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SOLITARY AND LUMP WAVES
INTERACTION IN VARIABLE-COEFFICIENT
NONLINEAR EVOLUTION EQUATION BY A

MODIFIED ANSÄTZ WITH VARIABLE
COEFFICIENTS

Jian-Guo Liu1,†, Abdul-Majid Wazwaz2 and Wen-Hui Zhu3,†

Abstract In this work, we examine variable-coefficient nonlinear evolution
equations that often describe complex physical models more than constant
coefficient models. A modified ansätz with variable coefficients is used for
studying the solitary and lump waves interaction in these variable-coefficient
nonlinear evolution equations. We discuss the variable-coefficient Kadomtsev-
Petviashvili equation to achieve this goal. We present lump wave and inter-
action solutions between solitary and lump waves for this model. By choosing
appropriate values of the variable coefficients, 3d plots and corresponding con-
tour plots are drawn to illustrate the dynamical behaviors of the obtained
solutions.

Keywords Kadomtsev-Petviashvili equation, lump wave, interaction solu-
tions, dynamical behaviors.
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1. Introduction
Many complex physical phenomena, such as fiber optics, fluid dynamics, plasma
physics, quantum mechanics, etc., arise in various scientific and engineering fields
can be simulated in the form of nonlinear evolution equation (NLEE) [56]. To
study these models, many effective methods are proposed for the determination of
the analytical solutions of NLEE [1,11,18,52]. Recently, lump wave and interaction
solutions between lump wave and solitary wave have attracted the attention of
many scholars [2,8,19,24,44–46] aiming to make more progress in this field. Lump
wave can be often found in oceanography, nonlinear fiber optics and biophysics
[20,36,42,47]. Although the current research works focus on the constant-coefficient
NLEE, but the variable-coefficient NLEE often describe more complex physical
models and anticipate some new physical phenomena. Due to the computational
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complexity and lack of effective methods, relatively few works have studied the lump
wave of variable-coefficient NLEE.

The smooth propagation of KdV solitons can exist in plane 1d geometry. How-
ever, 1d geometry may not be a reality in laboratory equipment and space and
can’t explain all observations in the aurora region and higher polar altitudes [7].
Transverse perturbations often occur in higher-dimensional systems, and the wave
structure is modified by them. Based on the weakly transverse perturbations in
planar geometry, a constant-coefficient Kadomtsev-Petviashvili (KP) equation is
proposed [21]. However, the dust-acoustic waves (DAW) tend to appear by a non-
planar geometry. So, it is of great significance to study DAW in the non-planar
geometry. Thus, a variable-coefficient KP equation is proposed for describing the
non-planar geometry model by using the reductive perturbation method for unmag-
nified, collisionless and two-temperature ions in dusty plasma [48].

In Ref. [43], and in some of the references therein [9, 10, 53], the significant fea-
tures of the time dependent coefficients was furnished. In what follows we summa-
rize the important issues examined there. Interest in variable-coefficient nonlinear
equations has grown steadily in recent years. It is well known that nonlinear wave
equations with variable coefficients are more realistic in various physical situations
than their constant coefficients counterparts. It should be pointed out that the
existence of the inhomogeneities in the media influences the accompanied physical
effects giving rise to spatial or temporal dispersion and nonlinearity variations [43].
For example, in realistic fibre transmission lines, no fibre is homogeneous due to
long distance communication and manufacturing problems . When the media are
inhomogeneous or the boundaries are nonuniform, variable-coefficient nonlinear evo-
lution equation may arise.

In this work, a modified ansätz with variable coefficients is presented for finding
the lump wave and interaction solutions between lump wave and solitary wave of
NLEE. The proposed ansätz will be applied to the following variable-coefficient KP
equation [57]

τ(t)u2
x + τ(t)uuxx + δ(t)uxxxx − ϕ(t)uyy + uxt = 0, (1.1)

where u = u(x, y, t) is the amplitude of the long wave of two-dimensional fluid do-
main on varying topography or in turbulent over a sloping bottom. The coefficients
τ(t), δ(t) and ϕ(t) represent nonlinearity, dispersion, and disturbed wave velocity
along the y direction, respectively [15, 57]. Eq. (1.1) represents the many physical
models containing the propagation of the two-dimensional dust-acoustic wave in
the dusty plasma consisting of cold dust particles, isothermal electrons and surface
waves through shallow seas and marines straits of varying width and depth with
nonvanishing vorticity and so on [25]. Wang [42] presented the solitonic solution of
Eq. (1.1). Yao [49] obtained the Wronskian and Gramian solutions of Eq. (1.1).
The Bäcklund transformation was given by Wu in Ref. [15]. The lump and interac-
tions solutions were derived by using Hirota’s bilinear method [37], which was not
very suitable for variable-coefficient NLEE. In this work, the lump and interactions
solutions will be discussed by a modified ansätz with variable coefficients, which
will become our main task. Some special cases of Eq. (1.1) have been presented as
follows

(1) When ϕ(t) = 0, τ(t) = −6, δ(t) = 1, and integrate once with respect to x, Eq.
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(1.1) becomes a KdV equation [50,51]

uxxx + ut − 6uux = 0, (1.2)

which describes the motion of long waves and one-dimensional nonlinear lattice in
shallow water under the action of gravity.
(2) When ϕ(t) = ±1, τ(t) = −6, δ(t) = −1, Eq. (1.1) becomes a constant-coefficient
Kadomtsev-Petviashvili (KP) equation [5]

±uyy + uxt − uxxxx − 6u2
x − 6uuxx = 0. (1.3)

The KP equation has been extensively investigated mathematically and physically
in scientific phenomena, such as plasma physics, solid state physics, fiber optics,
propagation of waves, chemical physics, and in other fields. The KP equation plays
a fundamental role in the theory of propagation of waves and integrable systems.
Moreover, it models shallow water waves with weakly nonlinear restoring forces.

The organization of this paper is as follows. Section 2 presents the lump wave
and interaction solutions between lump wave and solitary wave based on a modified
ansätz with variable coefficients. 3d plots and corresponding contour plots are
drawn to show their dynamical behaviors by choosing different values of the variable
coefficients; Section 3 gives a conclusion.

2. Lump wave and interaction solutions between
lump wave and solitary wave

Under the transformation τ(t) = 6δ(t)
Ψ0

and u = 2Ψ0 [lnℑ(x, y, t)]xx into Eq. (1.1),
the bilinear form of Eq. (1.1) can be written as

[δ(t)D4
x − ϕ(t)D2

y +DtDx]ℑ · ℑ = 0, (2.1)

where Ψ0 is arbitrary constant, D is the bilinear derivative operators defined by

Di
xD

j
yD

k
zD

m
t ℑ · ℑ = (

∂

∂x
− ∂

∂x′
)i(

∂

∂y
− ∂

∂y′
)j(

∂

∂z
− ∂

∂z′
)k

(
∂

∂t
− ∂

∂t′
)mℑ(x, y, z, t)ℑ(x′, y′, z′, t′)|x=x′,y=y′,z=z′,t=t′ .

This is equivalent to

ℑ[δ(t)ℑxxxx − ϕ(t)ℑyy + ℑxt] + 3δ(t)ℑ2
xx

−4δ(t)ℑxℑxxx + ϕ(t)ℑ2
y −ℑtℑx = 0. (2.2)

To seek the lump wave and interaction solutions between lump wave and solitary
wave, a modified ansätz with variable coefficients is proposed as follows

ℑ = [Ψ3(t) + Ψ1(t)x+Ψ2(t)y]
2 + [Ψ6(t) + Ψ4(t)x+Ψ5(t)y]

2 +Ψ7(t)

+σ1(t)e
ς3(t)+ς1(t)x+ς2(t)y + σ2(t)e

−ς3(t)−ς1(t)x−ς2(t)y, (2.3)

where Ψi(t), ςi(t) and σi(t)(i = 1, 2, 3) are unkown functions. In previous work
[5, 15, 25, 37, 49–51], Ψi(t), ςi(t) and σi(t)(i = 1, 2, 3) are assumed to be constants,
which is not very suitable for variable-coefficient NLEE. Eq. (2.3) has not yet been
applied in Eq. (1.1) in other works.
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2.1. Lump wave

(a)

-10 -5 0 5 10
t

-10

-5

0

5

10

x

HbL

Figure 1. Lump wave with ϕ(t) = µ1 = Ψ0 = Ψ5(t) = 1, Ψ1(t) = 2, y = 0, Ψ2(t) = Ψ4(t) = −1, (a)
3d plot; (b) corresponding contour plot.

It has become a very interesting topic for exploring lump solutions which are
rationally localized solutions in all directions in space. Lump is generally localized
for space and time variables, and has a bigger amplitude compared to its surrounding
waves. In what follows, we examine specific cases of the given parameters.

When σ1(t) = σ2(t) = 0, Eq. (2.3) represents a lump wave. Substituting Eq.
(2.3) into Eq. (2.2), the lump wave can be found as follows

u =
2Ψ0

(
2Ψ1(t)

2 + 2Ψ4(t)
2
)

Ψ7(t) + (Ψ3(t) + xΨ1(t) + yΨ2(t)) 2 + (Ψ6(t) + xΨ4(t) + yΨ5(t)) 2
− 2Ψ0

[2Ψ1(t)[Ψ3(t) + xΨ1(t) + yΨ2(t)] + 2Ψ4(t)[Ψ6(t) + xΨ4(t) + yΨ5(t)]]
2

[Ψ7(t) + [Ψ3(t) + xΨ1(t) + yΨ2(t)]2 + [Ψ6(t) + xΨ4(t) + yΨ5(t)]2]2
. (2.4)

All parameters have been interpreted in Appendix A. For a fixed t in Eq. (2.4), by
solving the system {ux = 0, uy = 0}, three critical points can be obtained as

C1 = (
Ψ2(t)Ψ6(t)−Ψ3(t)Ψ5(t)

Ψ1(t)Ψ5(t)−Ψ2(t)Ψ4(t)
,
Ψ1(t)Ψ6(t)−Ψ3(t)Ψ4(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
),

C2, C3 = (
Ψ3(t)Ψ5(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
+

Ψ2(t)Ψ6(t)

Ψ1(t)Ψ5(t)−Ψ2(t)Ψ4(t)

±
√
3Ψ7(t)√

(Ψ1(t)2 +Ψ4(t)2)Ψ7(t)
,
Ψ1(t)Ψ6(t)−Ψ3(t)Ψ4(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
).

The corresponding amplitudes are

A1 =
4Ψ0

(
Ψ1(t)

2 +Ψ4(t)
2
)

Ψ7(t)
, A2 = A3 = −

Ψ0

(
Ψ1(t)

2 +Ψ4(t)
2
)

2Ψ7(t)
,

respectively. We see that the amplitudes count on the parameters Ψ0, Ψ1(t) and
Ψ2(t), not on ϕ(t). This means that the amplitude keeps invariant when ϕ(t) chooses
different functions in solution (2.4). Figures 1-3 describe the influence of disturbed
wave velocity ϕ(t) on the lump wave in Eq. (2.4). Fig. 1(a) shows 3d plot of lump
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wave with ϕ(t) = 1, and Fig. 1(b) gives the corresponding contour plot. Fig. 2(a)
shows 3d plot of lump wave with ϕ(t) = t, and Fig. 2(b) presents the corresponding
contour plot. Fig. 3(a) shows 3d plot of lump wave with ϕ(t) = 1 + sin t, and Fig.
3(b) gives the corresponding contour plot.
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Figure 2. Lump wave with ϕ(t) = t, µ1 = Ψ0 = Ψ5(t) = 1, Ψ1(t) = 2, y = 0, Ψ2(t) = Ψ4(t) = −1, (a)
3d plot; (b) corresponding contour plot.
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Figure 3. Lump wave with ϕ(t) = 1 + sin t, µ1 = Ψ0 = Ψ5(t) = 1, Ψ1(t) = 2, y = 0, Ψ2(t) = Ψ4(t) =
−1, (a) 3d plot; (b) corresponding contour plot.

2.2. Interaction solutions between lump wave and one solitary
wave

When σ2(t) = 0, Eq. (2.3) represents the interaction solutions between lump wave
and one solitary wave. Substituting Eq. (2.3) into Eq. (2.2), the interaction
solutions between lump wave and one solitary wave can be presented as follows

u = [2Ψ0

(
2Ψ1(t)

2 + 2Ψ4(t)
2 + µ2

3σ1(t)e
ς3(t)+µ3x+µ4y

)
]/[

Ψ1(t)
2 +Ψ4(t)

2

µ2
3

+σ1(t)e
ς3(t)+µ3x+µ4y + (Ψ3(t) + xΨ1(t) + yΨ2(t))

2
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+(Ψ6(t) + xΨ4(t) + yΨ5(t))
2]− [2Ψ0[µ3σ1(t)e

ς3(t)+µ3x+µ4y

+2Ψ1(t)[Ψ3(t) + xΨ1(t) + yΨ2(t)] + 2Ψ4(t)[Ψ6(t) + xΨ4(t) + yΨ5(t)]]
2]

/[[
Ψ1(t)

2 +Ψ4(t)
2

µ2
3

+ σ1(t)e
ς3(t)+µ3x+µ4y + (Ψ3(t) + xΨ1(t) + yΨ2(t))

2

+(Ψ6(t) + xΨ4(t) + yΨ5(t))
2]2]. (2.5)
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Figure 4. Interaction solutions between lump wave and one solitary wave with ϕ(t) = µ4 = Ψ0 = 1,
Ψ1(t) = 2, Ψ2(t) = µ3 = µ2 = −1, ς3(t) = t, when y = −5 in (a) (d), y = 0 in (b) (e) and y = 5 in (c)
(f).

All parameters have been interpreted in Appendix B. Figure 4 displays the
fission process that one solitary wave splits into one solitary wave and one lump
wave conversely at y = −5; 0; 5. When y = −5, a lump rises from the solitary
wave can be seen in Fig. 4(a) and then separates in Fig. 4(b) at y = 0. When
y = 5, the lump and solitary wave spread ahead respectively in Fig. 4(c). When
ϕ(t) = µ3 = Ψ0 = 1, Ψ1(t) = 2, Ψ2(t) = µ4 = µ2 = −1, ς3(t) = t, the velocity of the
solitary wave is 1 in solution (2.5). So, the amplitude of solitary wave keeps invariant
before and after collisions, and then the asymptotic behavior of the solution (2.5)
is

lim
t→−∞

lim
x→−∞

u(x, y, t) = 0,

lim
t→+∞

lim
x→−∞

u(x, y, t) = 0.

When ϕ(t) = cos(2t) + 1, we can find that the soliton presents a periodic structure
in Fig. 5. Due to the influence of ϕ(t), the amplitude of solitary and lump wave
has become smaller.
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(a) (b) (c)

Figure 5. Interaction solutions between lump wave and one solitary wave with ϕ(t) = cos(2t) + 1,
µ4 = Ψ0 = 1, Ψ1(t) = 2, Ψ2(t) = µ3 = µ2 = −1, ς3(t) = t, when y = −5 in (a) (d), y = 0 in (b) (e) and
y = 5 in (c) (f).

2.3. Interaction solutions between lump wave and two solitary
waves

When σ1(t) ̸= 0 and σ2(t) ̸= 0, Eq. (2.3) represents the interaction solutions
between lump wave and two solitary waves. Substituting Eq. (2.3) into Eq. (2.2),
the interaction solutions between lump wave and two solitary waves can be presented
as follows

u =[2Ψ0[2Ψ1(t)
2 + µ2

5σ1(t)e
ς3(t)+µ5x+µ6y + µ2

5σ2(t)e
−ς3(t)−µ5x−µ6y

+ 2Ψ4(t)
2]]/[Ψ7(t) + σ1(t)e

ς3(t)+µ5x+µ6y + σ2(t)e
−ς3(t)−µ5x−µ6y

+ (Ψ3(t) + xΨ1(t) + yΨ2(t))
2 + (Ψ6(t) + xΨ4(t) + yΨ5(t))

2]

− [2Ψ0[µ5σ1(t)e
ς3(t)+µ5x+µ6y − µ5σ2(t)e

−ς3(t)−µ5x−µ6y

+ 2Ψ1(t) (Ψ3(t) + xΨ1(t) + yΨ2(t)) + 2Ψ4(t) (Ψ6(t) + xΨ4(t) + yΨ5(t))]
2]

/[[Ψ7(t) + σ1(t)e
ς3(t)+µ5x+µ6y + σ2(t)e

−ς3(t)−µ5x−µ6y

+ (Ψ3(t) + xΨ1(t) + yΨ2(t))
2 + (Ψ6(t) + xΨ4(t) + yΨ5(t))

2]2]. (2.6)

All parameters have been interpreted in Appendix C. The fusion phenomenon
between the lump wave and two solitary waves can be found in Fig. 6. It can be seen
that the lump wave splits from one solitary and merges into the other one, and that
the two solitary waves exchange the amplitudes through the energy transfer by the
lump wave at y = −5; 0; 5. When ϕ(t) = µ6 = Ψ0 = 1, Ψ1(t) = 2, Ψ2(t) = µ5 = −1,
ς3(t) = t, the velocities of two solitary waves are all constants, v1 = v2 = −2

3 in
solution (2.6). So, the amplitudes of two solitary wave keep invariant before and
after collisions, and then the asymptotic behavior of the solution (2.6) is

lim
t→−∞

lim
x→−∞

u(x, y, t) = 0,

lim
t→−∞

lim
x→+∞

u(x, y, t) = 0.

When ϕ(t) = cos(2t) + 1, we can see that two solitary waves present the periodic
structure in Fig. 7. The amplitude of solitary and lump wave has become smaller.
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Figure 6. Interaction solutions between lump wave and two solitary waves with ϕ(t) = µ6 = µ5 =
Ψ0 = 1, Ψ1(t) = 2, Ψ2(t) = −1, ς3(t) = t when y = −5 in (a) (d), y = 0 in (b) (e) and y = 5 in (c) (f).

(a) (b) (c)

Figure 7. Interaction solutions between lump wave and two solitary waves with ϕ(t) = cos(2t) + 1,
µ6 = µ5 = Ψ0 = 1, Ψ1(t) = 2, Ψ2(t) = −1, ς3(t) = t, when y = −5 in (a) (d), y = 0 in (b) (e) and
y = 5 in (c) (f).

3. Conclusion
In this paper, a modified ansätz with variable coefficients is presented for conducting
research on the solitary and lump waves interaction in variable-coefficient NLEE.
Compared to the previous work [3, 12, 22, 26, 27, 54, 55], Eq. (2.3) contains more
arbitrary functions and is more suitable for handling variable coefficients models.
Applying the modified ansätz with variable coefficients into the (2+1)-dimensional
variable-coefficient KP equation, lump wave and interaction solutions between lump
wave and solitary wave are obtained. All calculation results have been verified by
Mathematica.

By choosing appropriate values of the variable coefficients, Figures 1-3 displays
the influence of disturbed wave velocity ϕ(t) on the lump wave in Eq. (2.4). Figure
4 and Figure 5 show the fission process that one solitary wave splits into one solitary
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wave and one lump wave conversely in Eq. (2.5). Figure 6 and Figure 7 demonstrate
the fusion phenomenon between the lump wave and two solitary waves in Eq. (2.6).

In Appendix A, Eq. (3.9) can be replaced by the following equation

Ψ2(t) = [ϕ(t)Ψ1(t)Ψ4(t)Ψ5(t)Ψ7(t)±
√
3
(
Ψ1(t)

2 +Ψ4(t)
2
)

∗
√
δ(t)ϕ(t)Ψ4(t)2 (Ψ1(t)2 +Ψ4(t)2)Ψ7(t)]/[ϕ(t)Ψ4(t)

2Ψ7(t)], (3.1)

or

3δ(t)[Ψ1(t)
2 +Ψ4(t)

2]2 − ϕ(t)[Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)]
2Ψ7(t)

Ψ1(t)2 +Ψ4(t)2
= 0.

In this way, ϕ(t) and δ(t) become free parameters. Then, the corresponding plots
can be given by choosing different values of δ(t), such as

ϕ(t) = δ(t) = µ1 = Ψ0 = Ψ5(t) = 1,Ψ1(t) = 2,Ψ2(t) = Ψ4(t) = −1. (3.2)

Then, Eq. (2.4) is reduced to

u =
20(

2t
5 + 2x− y

)2
+
(
− 4t

5 − x+ y
)2

+ 375

−
2[4

(
2t
5 + 2x− y

)
− 2

(
− 4t

5 − x+ y
)
]2

[
(
2t
5 + 2x− y

)2
+

(
− 4t

5 − x+ y
)2

+ 375]2
. (3.3)

The corresponding figure of Eq. (3.3) is shown in Fig. 8. Let ϕ(t) = 1−12 sin t, 1+
4 sin t and 1 − 28 sin t in Eq. (3.2), respectively, the corresponding figure can be
seen in Fig. 9. Obviously, the change of A in ϕ(t) = 1 + A sin t did not change the
amplitude of the lump wave. Appendix B and Appendix C can be treated in the
same way.

(a) (b)
(c)

Figure 8. lump wave (3.3) when x = 0 in (a), y = 0 in (b) and t = 0 in (c).

As a result, we have derived lump solutions for the considered KP Equation with
variable coefficients based on the symbolic computation [4,6,13,14,16,17,23,28–35,
38–41]. The dynamical structure of the acquired lump solution has been studied via
presenting variety of plots with some specific choices of the included free parameters
to show the localizations of the solutions. Lump is generally localized for space and
time variables, and has a bigger amplitude compared to its surrounding waves. It is
worth stating that the modified ansätz with variable coefficients is a promising and
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(a) (b) (c)

Figure 9. lump wave (2.4) with y = 0 when ϕ(t) = 1 − 12 sin t in (a),ϕ(t) = 1 + 4 sin t in (b) and
ϕ(t) = 1 − 28 sin t in (c).

robust mathematical tool to examine nonlinear identical models. In the future, we
will discuss the application of this method in (3+1) nonlinear integrable equations
with variable coefficients.
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Appendix A

Ψ′
4(t) =

[−Ψ1(t)Ψ2(t)−Ψ4(t)Ψ5(t)]Ψ
′
1(t) + [Ψ1(t)

2 +Ψ4(t)
2]Ψ′

2(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
, (3.4)

Ψ′
5(t) =

[−Ψ2(t)
2 −Ψ5(t)

2]Ψ′
1(t) + [Ψ1(t)Ψ2(t) + Ψ4(t)Ψ5(t)]Ψ

′
2(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
, (3.5)

Ψ′
6(t) = [ϕ(t)[Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)][Ψ4(t)Ψ2(t)

2 − 2Ψ1(t)Ψ5(t)Ψ2(t)

−Ψ4(t)Ψ5(t)
2]− [Ψ1(t)

2 +Ψ4(t)
2][(−Ψ2(t)Ψ3(t)−Ψ5(t)Ψ6(t))Ψ

′
1(t)

+ [Ψ1(t)Ψ3(t) + Ψ4(t)Ψ6(t)]Ψ
′
2(t)]]/[

(
Ψ1(t)

2 +Ψ4(t)
2
)
[Ψ1(t)Ψ5(t)

−Ψ2(t)Ψ4(t)]], (3.6)
Ψ′

3(t) = [ϕ(t)[Ψ1(t)Ψ5(t)−Ψ2(t)Ψ4(t)][2Ψ2(t)Ψ4(t)Ψ5(t)

+ Ψ1(t)
(
Ψ2(t)

2 −Ψ5(t)
2
)
] +

(
Ψ1(t)

2 +Ψ4(t)
2
)
[[Ψ3(t)Ψ5(t)

−Ψ2(t)Ψ6(t)]Ψ
′
1(t) + (Ψ1(t)Ψ6(t)−Ψ3(t)Ψ4(t))Ψ

′
2(t)]]

/[
(
Ψ1(t)

2 +Ψ4(t)
2
)
(Ψ1(t)Ψ5(t)−Ψ2(t)Ψ4(t))], (3.7)

Ψ7(t) = µ1 exp

(
2

∫
Ψ4(t)Ψ

′
2(t)−Ψ5(t)Ψ

′
1(t)

Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t)
dt

)
, (3.8)
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δ(t) =
ϕ(t) (Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t))

2Ψ7(t)

3 (Ψ1(t)2 +Ψ4(t)2) 3
, (3.9)

with Ψ1(t)
2 +Ψ4(t)

2 ̸= 0, Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t) ̸= 0. µ1 is integral constant.

Appendix B

Ψ4(t) = µ2 exp

(∫ t

1

µ4Ψ
′
1(t)− µ3Ψ

′
2(t)

µ4Ψ1(t)− µ3Ψ2(t)
dt

)
, ς1(t) = µ3, ς2(t) = µ4, (3.10)

Ψ5(t) =
µ4

(
Ψ1(t)

2 +Ψ4(t)
2
)
− µ3Ψ1(t)Ψ2(t)

µ3Ψ4(t)
,Ψ7(t) =

Ψ1(t)
2 +Ψ4(t)

2

µ2
3

, (3.11)

Ψ′
6(t) = [µ3

3[Ψ4(t)[Ψ2(t)[Ψ1(t)Ψ6(t)−Ψ3(t)Ψ4(t)]Ψ
′
1(t) + Ψ4(t)[Ψ1(t)Ψ3(t)

+ Ψ4(t)Ψ6(t)]Ψ
′
2(t)]− ϕ(t)Ψ2(t)

3
(
Ψ1(t)

2 +Ψ4(t)
2
)
]

+ µ4µ
2
3

(
Ψ1(t)

2 +Ψ4(t)
2
) (

ϕ(t)Ψ1(t)Ψ2(t)
2 −Ψ4(t)Ψ6(t)Ψ

′
1(t)

)
+ µ2

4µ3ϕ(t)Ψ2(t)
(
Ψ1(t)

2 +Ψ4(t)
2
)
2 − µ3

4ϕ(t)Ψ1(t)
(
Ψ1(t)

2 +Ψ4(t)
2
)
2]

/[µ2
3Ψ4(t)

(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ3Ψ2(t)− µ4Ψ1(t))], (3.12)

Ψ′
3(t) = [µ3

3[Ψ4(t)
2[Ψ2(t) (Ψ1(t)Ψ3(t) + Ψ4(t)Ψ6(t))Ψ

′
1(t) + Ψ4(t)[Ψ3(t)Ψ4(t)

−Ψ1(t)Ψ6(t)]Ψ
′
2(t)]− ϕ(t)Ψ1(t)Ψ2(t)

3[Ψ1(t)
2 +Ψ4(t)

2]]

+ µ4µ
2
3

(
Ψ1(t)

2 +Ψ4(t)
2
)
[ϕ(t)Ψ2(t)

2
(
3Ψ1(t)

2 + 2Ψ4(t)
2
)

−Ψ3(t)Ψ4(t)
2Ψ′

1(t)]− 3µ2
4µ3ϕ(t)Ψ1(t)Ψ2(t)

(
Ψ1(t)

2 +Ψ4(t)
2
)
2

+ µ3
4ϕ(t)Ψ1(t)

2
(
Ψ1(t)

2 +Ψ4(t)
2
)
2]

/[µ2
3Ψ4(t)

2
(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ3Ψ2(t)− µ4Ψ1(t))], (3.13)

σ′
1(t) = [σ1(t)[3µ3µ4

(
Ψ1(t)

2 +Ψ4(t)
2
)
[µ3ϕ(t)Ψ1(t)Ψ2(t)

2 +Ψ4(t)
2[Ψ1(t)ς

′
3(t)

− 2Ψ′
1(t)]] + µ2

3[Ψ2(t)[
(
−Ψ1(t)

2 −Ψ4(t)
2
) (

µ3ϕ(t)Ψ2(t)
2 + 3Ψ4(t)

2ς ′3(t)
)

+ 6Ψ1(t)Ψ4(t)
2Ψ′

1(t)] + 6Ψ4(t)
4Ψ′

2(t)] + µ3
4ϕ(t)Ψ1(t)

(
Ψ1(t)

2 − 3Ψ4(t)
2
)

∗
(
Ψ1(t)

2 +Ψ4(t)
2
)
+ 3µ3µ

2
4ϕ(t)Ψ2(t)

(
Ψ4(t)

4 −Ψ1(t)
4
)
]]

/[3µ3Ψ4(t)
2
(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ3Ψ2(t)− µ4Ψ1(t))], (3.14)

δ(t) =
ϕ(t) (Ψ2(t)Ψ4(t)−Ψ1(t)Ψ5(t))

2Ψ7(t)

3 (Ψ1(t)2 +Ψ4(t)2) 3
, (3.15)

with Ψ1(t)
2 + Ψ4(t)

2 ̸= 0, µ4Ψ1(t) − µ3Ψ2(t) ̸= 0, µ3Ψ4(t) ̸= 0. µi(i = 2, 3, 4) is
integral constant.

Appendix C

Ψ′
4(t) =

Ψ4(t) (µ6Ψ
′
1(t)− µ5Ψ

′
2(t))

µ6Ψ1(t)− µ5Ψ2(t)
, ς1(t) = µ5, ς2(t) = µ6, (3.16)

Ψ5(t) =
µ6

(
Ψ1(t)

2 +Ψ4(t)
2
)
− µ5Ψ1(t)Ψ2(t)

µ5Ψ4(t)
, (3.17)
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Ψ7(t) =

µ4
5σ1(t)σ2(t)

Ψ1(t)2+Ψ4(t)2
+Ψ1(t)

2 +Ψ4(t)
2

µ2
5

, (3.18)

Ψ′
6(t) = [µ3

5[Ψ4(t)[Ψ2(t) (Ψ1(t)Ψ6(t)−Ψ3(t)Ψ4(t))Ψ
′
1(t) + Ψ4(t)[Ψ1(t)Ψ3(t)

+ Ψ4(t)Ψ6(t)]Ψ
′
2(t)]− ϕ(t)Ψ2(t)

3
(
Ψ1(t)

2 +Ψ4(t)
2
)
]

+ µ6µ
2
5

(
Ψ1(t)

2 +Ψ4(t)
2
) (

ϕ(t)Ψ1(t)Ψ2(t)
2 −Ψ4(t)Ψ6(t)Ψ

′
1(t)

)
+ µ2

6µ5ϕ(t)Ψ2(t)
(
Ψ1(t)

2 +Ψ4(t)
2
)
2 − µ3

6ϕ(t)Ψ1(t)
(
Ψ1(t)

2 +Ψ4(t)
2
)
2]

/[µ2
5Ψ4(t)

(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ5Ψ2(t)− µ6Ψ1(t))], (3.19)

Ψ′
3(t) = [µ3

5[Ψ4(t)
2[Ψ2(t) (Ψ1(t)Ψ3(t) + Ψ4(t)Ψ6(t))Ψ

′
1(t) + Ψ4(t)[Ψ3(t)Ψ4(t)

−Ψ1(t)Ψ6(t)]Ψ
′
2(t)]− ϕ(t)Ψ1(t)Ψ2(t)

3
(
Ψ1(t)

2 +Ψ4(t)
2
)
]

+ µ6µ
2
5

(
Ψ1(t)

2 +Ψ4(t)
2
)
[ϕ(t)Ψ2(t)

2
(
3Ψ1(t)

2 + 2Ψ4(t)
2
)

−Ψ3(t)Ψ4(t)
2Ψ′

1(t)]− 3µ2
6µ5ϕ(t)Ψ1(t)Ψ2(t)

(
Ψ1(t)

2 +Ψ4(t)
2
)
2

+ µ3
6ϕ(t)Ψ1(t)

2
(
Ψ1(t)

2 +Ψ4(t)
2
)
2]

/[µ2
5Ψ4(t)

2
(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ5Ψ2(t)− µ6Ψ1(t))], (3.20)

σ′
1(t) = [σ1(t)[3µ5µ6

(
Ψ1(t)

2 +Ψ4(t)
2
)
[µ5ϕ(t)Ψ1(t)Ψ2(t)

2

+Ψ4(t)
2 (Ψ1(t)ς

′
3(t)− 2Ψ′

1(t))] + µ2
5[Ψ2(t)[[−Ψ1(t)

2 −Ψ4(t)
2]

∗
(
µ5ϕ(t)Ψ2(t)

2 + 3Ψ4(t)
2ς ′3(t)

)
+ 6Ψ1(t)Ψ4(t)

2Ψ′
1(t)]

+ 6Ψ4(t)
4Ψ′

2(t)] + µ3
6ϕ(t)Ψ1(t)

(
Ψ1(t)

2 − 3Ψ4(t)
2
) (

Ψ1(t)
2 +Ψ4(t)

2
)

+ 3µ5µ
2
6ϕ(t)Ψ2(t)

(
Ψ4(t)

4 −Ψ1(t)
4
)
]]

/[3µ5Ψ4(t)
2
(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ5Ψ2(t)− µ6Ψ1(t))], (3.21)

σ′
2(t) = [σ2(t)[−3µ5µ6

(
Ψ1(t)

2 +Ψ4(t)
2
)
[µ5ϕ(t)Ψ1(t)Ψ2(t)

2

+Ψ4(t)
2 (Ψ1(t)ς

′
3(t) + 2Ψ′

1(t))] + µ2
5[Ψ2(t)[

(
Ψ1(t)

2 +Ψ4(t)
2
)

∗
(
µ5ϕ(t)Ψ2(t)

2 + 3Ψ4(t)
2ς ′3(t)

)
+ 6Ψ1(t)Ψ4(t)

2Ψ′
1(t)]

+ 6Ψ4(t)
4Ψ′

2(t)] + µ3
6(−ϕ(t))Ψ1(t)

(
Ψ1(t)

2 − 3Ψ4(t)
2
)

∗
(
Ψ1(t)

2 +Ψ4(t)
2
)
+ 3µ5µ

2
6ϕ(t)Ψ2(t)

(
Ψ1(t)

4 −Ψ4(t)
4
)
]]

/[3µ5Ψ4(t)
2
(
Ψ1(t)

2 +Ψ4(t)
2
)
(µ5Ψ2(t)− µ6Ψ1(t))], (3.22)

δ(t) =
ϕ(t) (µ6Ψ1(t)− µ5Ψ2(t))

2

3µ4
5Ψ4(t)2

,

with Ψ1(t)
2 + Ψ4(t)

2 ̸= 0, µ5Ψ2(t) − µ6Ψ1(t) ̸= 0, µ5Ψ4(t) ̸= 0. µi(i = 5, 6) is
integral constant.
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