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SOLVING CONVOLUTION SINGULAR
INTEGRAL EQUATIONS WITH REFLECTION

AND TRANSLATION SHIFTS UTILIZING
RIEMANN-HILBERT APPROACH
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Abstract In this paper, method of solution for some kinds of convolution
singular integral equations with reflection will be discussed in class {0}. By
means of the theory of Fourier analysis and the theory of boundary value prob-
lems of analytic functions, such equations can be transformed into Riemann
boundary value problems (i.e., Riemann-Hilbert problems) with nodes and
reflection, or a system of linear algebraic equations. In spite of the classical
method for solution, we are to give a new method, by which analytic solutions
and conditions of Noether solvability are obtained respectively. At the end
of this paper, we propose two kinds of convolution singular integral equations
with reflections and a finite set of translation shifts.
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1. Introduction
Riemann-Hilbert problems and singular integral equations are the powerful tools
widely used in scientific fields, such as mathematics, physics, biology and chem-
istry. Singular integral equations and integral equations of convolution type have
systematically been researched, among which a series of valuable achievements were
obtained, see [1,2,6–8,16–19,43] for references and therein. Singular integral equa-
tions with a shift have been studied for a long time, and many mathematicians
devote themselves to research singular integral equations with Carleman shift by
Fredholm operator theory [3–5, 10–12, 20, 21, 39, 40]. Recently, Li and Ren [22–33]
dealt with the theory of Noether solvability, the general solutions of some kinds of
singular integral equations with convolution kernels and constant coefficients in class
{0}. In fact, integral equations of convolution type and singular integral equations,
mathematically, belong to an interesting subject in the theory of integral equations
and Riemann-Hilbert problems.

It is well known that equations of convolution type are closely related to singular
integral equations and Riemann-Hilbert problems. When there occurs reflection in
equations of convolution type, in the related Riemann-Hilbert problems and singular
integral equations, the reflection will also occur. The main aim of this paper is to
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solve the following several kinds of singular integral equations of convolution type
with reflection.

(1) Singular integral equations with reflection and one pair of kernels

A1f(t) +A2f(−t) +
B1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ +

B2

πi

∫ +∞

−∞

f(−τ)
τ − t

dτ

+
C1√
2π

∫ +∞

−∞
k1(t− τ)f(τ)dτ +

C2√
2π

∫ +∞

−∞
k2(t− τ)f(−τ)dτ

= g(t), −∞ < t < +∞.

(1.1)

(2) Singular integral equations of dual type with reflection

A1f(t) +B1f(−t) + C1

πi

∫ +∞
−∞

f(τ)
τ−t dτ +

D1

πi

∫ +∞
−∞

f(−τ)
τ−t dτ

+ E1√
2π

∫ +∞
−∞ k1(t− τ)f(τ)dτ + F1√

2π

∫ +∞
−∞ h1(t− τ)f(−τ)dτ = g(t), 0 < t < +∞;

A2f(t) +B2f(−t) + C2

πi

∫ +∞
−∞

f(τ)
τ−t dτ +

D2

πi

∫ +∞
−∞

f(−τ)
τ−t dτ

+ E2√
2π

∫ +∞
−∞ k2(t− τ)f(τ)dτ + F2√

2π

∫ +∞
−∞ h2(t− τ)f(−τ)dτ = g(t), −∞ < t < 0.

(1.2)
(3) Singular integral equations of Wiener-Hopf type with reflection

Af(t) +
C1

πi

∫ +∞

0

f(τ)

τ − t
dτ +

C2

πi

∫ 0

−∞

f(−τ)
τ − t

dτ +
D1√
2π

∫ +∞

0

k(t− τ)f(τ)dτ

+
D2√
2π

∫ 0

−∞
h(t− τ)f(−τ)dτ = g(t), 0 < t < +∞.

(1.3)

(4) Singular integral equations with reflection and two pairs of kernels

A1f(t) +A2f(−t) +
B1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ +

B2

πi

∫ +∞

−∞

f(−τ)
τ − t

dτ

+
C1√
2π

∫ +∞

0

k1(t− τ)f(τ)dτ +
C2√
2π

∫ +∞

0

h1(t− τ)f(−τ)dτ

+
D1√
2π

∫ 0

−∞
k2(t− τ)f(τ)dτ +

D2√
2π

∫ 0

−∞
h2(t− τ)f(−τ)dτ

=g(t), −∞ < t < +∞.

(1.4)

In Eqs. (1.1)-(1.4), A,Aj , Bj , Cj , Dj , Ej , Fj(j = 1, 2) are real constants, the
given functions k(t), h(t), g(t), kj(t), hj(t)(j = 1, 2), and f(t) ∈ {0} is an unknown
function. In such equations, the reflection occurs, that is, besides the unknown f(t),
f(−t) is also appeared. These four kinds of equations have been widely applied in
physics, engineering and technology, engineering mechanics, fracture mechanics and
other fields. They can not be solved directly by the classical methods of Fredholm
integral equations.

In this paper, we shall apply the theory of Fourier analysis and the principle of
analytic continuation to solve Eqs. (1.1)-(1.4). Here, our approach of solving equa-
tions (1.1)-(1.4) is novel and effective, different from the ones in classical cases, that
is to say, we firstly transform Eqs. (1.1)-(1.4) into a system of function equations
by Fourier integral transform, and then we again transform the obtained equa-
tions into Riemann-Hilbert problems with reflection and nodes. By the method of
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boundary value of analytic functions and the theory of complex analysis, we can
solve Eqs. (1.1)-(1.4) with analytic solutions and conditions of solvability in class
{0}. Moreover, it is mentioned that the methods of solution for two of them are still
effective when translation shifts, i.e., f(t + aj) and f(−t − bj), occur in addition.
Thus, the results in this paper improve ones of [8, 16,20,39].

The variable of functions that appear in this paper is taken on the real axis X
and their function values are complex.

2. Definitions and lemmas
In this section, some necessary background is provided. Now we present some
definitions and lemmas, and mainly introduce the concepts of classes {0} and {{0}}.

Let H∗ be a set of all functions F (x) which satisfies γ-Hölder condition in each
compact subset of R (including a neighbourhood of ∞), where 0 < γ ≤ 1.

Definition 2.1. If F (x) ∈ H∗ and F (x) ∈ L2(R), we say that F (x) ∈ {{0}}.

Obviously {{0}} ∈ L2(R) ∩H, where H is the class of Hölder continuous func-
tions (for the notation H, see [20, 39]. It is easy to verify that the function class
{{0}} is closedness under pointwise multiplication.

Definition 2.2. The Fourier transform F of f ∈ L1(R) will be denoted by F (x):

F (x) = F [f(t)] :=
1√
2π

∫ +∞

−∞
f(t)eixtdt (2.1)

and the inverse transform operator F−1 of F (x) is defined by f(t):

f(t) = F−1[F (x)] :=
1√
2π

∫ +∞

−∞
F (x)e−ixtdx. (2.2)

From [21,28,39], we know that F can be extended to L2(R) and F is an isometric
operator in L2. Moreover, we also have

F−1f(t) = Ff(−t) = F (−x).

Definition 2.3. If F (x) ∈ {{0}}, then we call that f(t) ∈ {0}, where f(t) =
F−1[F (x)].

From Definition 2.3, we know that {0} ⊂ L2(R) and F : {0} −→ {{0}}.

Definition 2.4. The operators N, S, and T are defined as follows

(Nf)(t) = f(−t), (Sf)(t) = f(t)sgnt, (Tf)(t) = 1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ, t ∈ (−∞,+∞).

(2.3)

It is clear that
SN = −NS, T2 = N2 = S2 = I, (2.4)

where I is a unit operator. We can verify that T is an isometric operator in L2(R)
and T: {{0}} → {{0}}.
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Definition 2.5. The convolution of f(t) and g(t) is given by

(f ∗ g)(t) = 1√
2π

∫ +∞

−∞
f(t− s)g(s)ds. (2.5)

According to the convolution theorem [8], we have

F(f ∗ g(t)) = Ff(t) · Fg(t) = F (x)G(x), (2.6)

where F,G are the Fourier transforms of f, g respectively. We know that f, g ∈ {0}
implies f ∗ g ∈ {0}.

Lemma 2.1 plays an important role in this paper.

Lemma 2.1. If f(t) ∈ {0}, then

F [
1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ ] = −F (s)sgns, i.e., F(Tf) = −SF. (2.7)

Proof. Owing to

F(Tf) =
1√
2π

∫ +∞

−∞
[
1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ ]eistdt

=
1√
2π

∫ +∞

−∞
f(τ)[

1

πi

∫ +∞

−∞

eist

τ − t
dt]dτ,

(2.8)

using the extended residue theorem [20,39], we get∫ +∞

−∞

eist

τ − t
dt = −πieisτsgns. (2.9)

Putting (2.9) into (2.8), we have

F(Tf) =
1√
2π

∫ +∞

−∞
f(τ)eisτ (−sgns)dτ = −sgnsF (s). (2.10)

Evidently, we have
F [T (f(−t))] = −F (−s)sgns. (2.11)

Lemma 2.2. If f ∈ {0} and Ff(0) = 0, then Tf ∈ {0}.

Proof. Since f ∈ {0}, we have Ff ∈ {{0}}. From 2.1 it follows that (2.10) holds.
Note that Ff(∞) = Ff(0) = 0, we can get F(Tf) ∈ {{0}}. Therefore, Tf ∈ {0}.
□

In order to transform Eqs. (1.1)-(1.4) into Riemann-Hilbert problems, we investi-
gate the relation between Fourier integral and Cauchy type integral. Let f(t) ∈ {0},
we define Cauchy type integral as follows

F (z) =
1

2πi

∫ +∞

−∞

f(t)

t− z
dt, Imz ̸= 0. (2.12)

Then, F (z) is the sectionally holomorphic function on {Imz > 0} ∪ {Imz < 0}.
From [8,19,39], we can obtain

1

2πi

∫ +∞

0

f(t)

t− s
dt =

1√
2π

∫ +∞

−∞
f+(t)e

istdt = F+(s), (2.13)
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and
1

2πi

∫ 0

−∞

f(t)

t− s
dt =

1√
2π

∫ +∞

−∞
f−(t)e

istdt = F−(s), (2.14)

where F±(s) are the Fourier transforms of f±(t) respectively. In fact, F±(s) also
are the boundary values of F (z) in the upper half planes C+ and the lower half
planes C−, respectively. In (2.13) and (2.14), we have put

f±(t) =
1

2
f(t)(sgnt± 1). (2.15)

In Sections 3-5, we shall study theory of Noether solvability and method of
solution for some kinds of singular integral equations of convolution type with re-
flection. Indeed, the problem of finding their solutions is very important in practical
applications.

3. Singular integral equations with one pair of ker-
nels

Let us solve Eq. (1.1). To do this, we can represent Eq. (1.1) in the following form

A1f(t) +A2f(−t) +B1Tf(t) +B2Tf(−t) + C1k1 ∗ f(t) + C2k2 ∗ f(−t)
=g(t), −∞ < t < +∞,

(3.1)

where Aj , Bj , Cj (j = 1, 2) are constants with Bj not all equal to zero simultane-
ously. k1(t), k2(t), g(t) are the given functions, and kj(t), g(t) ∈ {0} (j = 1, 2). The
unknown function f(t) is required to be in {0} too.

We apply Fourier transforms to both sides of (3.1), then (3.1) is reduced to

[A1 −B1sgns+ C1K1(s)]F (s) + [A2 −B2sgns+ C2K2(s)]F (−s) = G(s), (3.2)

where

K1(s) = Fk1(t), K2(s) = Fk2(t), G(s) = Fg(t), F (s) = Ff(t).

From k1(t), k2(t), g(t), T f(t) ∈ {0}, we have K1(s),K2(s), G(s), F (s) ∈ {{0}},
and we know that these functions are continuous. Now we take the limits to (3.2)
as s→ 0 and note that lims→±0 sgns = ±1, therefore, we have G(0) = 0. From our
previous discussions, we can get the necessary condition of the existence of solution
for Eq. (3.1) is

(Fg)(0) = 0, i.e., G(0) = 0.

Restricting ourselves to the normal type, i.e.,

Aj −Bjsgns+ CjKj(s) ̸= 0, s ∈ R, j = 1, 2.

Replacing s by −s in (3.2), we obtain

[A2 +B2sgns+C2K2(−s)]F (s)+ [A1 +B1sgns+C1K1(s)]F (−s) = G(−s). (3.3)

Denote
∆j(±s) = Aj ∓Bjsgns+ CjKj(±s), ∀ j = 1, 2.
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Then we may write (3.2),(3.3) as the following matrix equation:

M(s)X(s) = H(s), (3.4)

where

M(s) =

 ∆1(s) ∆2(s)

∆2(−s) ∆1(−s)

 , X(s) = (F (s), F (−s))T , H(s) = (G(s), G(−s))T .

Thus, under condition Fg(0) = 0, Eq. (3.1) has a solution in {0} if and only if
Eq. (3.4) has a solution in {{0}}. Using the solvability theory of a system of linear
algebraic equations, we would solve Eq. (3.4) with the unknown functions F (s) and
F (−s). Denote

N(s) =

 ∆1(s) ∆2(s) G(s)

∆2(−s) ∆1(−s) G(−s)

 , ∆(s) = detM(s).

Thus we have

∆(s) =A2
1 −A2

2 + δ(B2
2 −B2

1) +A1C1(K1(s) +K1(−s))−A2C2(K2(s)

+K2(−s)) +B1C1sgns(K1(s)−K1(−s))−B2C2sgns(K2(s)−K2(−s))
+ C2

1K1(s)K1(−s)− C2
2K2(s)K2(−s).

(3.5)

Since Kj(±s) ∈ {{0}}, we have Kj(±s) → 0 and ∆(s) → A2
1 − A2

2 + δ(B2
2 − B2

1)
when s→ ∞.

For convenience, we also assume that A2
1 −A2

2 + δ(B2
2 −B2

1) ̸= 0, where

δ =

{
0, s = 0,

1, s ̸= 0.

Then there exists an X > 0 such that ∆(s) ̸= 0 when |s| > X. Therefore,
Eq. (3.3) has only solution given by the formula:

F (s) =
1

∆(s)
[G(s)∆1(−s)−G(−s)∆2(s)], (3.6)

where ∆(s) ̸= 0 for any |s| > X. When |s| ≤ X, we consider the following three
cases.

1) If ∆(s) ̸= 0, then the system of equation (3.4) has only solution M−1(s)H(s).
2) If there exist s1, s2, · · · , sn ∈ [−X,X] such that ∆(si) = 0 and ∂M(si) =

∂N(si) (1 ≤ i ≤ n), then (3.4) has infinite solutions (F (s), F (−s)), where ∂M is
rank of the matrix M .

3) If ∆(s′i) = 0 and ∂M(s′i) ̸= ∂N(s′i) (1 ≤ i ≤ n1), s
′
i ∈ [−X,X], then the

conditions of solvability are

G(±s′i) = 0, ∀ i ∈ {1, 2, · · · , n1}. (3.7)
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These conditions can be written as follows
1√
2π

∫ +∞

−∞
g(t) cos(s′it)dt = 0;

1√
2π

∫ +∞

−∞
g(t) sin(s′it)dt = 0, 1 ≤ i ≤ n1.

(3.8)
For homogeneous case, i.e., g(t) ≡ 0, Eq. (3.1) has linearity independent solu-

tions: eis1t, eis2t, · · · , eisnt.
Now we can state the main results with respect to solutions of Eq. (3.1) in the

following form.
Theorem 3.1. For Eq. (3.1), under condition G(0) = 0.

(1) If ∆(s) ̸= 0 (−∞ < s < +∞), Eq. (3.1) has a unique solution in class {0},
and its solution is given by f(t) = F−1F (s), where F (s) is given by (3.6).

(2) If ∆(s) = 0 and ∂M(s) = ∂N(s) for s = s1, s2, · · · , sn, Eq. (3.1) has infinite
solutions.

(3) If ∆(s) = 0 and ∂M(s) ̸= ∂N(s) for s = s′1, s
′
2, · · · , s′m, the conditions of

solvability (3.8) must be augmented, and Eq. (3.1) has solutions given by the formula

f(t) = F−1F (s) + Σm
j=1cje

is′jt, (3.9)

where cj (1 ≤ i ≤ m) are arbitrary constants.
Remak 3.1. Since 1

∆(s) is bounded on the whole real axis X, it follows from (3.6)
that F (s) ∈ H∗ ∩ L2(−∞,+∞) (i.e., F (s) ∈ {{0}}), hence f(t) ∈ {0}.

At the end of this section, we give an example to illustrate the application of
the solving method. In Eq. (3.1), we assume that

A1 = 1, A2 = 0, B1 = B2 = 1, C1 = 1, C2 = 0, k1(t) = g(t) =

√
π

2
exp(−tsgnt).

(3.10)
By taking Fourier transforms to k1(t), g(t), we get

K1(s) = G(s) =
1√
2π

∫ +∞

−∞

√
π

2
exp(−tsgnt)eistdt = 1

1 + s2
. (3.11)

Obviously, when k1(t), g(t) ∈ {0}, then K1(s), G(s) ∈ {{0}}. Via a simple calcula-
tion, we get

∆(s) = (1 +
1

1 + s2
)2, ∆1(−s) = 1− sgns+

1

1 + s2
, ∆2(s) = −sgns. (3.12)

Thus, from (3.6) we have

F (s) =
1

∆(s)
[G(s)∆1(−s)−G(−s)∆2(s)] =

1

2 + s2
. (3.13)

Taking the inverse Fourier transform to F (s), we obtain

f(t) = F−1F (s) =
1√
2π

∫ +∞

−∞
F (s)e−istds =

1

2

√
π exp(−

√
2tsgnt), (3.14)

therefore, we have

f(t) =

{
1
2

√
π exp(−

√
2t), t ≥ 0,

1
2

√
π exp(

√
2t), t < 0.

(3.15)

It is clear that (3.15) is the solution of Eq. (3.1).
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4. Singular integral equations of dual type
In this section, we study the solvability of dual singular integral equations with
reflection, and we simplify Eq. (1.2) to the following form:

A1f(t) +B1f(−t) + C1Tf(t) +D1Tf(−t)
+E1k1 ∗ f(t) + F1h1 ∗ f(−t) = g(t), 0 < t < +∞,

A2f(t) +B2f(−t) + C2Tf(t) +D2Tf(−t)
+E2k2 ∗ f(t) + F2h2 ∗ f(−t) = g(t), −∞ < t < 0,

(4.1)

where Aj , Bj , Cj , Dj , Ej , Fj (j = 1, 2) are constants and all the functions appeared
in (4.1) belong to {0}.

In the first equation of (4.1), by extending t to −∞ < t < +∞, we get an
equation

A1f(t) +B1f(−t) + C1Tf(t) +D1Tf(−t) + E1k1 ∗ f(t) + F1h1 ∗ f(−t)
=g(t) + ψ−(t), −∞ < t < +∞,

(4.2)

where ψ−(t) is an unknown function in class {0} with ψ−(t) = 0 when 0 < t < +∞.
Similarly, in the second one of (4.1), by extending t to −∞ < t < +∞, we have

A2f(t) +B2f(−t) + C2Tf(t) +D2Tf(−t) + E2k2 ∗ f(t) + F2h2 ∗ f(−t)
=g(t) + ψ+(t), −∞ < t < +∞,

(4.3)

where ψ+(t) is an unknown function in {0} with ψ+(t) = 0 when −∞ < t < 0.
Now we take Fourier transforms to both (4.2) and (4.3), by the method of

complex analysis and the theory of boundary value problems of analytic functions,
we get the following matrix equations:

M(s)X(s) = Ψ̃(s) + G̃(s), (4.4)

where

M(s) =

A1 − C1sgns+ E1K1(s) B1 −D1sgns+ F1H1(s)

A2 − C2sgns+ E2K2(s) B2 −D2sgns+ F2H2(s)

 ,
and

X(s) = (F (s), F (−s))T , G̃(s) = (G(s), G(s))T , Ψ̃(s) = (Ψ+(s),Ψ−(s))T ,

Ψ±(s) = Fψ±(t).

In order that F (s) is continuous at s = 0, it is necessary that Ψ±(s) are continuous
at s = 0 and

Ψ+(0) +G(0) = 0, Ψ−(0) +G(0) = 0.

And it is well known that Ψ±(s) are the one-sided Fourier transforms of ψ(t), that
is,

Ψ+(s) =
1√
2π

∫ +∞

0

ψ(t)eistdt, Ψ−(s) = − 1√
2π

∫ 0

−∞
ψ(t)eistdt.
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It is evident that Ψ(s) = Ψ+(s) − Ψ−(s). In fact, by [28, 29, 31] and the extended
residue theorem, we know that Ψ±(s) also are the boundary values of the Cauchy
type integral:

Ψ(z) =
1

2πi

∫ +∞

−∞

Ψ(s)

s− z
ds, z ∈ C+ ∪ C−. (4.5)

To solve (4.4), we replace s by −s in it, then we have

M(−s)X(−s) = Ψ̃(−s) + G̃(−s). (4.6)

Thus by eliminating F (±s) in (4.4) and (4.6), it gives rise to the following Riemann-
Hilbert problem with reflection and node:

ϑ1(s)∆(−s)Ψ+(s) + ϱ1(s)∆(s)Ψ+(−s)− ϑ2(s)∆(−s)Ψ−(s)− ϱ2(s)∆(s)Ψ−(−s)
=[ϑ1(s)− ϑ2(s)]∆(−s)G(s)− [ϱ1(s)− ϱ2(s)]∆(−s)G(−s),

(4.7)

where ∆(s) = detM(s), that is, ∆(s) is the coefficient determinant of (4.4), and

ϑj(s) = Aj − Cjsgns+ EjKj(s), ϱj(s) = Bj +Djsgns+ FjHj(−s), j = 1, 2.

Since Ψ(s) ∈ {{0}}, we get Ψ(∞) = 0. By using Sokhotski-Plemelj formula
[20,39] to Ψ(z) in (4.5), we have

Ψ±(s) = ±1

2
Ψ(s) +

1

2πi

∫ +∞

−∞

Ψ(t)

t− s
dt. (4.8)

Set
α(s) = [ϑ1(s) + ϑ2(s)]∆(−s), β(s) = [ϱ1(−s) + ϱ2(−s)]∆(s),

ξ(s) = [ϑ1(s)− ϑ2(s)]∆(−s), ζ(s) = [ϱ1(−s)− ϱ2(−s)]∆(s),

P (s) = ξ(s)G(s)− ζ(s)G(−s).

From (4.8), we know that (4.7) may be also transformed into a singular integral
equation with reflection:

1

2
α(s)Ψ(s)+

1

2
β(s)Ψ(−s)+ξ(s)· 1

2πi

∫ +∞

−∞

Ψ(t)

t− s
dt+ζ(s)· 1

2πi

∫ +∞

−∞

Ψ(−t)
t− s

dt = P (s).

(4.9)
We again replace s by −s in (4.9), and let Y (s) = (Ψ(s),Ψ(−s))T , thus we can

obtain a system of singular integral equations of two-dimension in class {{0}}:

A(s)Y (s) +B(s) · 1

πi

∫ +∞

−∞

Y (t)

t− s
dt = E(s), (4.10)

where

A(s) =

 1
2α(s)

1
2β(s)

1
2β(−s)

1
2α(−s)

 , B(s) =

 1
2ξ(s) − 1

2ζ(s)

1
2ζ(−s) −

1
2ξ(−s)

 , E(s) =

 P (s)

P (−s)

 .
Next we will solve the matrix equation (4.10). To do this, we define

W (z) =
1

2πi

∫ +∞

−∞

Y (t)

t− z
dt, z ∈ C+ ∪ C−. (4.11)
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According to Sokhotski-Plemelj formula, we get

W±(s) = ±1

2
Y (s) +

1

2πi

∫ +∞

−∞

Y (t)

t− s
dt. (4.12)

Therefore, from (4.12) we have

Y (s) =W+(s)−W−(s).

Putting (4.12) into (4.10), we may obtain

(A(s) +B(s))W+(s) + (A(s)−B(s))W−(s) = E(s), (4.13)

where W (s) is a 2-dimensional unknown vector function. For convenience, we let

U(s) = A(s) +B(s), V (s) = A(s)−B(s). (4.14)

It is easy to see that (4.10) has a solution if and only if (4.13) has a solution.
Thus, we should only study (4.13) in place of (4.10). Here, we consider only the
case of normal type:

detU(s)V (s) ̸= 0, i.e., det(A2(s)−B2(s))) ̸= 0 (4.15)

holds on the whole real axis X̄ = X ∪ {∞}, therefore U(s) and V (s) are reversible
matrixes. We let

a(s) = U−1(s)V (s), b(s) = U−1(s)E(s). (4.16)

Then (4.13) is equivalent to the following system of Riemann-Hilbert problem of
two-dimension in class {{0}}:

W+(s) + a(s)W−(s) = b(s), s ∈ (−∞,+∞). (4.17)

From det a(s) ̸= 0, we know that (4.17) is a Riemann-Hilbert problem of normal
type, which satisfies the following conditions:

W (∞) = 0, i.e., W±(∞) = 0. (4.18)

In the following, we shall introduce a kind of transformation to reduce (4.17)
to a class of generalized linear Riemann-Hilbert problems of function group. To do
this, we make a linear transform χ as follows

χ : η =
z

iz − 1
, z ∈ C+ ∪ C−, (4.19)

obviously,
t =

s

is− 1
, s ∈ X,

and the inverse transform χ−1 of (4.19) have the same form with χ. The transform
(4.19) maps the real axis X on the complex plane C onto a circle Γ : Γ = {η ∈
C||η + i

2 | =
1
2} on the complex plane η. We denote by D+ and D− an interior

region and an exterior region of Γ, respectively, that is,

D+ = {η ∈ C||η + i

2
| < 1

2
}, D− = {η ∈ C||η + i

2
| > 1

2
}.
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Then, χ maps the upper half plane C+ and the lower half plane C− onto the D+

and D− respectively. (4.17) is readily reduced to the following system of Riemann-
Hilbert problem on the complex plane C by (4.19),

Θ+(t) +R(t)Θ−(t) = ϱ(t), t ∈ Γ, (4.20)

where

W (s) =W (
t

it− 1
) = Θ(t), a(s) = a(

t

it− 1
) = R(t), b(s) = b(

t

it− 1
) = ϱ(t).

It is easy to see that R(t) and ϱ(t) belong to H on Γ and ϱ(−i) = 0, hence (4.20)
must fulfill the following additional conditions

Θ(−i) = 0, i.e., Θ+(−i) = Θ−(−i) = 0. (4.21)

Thus, we have
Theorem 4.1. Θ(η) is a bounded solution of (4.20) that satisfies (4.21), if and
only if W (z) = Θ( η

iη−1 ) is a bounded solution of (4.17) that satisfies (4.18).
Next we would solve the Riemann-Hilbert problem (4.20) under the complemen-

tary condition (4.21). Assume that σ(η) is a canonical solution matrix of (4.20),
and its canonical solutions are σj(η)(j = 1, 2). If we denote by κj(j = 1, 2) the
partial index of σ(η), then the whole index κ of (4.20) is defined as follows

κ =

2∑
j=1

κj . (4.22)

Similar to the methods in [9,34,35,41], we may obtain the following boundedly
analytic solution for Riemann-Hilbert problem (4.20) under conditions (4.21) by
using the principle of analytic continuation [20,39]:

Θ(η) =

2∑
j=1

σj(η)
pκj (η)

(η + i)κj
− 1

2πi

2∑
j=1

σj(η)

∫
Γ

ψj(s)

s− η
ds, η ∈ D+ ∪D−, (4.23)

where ψ(s) = [σ(s)]−1M(s), ψj(s)(j = 1, 2) are two components of ψ(s), and pκj (η)
is a polynomial of the degree κj .

On the solvability of Riemann-Hilbert problem (4.20), we have the following
conclusions.
Theorem 4.2. Under conditions (4.21), the solution of (4.20) can be expressed
by (4.23). If κj ≥ 0, then Θ(η) contains κ arbitrary constants. If κj < 0, then
pκj (η) ≡ 0 (j = 1, 2), and the conditions of solvability become∫

Γ

ψj(s)

(s+ i)l
ds = 0, ∀ l = 0,−1, . . . , κj + 1, j = 1, 2, (4.24)

and there are exactly −(κ1 + κ2) conditions of solvability. If κ1κ2 < 0, without
loss of generality, we assume that κ2 < 0 < κ1, then Θ(η) contains κ1 arbitrary
constants, and the following conditions of solvability are also fulfilled∫

Γ

ψ2(s)

(s+ i)l
ds = 0, ∀ l = 0,−1, . . . , κ2 + 1, (4.25)
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therefore there are −κ2 conditions of solvability for Eq. (4.20), and pκ2
(η) ≡ 0.

After that, by using the inverse transform of (4.19), we may obtain a solution
of (4.17) under conditions (4.18) as follows

W (z) =

2∑
j=1

Xj(z)
pκj (z)

(z + i)κj
− 1

2πi

2∑
j=1

Xj(z)

∫ +∞

−∞

ζj(s)

s− z
ds, ∀ z ∈ C+ ∪ C−,

(4.26)
where X(z) = σ( η

iη−1 ), ζ(s) = [X(s)]−1M(s), Xj(z)(j = 1, 2) are two solution
components of X(z), and ζj(s)(j = 1, 2) are two components of ζ(s).

Using Sokhotski-Plemelj formula to W (z) in (4.26), we may obtain W±(s), and
then we substitute W±(s) into (4.12), thus we can get Y (s). In fact, if we assume
that Y (s) = (Y1(s), Y2(s))

T is a solution of (4.10), then Y∗(s) = (Y2(−s), Y1(−s))T
is also a solution of it and so does 1

2 (Y (s) + Y∗(s)). Hence, it is easily verified that

Ψ(s) =
1

2
(Y1(s) + Y2(−s)) (4.27)

is a solution of (4.9). Putting Ψ(s) into (4.4), similariy to the discussion in Section
3, we may obtain the solution F (s) of (4.4), thus

f(t) = F−1F (s) (4.28)

is the solution of (4.1), and f(t) ∈ {0}. The detailed discussion will be omitted
here.

Now we can state our main result about the solution of Eq. (4.1).
Theorem 4.3. Assume that (4.18) and (4.21) are fulfilled, then Eq. (4.1) has a
solution in class {0}, and its general solution is given by (4.28), where F (s) is
determined by (4.4).

Note that the method of solution used here may be solved the above-mentioned
equations (that is, Eqs. (1.1)-(1.4)) in the case of non-normal, that is,

det(U(s)V (s)) = 0. (4.29)

5. Singular integral equations of Wiener-Hopf type
Method mentioned in Sections 3 and 4 may be also used to solve Wiener-Hopf
equation with reflection. Thus we can rewrite Eq. (1.3) in the form

Af(t) + C1Tf+(t) + C2Tf+(−t) +D1k ∗ f+(t) +D2h ∗ f+(−t)
=g(t), 0 < t < +∞,

(5.1)

where A,Cj , Dj (j = 1, 2) are real constants, k(t), h(t), g(t) ∈ {0} and their one-
sided Fourier transforms belong to {{0}}, and an unknown function f(t) also belong
to {0}.

In (5.1), we extend t to t ∈ (−∞, 0) and denote f(t) = f+(t), g(t) = g+(t), then
(5.1) may be written as

Af+(t) + C1Tf+(t) + C2Tf+(−t) +D1k ∗ f+(t) +D2h ∗ f+(−t)
=g+(t) + f−(t), −∞ < t < +∞,

(5.2)
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where

f+(t) =

{
f(t), t ≥ 0,

0, t < 0;
f−(t) =

{
0, t ≥ 0,

−f(t), t < 0.

We apply the Fourier transform in both sides of (5.2) and obtain

AF+(s)− C1sgnsF+(s)− C2sgnsF+(−s) +D1K(s)F+(s) +D2H(s)F+(−s)
=G+(s)− F−(s),

(5.3)
namely,

[A−C1sgns+D1K(s)]F+(s)+F−(s)− [C2sgns−D2H(s)]F+(−s) = G+(s), (5.4)

which is a Riemann-Hilbert problem with reflection and node.
Similar to the discussion in Section 4, we replace s by −s in (5.4) and get

[C2sgns+D2H(−s)]F+(s)+[A+C1sgns+D1K(−s)]F+(−s)+F−(−s) = G+(−s).
(5.5)

Via (5.4) and (5.5), we have{
[A− C1sgns+D1K(s)]F+(s) + F−(s)− [C2sgns−D2H(s)]F+(−s) = G+(s);

[C2sgns+D2H(−s)]F+(s)+[A+C1sgns+D1K(−s)]F+(−s)+F−(−s)=G+(−s).
(5.6)

Since F (s) ∈ {{0}}, we have F (∞) = 0. Again using the following Sokhotski-
Plemelj formula

F+(s) + F−(s) =
1

πi

∫ +∞

−∞

F (t)

t− s
dt, F+(s)− F−(s) = F (s), (5.7)

we can transform (5.6) to the following matrix equations with a singular integral in
class {{0}}:

1

2
Θ(s)X(s) +

Υ(s)

2πi

∫ +∞

−∞

X(t)

t− s
dt = N(s), (5.8)

where X(s) = (F (s), F (−s))T , N(s) = (G+(s), G+(−s))T , and

Θ(s) =

 p(s) q(s)

q(−s) p(−s)

 , Υ(s) =

 u(s) −v(s)

v(−s) −u(−s)

 , (5.9)

in which we have put

p(s) = A− 1− C1sgns+D1K(s); q(s) = C2sgns+D2H(s);

u(s) = A+ 1− C1sgns+D1K(s); v(s) = C2sgns−D2H(s).
(5.10)

(5.8) is the characteristic system of equations of dimension 2 with singular inte-
gral in class {{0}}. For (5.8), its solvability is similar to the discussion in Sections
3 and 4. Here, we also only consider the case of normal type, that is,

det(Θ(s)±Υ(s)) ̸= 0, ∀ s ∈ X. (5.11)
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About Eq. (5.8), there is no essential difference for the methods of solution with
Eq. (4.10), and we will not elaborate. Now we can formulate the main results with
respect to the solutions of Eq. (5.1) as follows.
Theorem 5.1. Under conditions (5.11), Eq. (5.1) has a solution in class {0}, and
its solutions and conditions of solvability are similar to those in Theorem 4.2.
Remark 5.1. In Eq. (5.1), if k(t), h(t), g(t) ∈ L2[0,+∞), then their one-sided
Fourier transforms belong to the Hölder continuous class on [0,+∞), and the un-
known function f(t) is required to be in {0}, in this case, we can solve Eq. (5.1)
similarly.

6. Singular integral equations with reflections and
translation shifts

Methods of solution used in Sections 3 and 4 are also in effect for equations similar
to (1.1) and (1.2) with both reflection and a finite set of translation shifts f(t+ aj)
and f(−t− bj), namely,

∑n
j=1[A

(1)
j f(t+ aj) +B

(1)
j Tf(t+ aj) + k

(1)
j ∗ f(t+ aj) + C

(1)
j f(−t− bj)

+D
(1)
j Tf(−t− bj) + h

(1)
j ∗ f(−t− bj)] = g(t), 0 < t < +∞;∑n

j=1[A
(2)
j f(t+ aj) +B

(2)
j Tf(t+ aj) + k

(2)
j ∗ f(t+ aj) + C

(2)
j f(−t− bj)

+D
(2)
j Tf(−t− bj) + h

(2)
j ∗ f(−t− bj)] = g(t), −∞ < t < 0,

(6.1)
and

n∑
j=1

[Ajf(t+ aj) +BjTf(t+ aj) + kj ∗ f(t+ aj) + Cjf(−t− bj)

+DjTf(−t− bj) + hj ∗ f(−t− bj)] = g(t), −∞ < t < +∞,

(6.2)

where aj , bj , Aj , Bj , Cj , Dj(1 ≤ j ≤ n) are constants, and all the functions appeared
in Eqs. (6.1) and (6.2) belong to {0}. Using the Fourier transforms, Eqs. (6.1) and
(6.2) may be transformed into Riemann-Hilbert problems with reflections and nodes.
The solving method is similar to Eqs. (3.1) and (4.1) mentioned above. Further
discussion will be omitted here.

But for equations similar to (1.3) or (1.4) of the same type, the above described
method is not effective.

7. Conclusions
In this paper, we dealt with the existence of solutions for some classes of convo-
lution singular integral equations with reflection and translation shifts. By means
of the theory of Fourier analysis and of a system of linear algebraic equations, we
transformed such equations into the Riemann-Hilbert problems. The exact solution,
denoted by integrals, of equations and the conditions of solvability are obtained in
class {0}. Here, our method of solving equations is different from those of the clas-
sical Riemann-Hilbert problems, and it is novel and effective. Other integral equa-
tions with reflection can be solved by using our method. Especially, the method
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used here is also effective for certain kinds of such equations with translation shifts
and reflection. Indeed, we can also research the similar problem in the setting of
Clifford analysis (see [13–15, 35–38, 42]). Thus, this paper generalizes the classical
theory of Riemann-Hilbert problems and integral equations.

Finally, as for the solvability of Eq. (1.4) (i.e., equations with two pairs of con-
volution kernels), by using Fourier transformation, we can transform Eq. (1.4) into
a Riemann-Hilbert problem similar to (4.9), which may be discussed by using the
same method as shown in Section 4.
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