number density.
(A3). εr(X) = εr and Di(X) = Di.

We will assume (A1)–(A3) from now on. We first make the following dimension-
less rescaling ( [30]). Let

ϕ =
e

kBT
Φ, V =

e

kBT
V, ε2 =

εrε0kBT

e2
, Jk =

Jk

Dk
.

Correspondingly, the boundary value problem (1.2)-(1.3) becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
ϕ

)
= −z1c1 − z2c2 −Q(x),

h(x)
dck
dx

+ zkh(x)ck
dϕ

dx
= −Jk,

dJk
dx

= 0, k = 1, 2

(2.2)
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with the boundary conditions
ϕ(0) = V, ck(0) = Lk; ϕ(1) = 0, ck(1) = Rk, k = 1, 2. (2.3)

We point out that both the variable c and the function h(x) in the equation (2.2)
are dimensionless.

2.2. Some previous results
We recall some results from [30] that are critical for our analysis. The authors
in [30] treat |Q0| small compared to the boundary concentrations Lk’s and Rk’s,
and derive approximations for the individual fluxes expanded in Q0:

Jk(V ;Q0) = Jk0(V ) + Jk1(V ;λ)Q0 + o(Q0), (2.4)
where Jk = DkJk (correspondingly, Jk0 = DkJk0 and Jk1 = DkJk1) and

J10 =
(cL1 − cR1 )(z1V + lnL1 − lnR1)

H(1)(ln cL1 − ln cR1 )
, J20 =

(cL2 − cR2 )(z2V + lnL2 − lnR2)

H(1)(ln cL2 − ln cR2 )
,

J11 =
A(z2(1−B)λ+ 1)

(z1 − z2)H(1)
(z1λ+ 1), J21 =

A(z1(1−B)λ+ 1)

(z2 − z1)H(1)
(z2λ+ 1),

(2.5)
with

λ =
ϕL − ϕR

ln cL1 − ln cR1
, A =

(cL1 − cR1 )(c
b
10 − ca10)

ca10c
b
10(ln c

L
1 − ln cR1 )

,

B =
ln cb10 − ln ca10

A
=

(ln cL1 − ln cR1 )(ln c
b
10 − ln ca10)

(cL1 − cR1 )(c
b
10 − ca10)

ca10c
b
10.

(2.6)

Here,

ϕL = V − 1

z1 − z2
ln

−z2L2

z1L1
, z1c

L
1 = −z2c

L
2 = (z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 ,

ϕR = − 1

z1 − z2
ln

−z2R2

z1L1
, z1c

R
1 = −z2c

R
2 = (z1R1)

−z2
z1−z2 (−z2R2)

z1
z1−z2 ,

ca10 = cL1 + α(cR1 − cL1 ), cb10 = cL1 + β(cR1 − cL1 ),

(2.7)

where

α =
H(a)

H(1)
and β =

H(b)

H(1)
. (2.8)

The quantities J11 and J21 are the leading terms containing permanent charges
and channel geometry effects on individual fluxes and will be studied in detail.

We define the following function, which will be used often in our analysis. For
t > 0, set

γ(t) =
σ

z1
z1−z2 t lnσ

z1
z1−z2 t− σ

z1
z1−z2 t+ 1

(σ
z1

z1−z2 t− 1) lnσ
z1

z1−z2 t

for t ̸= σ− z1
z1−z2 and γ(σ− z1

z1−z2 ) =
1

2
.

(2.9)

One establishes easily that

Lemma 2.1. Assume that t > 0. One has
0 < γ(t) < 1, γ′(t) > 0, lim

t→0
γ(t) = 0 and lim

t→∞
γ(t) = 1.
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3. Effects from small permanent charges and chan-
nel geometry with boundary layers

We now examine the effects on individual fluxes from permanent charges and chan-
nel geometry under the assumption (1.6).

3.1. Comparison between zeroth order and first order in Q0

For the kth ion species, upon introducing µδ
k to denote the difference between its

electrochemical potentials at the two boundaries, one has

µδ
k := µδ

k(V ;Lk, Rk) = µk(0)− µk(1) = kBT (zkV + lnLk − lnRk). (3.1)

Together with the assumption (1.6), equation (2.5) can be rewritten as

J10 =
σ

z1
z1−z2 L1 −R1

H(1)
(

z1
z1−z2

lnσ + ln L1

R1

) µδ
1

kBT
,

J20 =− z1
z2

σ
z1

z1−z2 L1 −R1

H(1)
(

z1
z1−z2

lnσ + ln L1

R1

) µδ
2

kBT
,

J11 =
A1

(
z2(1−B1)V + (1 + z2

z1−z2
B1) lnσ + ln L1

R1

)
(z1 − z2)

(
z1

z1−z2
lnσ + ln L1

R1

)2
H(1)

µδ
1

kBT
,

J21 =
A1

(
z1(1−B1)V + z1

z1−z2
B1 lnσ + ln L1

R1

)
(z2 − z1)

(
z1

z1−z2
lnσ + ln L1

R1

)2
H(1)

µδ
2

kBT
,

(3.2)

where

A1 =−
(β − α)

(
σ

z1
z1−z2 L1 −R1

)2

(
(1− α)σ

z1
z1−z2 L1 + αR1

)(
(1− β)σ

z1
z1−z2 L1 + βR1

)(
z1

z1−z2
lnσ + ln L1

R1

) ,
B1 =

ln
(
(1− β)σ

z1
z1−z2 L1 + βR1

)
− ln

(
(1− α)σ

z1
z1−z2 L1 + αR1

)
A1

.

Remark 3.1. For Jk1 in (3.2), if σ = 1, we will get the same results as those under
electroneutrality conditions in [30].

For convenience in our following discussion, for 0 < x < 1 and t = L1

R1
, we

introduce

ω(x) = (1− x)σ
z1

z1−z2 t+ x, ω1(x) = (1− x)t+ x. (3.3)

3.2. Dependence of signs of Jk1 on channel geometry
In this section, we study the sign of Jk1’s, which further depends on the boundary
condition (V, Lk, Rk), the channel geometry (α, β) and the boundary layer in terms
of σ.

The sign of A1 and 1−B1 is critical in our following discussion, which is sensitive
to other system parameters, particularly, the channel geometry (α, β) and the ration
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of boundary concentrations t = L1/R1. We first consider the sign of 1−B1. Assume
t = L1

R1
, we rewrite 1−B1 as

1−B1 =
p(β)

(β − α)
(
σ

z1
z1−z2 t− 1

)2 ,
where

p(β) = ω(α)ω(β) lnσ
z1

z1−z2 t ln
ω(β)

ω(α)
+ (β − α)

(
σ

z1
z1−z2 t− 1

)2
.

For p(β), the following result can be established.

Lemma 3.1. Assume t = L1

R1
> 1, σ > 1 and γ(t) be as in (2.9). Then,

(i) for γ(t) > α, there exists a unique β1 ∈ (α, 1) such that p(β) < 0 if β ∈ (α, β1)
and p(β) > 0 if β ∈ (β1, 1).

(ii) for α ≥ γ(t), p(β) > 0.

It follows that

Lemma 3.2. Assume t = L1

R1
> 1 and σ > 1. One has

(i) 1−B1 > 0 if either γ(t) > α and β ∈ (β1, 1); or γ(t) ≤ α;
(ii) 1−B1 < 0 if γ(t) > α and β1 ∈ (α, β1).

As for the sign of A1, we have

Lemma 3.3. Assume t = L1

R1
> 1, σ > 1 and γ(t) be as in (2.9). One has A1 < 0.

One of our main results then is stated as follows:

Theorem 3.1. Assume B1 ̸= 1. Define V ∗
1p and V ∗

2p by J11(V
∗
1p) = 0 and J21(V

∗
2p) =

0, respectively, which are given by

V ∗
1p =

1

z1 − z2

(z1 lnσ + (z1 − z2) ln t

z2(B1 − 1)
+ lnσ

)
,

V ∗
2p =

1

z1 − z2

(z1 lnσ + (z1 − z2) ln t

z1(B1 − 1)
+ lnσ

)
.

(3.4)

Particularly, V ∗
1p−V ∗

2p = z1 lnσ+(z1−z2) ln t
z1z2(B1−1) . Furthermore, for t = L1

R1
> 1, σ > 1 and

γ(t) be as in (2.9), one has

(i) if α < γ(t) and β ∈ (α, β1), then, V ∗
1p < V ∗

2p; and
(i1) for V < V ∗

1p, J10J11 > 0 and J20J21 > 0;
(i2) for V ∗

1p < V < V ∗
2p, J10J11 < 0 and J20J21 > 0;

(i3) for V > V ∗
2p, J10J11 < 0 and J20J21 < 0.

Equivalently, for V < V ∗
1p, the (small) positive Q0 strengthens both |J1| and

|J2|; for V ∗
1p < V < V ∗

2p, the (small) positive Q0 reduces |J1| while strengthens
|J2|; and for V > V ∗

2p, the (small) positive Q0 reduces both |J1| and |J2|.
(ii) if either α < γ(t) and β ∈ (β1, 1) or α ≥ γ(t), then V ∗

1p > V ∗
2p; and

(ii1) for V < V ∗
2p, J10J11 < 0 and J20J21 < 0;

(ii2) for V ∗
2p < V < V ∗

1p, J10J11 < 0 and J20J21 > 0;
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(ii3) for V > V ∗
1p, J10J11 > 0 and J20J21 > 0.

Equivalently, for V < V ∗
2p, the (small) positive Q0 reduces both |J1| and |J2|;

for V ∗
2p < V < V ∗

1p, the (small) positive Q0 strengthens |J1| while reduces |J2|;
and for V > V ∗

1p, the (small) positive Q0 strengthens both |J1| and |J2|.

Remark 3.2. The critical potentials V ∗
1p and V ∗

2p that balance the small perma-
nent charge effects is critical in our study, which can be estimated experimen-
tally. Taking the critical potential V ∗

1p (zero of J11(V ;σ)) for example, one can
take an experimental J1(V ;Q0;σ) (although it is challenging to measure compared
to the I-V relations) and numerically (or analytically) compute J10(V ; 0;σ) for
ideal case, and this allows one to get an estimate of V ∗

1p by considering the zero of
J1(V ;Q0;σ)−J10(V ; 0;σ). Furthermore, they split the electric potential region into
three subregions, over which distinct qualitative properties of the individual fluxes
J1 and J2 are observed. This actually provides an efficient way to control ionic
flows (preference of ion channel over different ion species) through ion channels by
adjusting boundary conditions. More importantly, from Theorem 3.1, one observes
that, depending on the boundary conditions and channel geometry through (α, β),
(small) positive permanent charges

• can reduce the cation flux and enhance the anion flux;
• can enhance both cation and anion fluxes;
• can reduce both cation and anion fluxes;
• but cannot enhance the cation flux while reduce the anion flux.

This is consistent with the result obtained in [30] (Theorems 4.7 and 4.8) without
boundary layers.

We also would like to point out that, for k = 1, 2, Jk1(V ) has a common zero with
the zeroth order term Jk0(V ), namely, the potential V k∗

cp such that µδ
k(V

k∗
cp ) = 0.

To further examine the qualitative properties of ionic flows, we consider the
monotonicity of the leading term Jk1 in the electric potential V . Direct calculation
from (3.1) and (3.2) gives

dJ11
dV

=
1

(z1 − z2)(
z1

z1−z2
lnσ + ln L1

R1
)2H(1)

(
2z1z2A1(1−B1)V

+ z2A1(1−B1) ln
L1

R1
+ z1A1

((
1 +

z2
z1 − z2

B1

)
lnσ + ln

L1

R1

))
,

d2J11
dV 2

=
2z1z2A1(1−B1)

(z1 − z2)
(

z1
z1−z2

lnσ + ln L1

R1

)2
H(1)

,

dJ21
dV

=
1

(z2 − z1)
(

z1
z1−z2

lnσ + ln L1

R1

)2
H(1)

(
2z1z2A1(1−B1)V

+ z1A1(1−B1)
(
lnσ + ln

L1

R1

)
+ z2A1

( z1
z1 − z2

B1 lnσ + ln
L1

R1

))
,

d2J21
dV 2

=
2z1z2A1(1−B1)

(z2 − z1)
(

z1
z1−z2

lnσ + ln L1

R1

)2
H(1)

,

from which, together with Lemmas 3.2 and 3.3, one has
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Proposition 3.1. Assume t = L1

R1
> 1 and σ > 1. Let γ(t) be as in (2.9). Then,

(i) There exists a unique critical point V c
1p such that dJ11

dV |V=V c
1p

= 0. Furthermore,
(i1) J11(V ) decreases over (−∞, V c

1p) and increases over (V c
1p,∞) if either

γ(t) > α and β ∈ (β1, 1) or γ(t) ≤ α;
(i2) J11(V ) increases over (−∞, V c

1p) and decreases over (V c
1p,∞) if γ(t) > α

and β ∈ (α, β1);
(ii) There exists a unique critical point V c

2p such that dJ21

dV |V=V c
2p

= 0. Furthermore,
(ii1) J21(V ) increases over (−∞, V c

2p) and decreases over (V c
2p,∞) if either

γ(t) > α and β ∈ (β1, 1) or γ(t) ≤ α;
(ii2) J21(V ) decreases over (−∞, V c

2p) and increases over (V c
2p,∞) if γ(t) > α

and β ∈ (α, β1);

Remark 3.3. The identification of the critical potentials V ∗
kp and V c

kp are crucial,
these critical potentials split the electric potential region into several subregions,
over which different dynamics of individual fluxes are able to be observed. More im-
portantly, this provides some efficient ways to adjust/control the ionic flows through
membrane channels.

3.3. Relations among critical potentials
We next discuss the orders among the critical potentials V ∗

1p and V ∗
2p with boundary

layers and the ones V 1
q and V 2

q under electroneutrality conditions identified in [30].

3.3.1. Critical potentials: neutral conditions vs boundary layers

Recall from (3.4) that

V ∗
1p =

1

z1 − z2

(z1 lnσ + (z1 − z2) ln t

z2(B1 − 1)
+ lnσ

)
,

V ∗
2p =

1

z1 − z2

(z1 lnσ + (z1 − z2) ln t

z1(B1 − 1)
+ lnσ

)
,

and from [30] (formula (4.8) in Theorem 4.8) that

V 1
q = − lnL1 − lnR1

z2(1−B)
and V 2

q = − lnL1 − lnR1

z1(1−B)
.

We point out that if σ = 1, then, V ∗
1p = V 1

q and V ∗
2p = V 2

q .

Proposition 3.2. Let t = L1

R1
> 1. For σ > 1, one has V ∗

1p < V 1
q and V 2

q < V ∗
2p.

Proof. We just prove V ∗
1p < V 1

q , and the other can be discussed similarly. From
(3.4), one has

V ∗
1p =

1

z1 − z2

(z1 lnσ + (z1 − z2) ln t

z2(B1 − 1)
+ lnσ

)
.

Considering V ∗
1p as a function of σ, and let F be the first derivative of V ∗

1 with
respect to σ at σ = 1, then, we have

F =
dV ∗

1p

dσ
|σ=1 =

p1(β)

(z1 − z2)z2g2(β)
,
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where

g(β) = ω1(α)ω1(β) ln t ln
ω1(β)

ω1(α)
+ (β − α)(t− 1)2,

p1(β) = z1(α− β)

[
(β − α)(t− 1)2

(
(t− 1)2 + t ln2 t

)
+ (t2 − t)

(
(β + α)(1− t) + 2t

)
ln2 t ln

ω1(β)

ω1(α)

]
+ z2g

2(β).

It is easy to check that

lim
β→α

p1(β) =0, lim
β→α

p′1(β) = 0, lim
β→α

p′′1(β) = 2(t− 1)2p2(α),

where

p2(α) = (z2 − z1)(t− 1)2 + z1t ln
2 t− z2ω

2
1(α) ln

2 t+ 2z2(1− t)ω1(α) ln t.

Direct calculation shows that p2(α) is a quadratic function in α, and concave
upward, whose discriminant is

△ = 4z2(t− 1)2[(2z2 − z1)(t− 1)2 + z1t ln
2 t] ln2 t > 0.

This indicates p2(α) = 0 has two roots, say α∗
1 and α∗

2 with α∗
1 < α∗

2 for convenience.
Direct calculation shows that α∗

1 > 1. Together with p2(1) > 0, one has p2(α) > 0
for 0 < α < 1, and hence, lim

β→α
p′′1(β) > 0. It then follows that F < 0. Therefore,

V ∗
1p < V 1

q if σ > 1.

3.3.2. Total order of critical potentials

We provide a total order of the critical potentials V ∗
k and V k

q for k = 1, 2, that
split the potential region into subregions, from which one can further study the
qualitative properties of ionic flows and examine the effects from boundary layers.

To get started, we introduce a function defined in [30], which will be used in our
following discussion. For t > 0, set

γ1(t) =
t ln t− t+ 1

(t− 1) ln t
for t ̸= 1, and γ1(1) =

1

2
. (3.5)

One has

Lemma 3.4. For t > 0,

0 < γ1(t) < 1, γ′
1(t) > 0, lim

t→0
γ1(t) = 0 and lim

t→∞
γ1(t) = 1.

Lemma 3.5. Assume t = L1

R1
> 1 and γ1(t) be as in (3.5). Then,

(i) for α < γ1(t), there exists a unique β2 ∈ (α, 1) such that 1 − B < 0 if
β ∈ (α, β2) and 1−B > 0 if β ∈ (β2, 1).

(ii) for α ≥ γ1(t), 1−B > 0.

Theorem 3.2. Let t = L1

R1
> 1 and σ > 1. Suppose α < β2 < β1 < 1. One has
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(i) V 2
q < V ∗

2p < V ∗
1p < V 1

q under one of the following conditions
(i1) α ≥ γ(t);
(i2) α < γ(t) and β ∈ (β1, 1);

(ii) V ∗
1p < V 1

q < V 2
q < V ∗

2p if 0 < α < γ1(t) and β ∈ (α, β2).

Proof. Notice that 0 < γ1(t) < γ(t) < 1 with t = L1

R1
> 1 and σ > 1. The result

follows directly from Theorem 3.1 and Proposition 3.2.
To end this section, we would like to further comment that the identification of

those critical potentials is significant in the study of ionic flow properties of interest,
not only analytically, but also numerically and even experimentally (see also Remark
3.2 for some discussion). As stated in the introduction, two most relevant properties
of ion channels are

3.4. Numerical simulations
In this part, numerical simulations are performed to provide more intuitive illustra-
tions of some analytical results. To be specific, we numerically identify the critical
potentials V ∗

kp with boundary layers and V k
q under electroneutrality conditions, and

further verify some analytical results stated in Theorem 3.1, Proposition 3.2 and
Theorem 3.2 for some carefully selected system parameters. Other related results
can also be numerically illustrated by choosing different parameter values, and we
leave that to interested readers.

To get started, we rewrite the system (2.2)-(2.3) as a system of first order ordi-
nary differential equations. Upon introducing u = εϕ̇ and τ = x, one has

εϕ̇ = u, εu̇ = −z1c1 − z2c2 −Q(x)− ε
hx(x)

h(x)
u,

εċ1 = −z1c1u− ε
J1
h(x)

, εċ2 = −z2c2u− ε
J2
h(x)

,

J̇1 = J̇2 = 0, τ̇ = 1

(3.6)

with boundary conditions

ϕ(0) = V, ck(0) = Lk; ϕ(1) = 0, ck(1) = Rk, k = 1, 2. (3.7)

Remark 3.4. We use “bvp4c” in Matlab ( [32]), an adaptive mesh solver, for our
BVP (3.6)-(3.7), which can efficiently take care of the jumps of Q(x) and dh

dx at the
points x = a and x = b by adjusting the mesh points at each stage in the iterative
procedure. On the other hand, we take the great advantage from our analysis and
the one in [15] that provide very good initial guess for our simulation (see Section
3.2 in [39] for more detailed discussion of the BVP solver and the choice of initial
guess).

In our simulations to system (3.6)-(3.7), we take z1 = −z2 = 1, L1 = 20, R1 =
5, ε = 0.01, Q0 = 0.01, a = 0.7, b = 0.82,

Q(x) =


0, 0 < x < a,

Q0, a < x < b,

0, b < x < 1,

and h(x) =


π
(
− x+ r0 + a

)2
, 0 ≤ x < a,

πr20, a ≤ x < b,

π
(
x+ r0 − b

)2
, b ≤ x < 1.
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Remark 3.5. The choice of h(x) is based on the fact that the ion channel is
cylindrical-like, and the variable cross-section area is chosen to reflect the fact that
the channel is not uniform and much narrower in the neck (a < x < b) than other
regions ( [30]). We further take r0 = 0.5 and the function h(x) is then continuous
at the jumping points x = a and x = b. Different models for h(x) may be chosen,
and similar numerical results should be obtained.

Under the above set-up, direct calculations gives, at t = L1/R1 = 4,

α =
H(a)

H(1)
= 0.536133, β =

H(b)

H(1)
= 0.756713, γ1(t) = 0.612175, γ(t) = 0.611986,

β1 = 0.678828, β2 = 0.678507,

from which one has

α < γ(t) < γ1(t) < β2 < β1 < β < 1 (3.8)

for σ = 1.005 in our numerical simulations.
It turns out that our numerical simulations with nonzero but small ε are con-

sistent with our analytical results. To be specific,

(i) We numerically identified the critical potentials V ∗
1p and V ∗

2p defined in The-
orem 3.1 (first row in Figure 1 with σ = 1.005; and also identified the critical
potentials V 1

q and V 2
q identified in [30] (second row in Figure 1) with σ = 1,

that is, under the electroneutrality boundary conditions, from which one can
tell the effects from the existence of boundary layers. Furthermore, one can
see that V 2

q < V ∗
2p < V ∗

1p < V 1
q , which is consistent with Proposition 3.2

(statement (i) satisfying the condition (i2)). The monotonicity of the terms
Jk1 can also be observed from Figure 1, which is consistent with the analytical
result stated in Proposition 3.1 (statement (i1) for J11 and statement (ii1) for
J21).

(ii) Our numerical results show that (see the left figure in Figure 3), with σ =
1.005,
(a) J1(V ; 0; ε)[J1(V ;Q0; ε)−J1(V ; 0; ε)] < 0 (resp. J1(V ; 0; ε)[J1(V ;Q0; ε)−

J1(V ; 0; ε)] > 0) if V < V ∗
1p (resp. V > V ∗

1p);
(b) J2(V ; 0; ε)[J2(V ;Q0; ε)−J2(V ; 0; ε)] < 0 (resp. J2(V ; 0; ε)[J2(V ;Q0; ε)−

J2(V ; 0; ε)] > 0) if V < V ∗
2p (resp. V > V ∗

2p).
Furthermore, it is clear that V ∗

2p < V ∗
1p and

(c) Jk(V ; 0; ε)[Jk(V ;Q0; ε)− Jk(V ; 0; ε)] < 0 for k = 1, 2, if V < V ∗
2p;

(d) J1(V ; 0; ε)[J1(V ;Q0; ε)− J1(V ; 0; ε)] < 0 while J2(V ; 0; ε)[J2(V ;Q0; ε)−
J2(V ; 0; ε)] > 0 if V ∗

2p < V < V ∗
1p;

(e) Jk(V ; 0; ε)[Jk(V ;Q0; ε)− Jk(V ; 0; ε)] > 0 for k = 1, 2 if V > V ∗
1p;

equivalently, (small) positive Q0 reduces both |J1| and |J2| if V < V ∗
2p;

strengthens |J2| while reduces |J1| if V ∗
2p < V < V ∗

1p; and strengthens both
|J1| and |J2| if V > V ∗

1 . This is consistent with our analytical result stated in
(ii) of Theorem 3.1. Here, we use Jk(V ; 0; ε) to approximate Jk0(V ; 0, 0), and
Jk(V ;Q0; ε)−Jk(V ; 0; ε) to approximate Jk1(V ; 0; 0), the leading term in our
analysis that contains small permanent charge effects.
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(iii) Our numerical simulations also show that Jk(V ; 0) and Jk(V ;Q0)− Jk(V ; 0)
have a common zero (can be seen from Figures 1, 2 and 3), which is consistent
with our analytical result (see Remark 3.2). More precisely, this corresponds
to the critical values V 1∗

cp from Figure 1 and V 10∗
cp from Figure 2. Due to

the perturbation from the higher order terms in Q0, these two numerically
identified critical values are close but not equal, while for our analytical result,
they are equal (up to the first order in Q0, no higher order contributions from
Q0). Similar argument applies to the case under electroneutrality boundary
conditions (see equations (4.4) and (4.5) in [30]).

To end this section, we would like to point out that the challenge in our simu-
lation is the selection of the values for a and b, which directly affect the inter-
play between the small permanent charges and the channel geometry in terms of
(α, β) = (H(a)/H(1),H(b)/H(1)). The numerical simulation not only supports our
analytical results, but also provides more intuitive illustrations for our results. In-
terested readers can choose different values for the parameters a and b to observe
other properties stated in this work.
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Figure 1. Identification of critical potentials V ∗
kp with boundary layers and V k

q under electroneutrality
boundary conditions for small ε = 0.01. We also point out that V k∗

cp is a common zero with Jk(V ; 0)

with boundary layers while V kq
c is a common zero with Jk(V ; 0) under electroneutrality boundary

conditions, see Figure 2. One can easily see that for (σ, ρ) = (1.005, 1.0), V 1
q − V ∗

1p = 0.024618 and
V 2
q − V ∗

2p = −0.022409. This shows clearly the important role played by the boundary layers in the
study of ionic flows through membrane channels.
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Figure 2. Numerical simulations to Jk0(V ) for both the case with boundary layers and the one under
electroneutrality boundary conditions by Jk(V ; 0) with ε = 0.01. Critical potentials V k0∗

cp and V k0q
c are

identified. From Figure 1, one can see that V k0∗
cp is close to V k∗

cp , and V k0q
c is close to V kq

c (see the
discussion in (iii) for more details).
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Figure 3. Orders of the critical potentials V ∗
kp with boundary layers and V k

q under electroneutrality
boundary conditions, respectively for k = 1, 2 with ε = 0.01. Under our set-up, the result with boundary
layers is consistent with statement (ii) in Theorem 3.1, and the one under electroneutrality boundary
conditions is also consistent with statement (ii) in Theorem 4.8 of [30] with β1 replaced by β2 under
current set-up.

4. Concluding Remarks
We study the Poisson-Nernst-Planck model that includes nonzero but small perma-
nent charges for two ion species, one positively charged and one negatively charged.
Of particular interest is to examine the boundary layer effects on individual fluxes
due to the violation of electroneutrality boundary conditions at one end of the
ion channel. A unique feature of this work is its capability of providing detailed
information of the nonlinear interactions among physical parameters involved in
the model, such as boundary conditions (concentrations and potentials), small per-
manent charges and channel geometry, for the individual fluxes. Several critical
potentials are identified, and those critical values split the potential region into dif-
ferent subregions, over which distinct qualitative properties of individual fluxes are
observed. Moreover, the characterization of these critical potentials is also crucial
for future numerical studies on the problem since it provides the best choices of
initial guessing. The study in this work could provide important insights to further
understand the mechanism of ionic flows through membrane channels, in particu-
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lar, the internal dynamics of ionic flows, which cannot be discerned with current
technology.
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