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FAST IDENTIFICATION OF THE
HYPERBOLIC LAGRANGIAN COHERENT

STRUCTURES IN TWO-DIMENSIONAL
FLOWS BASED ON THE EULERIAN-TYPE

ALGORITHMS∗

Guoqiao You1 and Changfeng Xue2,†

Abstract Based on the so-called mixing-based partition, we propose an effi-
cient Eulerian algorithm to identify the hyperbolic Lagrangian coherent struc-
ture (LCS) of any given two-dimensional (2D) flow fields, which is framework
independent. To extract the required LCS, the proposed algorithm only needs
to solve one single partial differential equation. Moreover, data is only re-
quired at mesh points in the implementation of the proposed algorithm. In
contrast, traditional Lagrangian ray tracing approach needs to solve a system
consisting of two ordinary differential equations together with a line integral
along the particular particle trajectory. Furthermore, if the velocity data is
only available at mesh points, the Lagrangian approach needs to implement
interpolation to obtain the velocity and also the velocity gradient at non-mesh
points along the particle trajectory taking off from each mesh point, which
could be quite time-consuming. Based on the doubling technique, we also
propose an efficient iterative Eulerian-type algorithm to identify the longtime
LCS for 2D periodic flows. Numerical examples are provided to confirm the
accuracy, efficiency and effectiveness of the proposed Eulerian algorithms.

Keywords Eulerian approach, partial differential equations, flow map, La-
grangian coherent structure, flow visualization.
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1. Introduction
It has been a long and important task to develop tools to visualize, understand
and then extract useful information in various kinds of complex dynamical systems,
including ocean flows [14, 29], hurricane structures [28], flight path [2, 32], gravity
waves [33], blood mixing in cardiovascular flows [1] and some other chaotic sys-
tems [3, 6, 13, 20, 23, 24]. A lot of effort has been made to understand and visualize
different types of behaviors in such dynamical systems, such as elliptical zones,
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hyperbolic trajectories, chaotic attractors, and mixing regions. Among these, La-
grangian coherent structure (LCS) [4,11,12,29] has emerged and become a hot topic
that has attracted the attention from a growing number of scientists in different
research areas. Physically, LCS partitions the space-time domain into subregions
based on certain quantity measured along with the passive tracer advected accord-
ing to the associated dynamical system. People have been trying to develop efficient
tools or algorithms to identify, extract and visualize the underlying LCS of given
dynamical systems. As far, the most commonly used approach to identify LCS
is based on the finite time Lyapunov exponent (FTLE) [7, 8, 12, 16, 27, 29], which
measures the rate of change in the distance between neighboring particles across
a finite interval of time with an infinitesimal perturbation in the initial position.
Following the definition of Haller [7, 9, 10], one can see that the hyperbolic LCS is
closely related to the ridges of the FTLE fields. In particular, one first computes
the FTLE field and then locates its ridge, the latter is then regarded as the required
LCS. As a result, the computation of the FTLE has become the key component of
extracting the LCS.

FTLE is obtained by firstly computing the flow map which links the initial
location of a particle with the arrival position based on the characteristic line, or
equivalently, the particle trajectory. Mathematically a dynamical system is modeled
by the ordinary differential equation (ODE)

ẋ(t) = u(x(t), t) (1.1)

with the initial condition x(t0) = x0 and a Lipschitz velocity field u : Rd×R → Rd.
The flow map Φt0+T

t0 : Rd → Rd is defined as the mapping which takes the point x0

to the particle location at the final time t = t0+T , i.e. Φt0+T
t0 (x0) = x(t0+T ) with

x(t) satisfying (1.1). The FTLE is then defined using the largest eigenvalue of the
deformation matrix based on the Jacobian of this resulting flow map.

There are generally two classes of approaches for computing the FTLE and hence
locating the resulting LCS of given continuous dynamical systems. Since FTLE is
long treated as a Lagrangian quantity, the Lagrangian ray tracing approach is a nat-
ural choice, which solves the ODE system (1.1) using any well-developed numerical
integrator. Since the timestep in these methods is only restricted by the stiffness
of the ODE system, it seems that a much larger ODE timestep ∆t > O(∆x) could
be used in some applications. However, without considering the stability condi-
tion for the ODE integrator, the numerical solution to the Lagrangian flow map
may suffer from oscillatory behaviors or the numerical integrator may even lead to
unreliable solutions as introduced in [18]. On the other hand, these Lagrangian ap-
proaches require the velocity data at arbitrary points in the computational domain.
This implies that one has to in general implement some interpolation routines in
the numerical code. Unfortunately, it could be numerically challenging to develop
an interpolation approach which is computationally cheap, high order accurate yet
monotone.

In a series of studies [17–19, 34–36, 40], we have developed various Eulerian
approaches to numerically compute the FTLE on a fixed Cartesian mesh. The idea
is to incorporate the approach with the level set method [25,26] which allows the flow
map to satisfy the Liouville equations. Such hyperbolic partial differential equations
(PDEs) can then be solved by any well-established robust and high order accurate
numerical methods. In particular, the Eulerian methods proposed in [17,18,34,36]
have all suggested to reverse the time and solve the PDEs backward in time to
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obtain the forward flow map and thus the forward FTLE. For example, to obtain
the forward flow map from the initial time t = 0 to the final time t = T , one needs
to solve the Liouville equations backward in time from t = T to t = 0 with the
terminal condition given at t = T . This implementation is numerically inconvenient
in some occasions, especially when incorporating with some computational fluid
dynamic (CFD) solvers, since the velocity field is loaded from the current time
t = T backward in time to the initial time. This implies that the whole velocity
data at all time steps has to be stored in the disk which might not be practical at
all. In view of this point, we have proposed and analyzed the Eulerian interpolation
methods [35,40] to solve the forward flow map on the fly so that the PDEs are solved
forward in time. Yet in some applications, a couple of flow maps might be required.
It would be inefficient if we solve the PDEs all over again for every new flow map.
Recently we have developed a novel Eulerian algorithm [37] to efficiently construct
a lot of flow maps by pre-processing some appropriately chosen intermediate flow
maps beforehand. On the other hand, noise is commonly observed in measurements
from any real applications such as CFD, weather research, and aerodynamics. By
extending the usual FTLE for deterministic dynamical systems [38], we have also
proposed an Eulerian approach to compute the expected FTLE of uncertain flow
fields.

Although FTLE on a manifold can be skillfully defined such that it is coordinate-
frame independent [15], FTLE defined and computed based on a uniform Cartesian
mesh is generally not objective, i.e. it is coordinate-frame dependent, which might
lead to the nonobjectivity of the resulting LCS. A mixing-based partition of 2-
dimensional (2D) turbulence has been proposed in [8], which is coordinate-frame
invariant. The LCS extracted based on this kind of partition does not rely on the
computation of FTLE and is objective. Given an incompressive Lipschitz velocity
field u : Ω × R → R2 with the computational domain Ω ⊂ R2, the partition is
accomplished according to the sign of

φ± =
⟨ξ±,Mξ±⟩
2|ξ±||Sξ±|

, (1.2)

where S = 1
2 (∇u + (∇u)T ) is the rate-of-strain tensor, M = dS/dt + 2S∇u is

the strain acceleration tensor and ξ± = (s22,−s12 ± |S|
√
2)T with sij denoting the

entries of S and |S| =
√

Σi,js2ij .
In this paper, following the methods we developed in [39], we propose an efficient

Eulerian approach to identify the hyperbolic LCS based on this kind of partition.
With the proposed approach, only one single PDE needs to be solved in order to
obtain the required hyperbolic LCS. Furthermore, our approach only concerns data
defined at mesh points and hence no interpolation is required. These advantages will
reduce the overall computational cost and improve the accuracy of the corresponding
algorithms, which are verified by our numerical experiments. Since sometimes the
LCS over a longtime interval is required, we also propose an Eulerian algorithm
to compute the longtime LCS for periodic flows based on the doubling technique
developed in [18].

The outline of this paper is as follows. In Section 2 we review some previous
work and build the basic concepts and formulas that will be used in later sections.
In Section 3, we give the proposed Eulerian algorithms, including the Eulerian
algorithm for computing the LCS and also an Eulerian algorithm for computing the
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longtime LCS for periodic flows. For completeness, the computational complexity
is given in this section. After that, in Section 4 we discuss the accuracy of the
Eulerian algorithm for the longtime LCS construction. Finally, numerical examples
are given in Section 5 to support our claims.

2. Set up
In this section, we briefly review some previous Eulerian algorithms and also build
a few concepts and formulas for further development.

2.1. Flow map
As introduced in Section 1, to simplify the notation, we collect the solutions to the
ODEs (1.1) for all initial conditions in Ω at all time t ∈ R and introduce the flow
map

Φb
a : Ω → R2

such that Φb
a(x0) = x(b) represents the arrival location x(b) at t = b of the particle

trajectory satisfying the ODEs (1.1) with the initial condition x(a) = x0 at the
initial time t = a. This implies that the mapping will take a point from x(a) at
t = a to another point x(b) at t = b. Φb

a is called a forward flow map if a < b and
a backward flow map if a > b.

2.2. The Eulerian approach for computing the flow map

(a) (b)

Figure 1. Lagrangian and Eulerian interpretations of the function Ψ [17]. (a) Lagrangian ray tracing
from a given grid location x at t = 0. Note that y might be a non-grid point. (b) Eulerian values of Ψ
at a given grid location y at t = T gives the corresponding take-off location at t = 0. Note the take-off
location might not be a mesh point.

In this subsection, we review the Eulerian formulation of the flow map com-
putations which will be used in the next section when we propose our Eulerian
algorithms for identifying the LCS. We follow the idea in [17, 18, 34] and define a
vector-valued function Ψ = (Ψ1,Ψ2, · · · ,Ψd) : Ω× R → R2. At t = 0, we initialize
these functions by

Ψ(x, 0) = x = (x1, x2, · · · , xd) . (2.1)

These functions provide a labeling for any particle in the phase space at t = 0. In
particular, any particle initially located at (x, t) = (x0, 0) = (x10, x

2
0, · · · , xd0, 0) in
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the extended phase space can be implicitly represented by the intersection of d
codimension-1 surfaces represented by ∩d

i=1{Ψi(x, 0) = xi0} in Rd. Following the
particle trajectory with x = x0 as the initial condition in a given velocity field, any
particle identity should be preserved in the Lagrangian framework and this implies
that the material derivative of these level set functions is zero, i.e.

DΨ(x, t)

Dt
= 0 .

This implies the following level set equations, or the Liouville equations,

∂Ψ(x, t)

∂t
+ (u · ∇)Ψ(x, t) = 0 (2.2)

with the initial condition (2.1).
The above implicit representation embeds all path lines in the extended phase

space. For instance, the trajectory of a particle initially located at (x0, 0) can be
found by determining the intersection of d codimension-1 surfaces represented by
∩d
i=1{Ψi(x, t) = xi0} in the extended phase space. Furthermore, the forward flow

map at a grid location x = x0 from t = 0 to t = T is given by ΦT
0 (x0) = y where

y satisfies Ψ(y, 0 + T ) = Ψ(x0, 0) ≡ x0. Note that, in general, y is a non-mesh
location. The typical two dimensional scenario is illustrated in Figure 1(a).

The solution to (2.2) contains much more information than what was referred
to above. Consider a given mesh location y in the phase space at the time t = T ,
as shown in Figure 1(b), i.e. (y, T ) in the extended phase space. As discussed in
our previous work, these level set functions Ψ(y, T ) defined on a uniform Cartesian
mesh in fact give the backward flow map from t = T to t = 0, i.e. Φ0

T (y) = Ψ(y, T ).
Moreover, the solution to the level set equations (2.2) for t ∈ (0, T ) provides also
backward flow maps for all intermediate times, i.e. Φ0

t (y) = Ψ(y, t).
To compute the forward flow map, on the other hand, [17] has proposed to

simply reverse the above process by initializing the level set functions at t = T by
Ψ(x, T ) = x and solving the corresponding level set equations (2.2) backward in
time.

2.3. The doubling technique to compute the longtime flow
map

In [18], an efficient method has been proposed to compute the longtime FTLE
for periodic flows. The idea is to develop a map doubling phase flow method for
longtime flow map computations. To compute the longtime backward flow map, for
example, we first construct the solution Ψ(x, Tm) by solving the Liouville equations
(2.2) forward in time from t = 0 to t = Tm where Tm is the period of the flow.
To determine Ψ(x, 2Tm), we use the phase flow property and obtain Ψ(x, 2Tm) =
Ψ(Ψ(x, Tm), Tm).

In general, once we have obtained the solution Ψ(x, 2k−1Tm), we can obtain

Ψ(x, 2kTm) = Ψ(Ψ(x, 2k−1Tm), 2k−1Tm).

Finally, if we take T = 2nTm, the backward flow map from t = T to t = 0 is given
by Φ0

T (x) = Ψ(x, 2nTm).
The idea to compute the forward flow map is simple. We can solve the Liouville

equation backward in time from t = T to t = T − Tm. Then we iterate the map
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n-times to get the overall flow map forward in time from t = 0 to t = T = Tm · 2n.
Once the longtime flow map is computed, the corresponding Jacobian can be easily
obtained by any finite difference method.

2.4. The Lagrangian approach for identifying the LCS upon
the mixing-based partition

The mixing-based partition is done according to the sign of

φ± =
⟨ξ±,Mξ±⟩
2|ξ±||Sξ±|

.

Concretely speaking, at any time t the computational domain Ω can be uniquely
partitioned into three regions: the elliptic region E(t) consisting of points x where
min{φ+(x, t), φ−(x, t)} < 0 or S(x, t) = O2×2, the parabolic region P(t) consist-
ing of points x where min{φ+(x, t), φ−(x, t)} = 0 and the hyperbolic region H(t)
consisting of points x where min{φ+(x, t), φ−(x, t)} > 0. Once the partition of
the domain Ω is known at any t ∈ I, we are able to identify the underlying hy-
perbolic LCS, where I is the time span of the velocity field and we take I = [0, T ]
for simplicity hereafter. As introduced in [8], the hyperbolic repelling LCS can be
defined as material lines along which the time integral of the local flux is maximal.
Mathematically, hyperbolic LCS at the particular time level t = 0 can be located
by looking for local maximum curves of the scalar field

σT
0 (x) =

∫
{t∈[0,T ]|x(t)∈H(t)}

|S(x(t), t)|dt , (2.3)

which indicates the total flux along the particle trajectory x(t) taking off from x at
the initial time t = 0.

Since the quantity σT
0 is defined as a Lagrangian-type quantity, one natural

approach to compute σT
0 is the Lagrangian ray tracing method [8]. In particular,

one first solves the ODE system (1.1), given the initial condition x(0) = x0, to
obtain the particle trajectory x(t) starting from the location x0 at the initial time
t = 0. After that, a standard numerical integrator is used to approximate the
integral (2.3) to obtain the value of σT

0 (x) at the location x0, i.e. σT
0 (x0). In

the implementation, one has to continuously monitor the particle position at any
particular time level t ∈ [0, T ], to see if x(t) belongs to H(t) or not. Another issue
is, when the velocity data is only available at mesh points, the implementation
of the Lagrangian approach will involve several factors which could be very time-
consuming and even affect the accuracy of the results. Except for the numerical
integration, these factors also include interpolation at mesh points to obtain velocity
and velocity gradient data at non-mesh points. All these factors have to be treated
with high-order numerical methods, otherwise small LCS structures might not be
extracted from the computed σT

0 field. Finally, with the concept of flow map,
formula(2.3) can be rewritten as

σT
0 (x) =

∫
{t∈[0,T ]|Φt

0(x)∈H(t)}
|S(Φt

0(x), t)|dt . (2.4)
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3. The Eulerian approach for identifying the hyper-
bolic LCS

As discussed above, the Lagrangian approach has several disadvantages in com-
puting the σT

0 field and hence identifying the hyperbolic LCS. Especially when the
velocity data is only available at mesh points, one needs to first use the finite differ-
ence method to obtain the velocity gradient data at mesh points and then implement
interpolation based on the obtained discrete velocity gradient data and also on the
discrete velocity data defined at mesh points, which could be quite time-consuming
and not that accurate. In this section, we will first propose an efficient Eulerian
algorithm to compute the σT

0 field which requires no interpolation. Furthermore,
only one single PDE needs to be solved in the proposed algorithm. Based on the
doubling technique [18], we also propose an Eulerian algorithm to compute the long-
time σT

0 field for periodic flows, in order to locate the longtime LCS. At the end of
this section, we will briefly analyze the computational complexity of the proposed
Eulerian algorithm.

3.1. An Eulerian algorithm for computing the σT
0 field

We are proposing, in this subsection, an Eulerian algorithm to compute the σT
0 field

which does not require interpolation on the discrete velocity gradient data nor the
discrete velocity data. Suppose that [0, T ] is the interval we focus on and therefore,
the σT

0 (x) field is what we need to compute in order to identify the underlying
hyperbolic LCS.

At first, we rewrite (2.4) in a more compact form

σT
0 (x) =

∫ T

0

Q(Φt
0(x), t)dt (3.1)

where Q(x, t) ≜ |S(x, t)| · χH(t)(x) with the indicator function

χH(t)(x) =

1, x ∈ H(t),

0, otherwise.

Then we define a real-valued function F (x, t) : Ω × [0, T ] → R such that F (x, t) =
σT
t (x), i.e.

F (x, t) ≜
∫ T

t

Q(Φτ
t (x), τ)dτ , (3.2)

which measures the time integral of the local flux along the trajectory of the particle
starting from the point x at the time level t and arriving at the time level T . It is
obvious that F (x, T ) = 0 and F (x, 0) = σT

0 (x) for any x ∈ Ω. Furthermore, F (x, t)
decreases along any particle trajectory. Indeed, we have the following result.

Lemma 3.1. Let F (x, t) be defined as in (3.2), then the material derivative of
F (x, t) along any particle trajectory is −Q(x, t), i.e. DF (x, t)/Dt = −Q(x, t),
where D(·)/Dt denotes the material derivative.

Proof. We still use x(t) to denote the particle trajectory and suppose that the
particle is located at x0 at the initial time t = 0. As a result, we have x(t) = Φt

0(x0).
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Then we only need to prove that dF (x(t), t)/dt = −Q(x(t), t). In fact,

F (x(t), t)=

∫ T

t

Q(Φτ
t (x(t)), τ)dτ=

∫ T

t

Q(Φτ
t (Φ

t
0(x0)), τ)dτ=

∫ T

t

Q(Φτ
0(x0), τ)dτ.

Then by the derivative rule of integral with parameters, we have dF (x(t), t)/dt =
−Q(Φt

0(x0), t) = −Q(x(t), t). The proof completes.
According to Lemma 1 and recalling that D/Dt = ∂/∂t+u ·∇, we immediately

have
∂F (x, t)

∂t
+ (u · ∇)F (x, t) = −Q(x, t) . (3.3)

To obtain the σT
0 field, we first solve the PDE (3.3) backward in time from t = T

to t = 0 with the terminal condition F (x, T ) = 0 and then assign σT
0 (x) = F (x, 0).

In the whole process, the computation of the right hand side of PDE (3.3), i.e.
−Q(x, t), is only implemented at mesh points. Compared to the traditional La-
grangian ray tracing approach, the proposed Eulerian approach has several advan-
tages. Firstly, only one single PDE (3.3) needs to be solved to obtain the σT

0 field
while the Lagrangian approach needs to compute the integral (2.3) together with the
ODE system (1.1) consisting of two ODEs for a 2D dynamical system. Secondly, if
the velocity data is only available at mesh points, e.g. from certain CFD solver, no
interpolation is required in our Eulerian approach since all computations are done
only on mesh. The finite difference step involved in the computation can be easily
accomplished using any well-developed approach such as ENO or WENO [21, 30].
After the σT

0 (x) field is obtained, the LCS is identified at t = 0 by locating the local
maximum curves.

Here we also want to emphasize that it is not necessary to compute and store
H(t) for any t ∈ [0, T ] beforehand. In the implementation, we propose to compute
H(t) and Q(x, t) simultaneously while solving the PDE (3.3). For example, at a
particular time step t = tk, based on the velocity data u(xij , tk) at each mesh point
xij , we use the finite difference scheme to obtain the velocity gradient ∇u(xij , tk)
and subsequently the rate-of-strain tensor S(xij , tk) and the vectors ξ±(xi,j , tk) on
the mesh. After that, based on the velocity data u(xij , tk+1) and u(xij , tk−1) at the
two time levels t = tk+1 and t = tk−1, we approximate the temporal variation of the
velocity gradient ∂∇u

∂t |(xij ,tk) and ∂S
∂t |(xij ,tk) is immediately obtained. Then dS/dt =

∂S/∂t+(u·∇)S can be obtained by implementing the finite difference one more time
on S(xij , tk), which subsequently gives the value of the strain acceleration tensor
M = dS/dt + 2S∇u at each mesh point xij . Then φ±(xij , tk) can be computed
using formula (1.2), from which we can obtain the partition of the domain Ω at
t = tk, including the required H(tk). Finally, Q(xij , tk) is computed by Q(xij , tk) =
|S(xij , tk)| · χH(tk)(xij).

We summarize the proposed Eulerian approach in Algorithm 1:

Algorithm 1 (An Eulerian approach for computing the σT
0 (xij) field):

1. Discretize the computational domain

xi = xmin + (i− 1)∆x, ∆x =
xmax − xmin

I − 1
, i = 1, 2, ..., I,

yj = ymin + (j − 1)∆y, ∆y =
ymax − ymin

J − 1
, j = 1, 2, ..., J,
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tk = t0 + k∆t, ∆t =
T

K
, k = 0, 1, ...,K .

2. Initialize the function F (xij , T ) = 0 with xij = (xi, yj).
3. Solve PDE (3.3), using any well-developed numerical method like WENO5-TVDRK2

[5,22,30], backward from time t = T to the initial time t = 0 to obtain F (xij , 0).
4. Assign σT

0 (xij) = F (xij , 0).

3.2. An efficient Eulerian algorithm to compute the longtime
σT
0 field

In [18], an efficient method has been proposed to compute the longtime flow map
for periodic flows based on the map doubling phase flow method, as introduced in
Section 2.3. Here we take a similar idea and propose an efficient Eulerian algorithm
to compute the longtime σT

0 field for periodic flows based on its additivity. In
particular, we have the following result.

Theorem 3.1. Suppose σt1
t0 (x) =

∫ t1
t0
Q(Φτ

t0(x), τ)dτ as defined in (3.1), then

σt
0(x) = σt

s(Φ
s
0(x)) + σs

0(x), ∀s ≥ 0, t ≥ s . (3.4)

Proof. According to the definition of the flow map, we have Φτ
s (Φ

s
0(x)) = Φτ

0(x)
and therefore,

σt
s(Φ

s
0(x)) =

∫ t

s

Q(Φτ
s (Φ

s
0(x)), τ)dτ =

∫ t

s

Q(Φτ
0(x), τ)dτ .

As a result,

σt
s(Φ

s
0(x)) + σs

0(x) =

∫ t

s

Q(Φτ
0(x), τ)dτ +

∫ s

0

Q(Φτ
0(x), τ)dτ

=

∫ t

0

Q(Φτ
0(x), τ)dτ = σt

0(x) .

In the implementation, we first solve PDEs (3.3) and (2.2) backward from t =
Tm to t = 0 with the terminal conditions F (xij , Tm) = 0 and Ψ(xij , Tm) = xij ,
respectively, where Tm is the period of the flow. Then we have the σTm

0 field
σTm
0 (xij) = F (xij , 0) and the forward flow map ΦTm

0 (xij) = Ψ(xij , 0). First, due to
the periodicity, we have Φ2Tm

0 (xij) = Φ2Tm

Tm
(ΦTm

0 (xij)) = ΦTm
0 (ΦTm

0 (xij)), which can
be obtained by interpolation on ΦTm

0 (xij). By formula (3.4), we have σ2Tm
0 (xij) =

σTm
0 (xij) + σ2Tm

Tm
(ΦTm

0 (xij)). Also by the periodicity, we have σ2Tm

Tm
(ΦTm

0 (xij)) =

σTm
0 (ΦTm

0 (xij)), which can be obtained by interpolation on σTm
0 (xij), and then

σ2Tm
0 (xij) can be obtained.

In general, once σ2k−1Tm
0 (xij) and Φ2k−1Tm

0 (xij) are known at mesh points xij

where k ∈ N+, we can compute

Φ2kTm
0 (xij) = Φ2kTm

2k−1Tm
(Φ2k−1Tm

0 (xij)) = Φ2k−1Tm
0 (Φ2k−1Tm

0 (xij))
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and also σ2kTm
0 (xij) = σ2k−1Tm

0 (xij) + σ2kTm

2k−1Tm
(Φ2k−1Tm

0 (xij)) = σ2k−1Tm
0 (xij) +

σ2k−1Tm
0 (Φ2k−1Tm

0 (xij)), where Φ2k−1Tm
0 (Φ2k−1Tm

0 (xij)) and σ2k−1Tm
0 (Φ2k−1Tm

0 (xij))

can be obtained by interpolation on Φ2k−1Tm
0 (xij) and σ2k−1Tm

0 (xij), respectively.
In summary, if we take T = 2nTm, the σT

0 field can be computed as σT
0 (xij) =

σ2nTm
0 (xij) where we only need to iteratively interpolate n times upon ΦTm

0 (xij)

and σTm
0 (xij). The corresponding Eulerian algorithm for 2D periodic flows is sum-

marized in Algorithm 2.

Algorithm 2 (An efficient Eulerian algorithm for computing the σT
0 field for 2D

periodic flows where T = 2nTm):
1. Discretize the computational domain as in Algorithm 1 to get xi, yj , tk.
2. Initialize the level set functions on the time level t = Tm

Ψ(xij , Tm) = xij ,

F (xij , Tm) = 0 .

3. Solve PDEs (2.2) and (3.3) backward together from t = Tm to t = 0 and then
assign ΦTm

0 (xij) = Ψ(xij , 0) and σTm
0 (xij) = F (xij , 0), respectively.

4. For k = 1, 2, · · · , n, interpolate to obtain

Φ2kTm
0 (xij) = Φ2k−1Tm

0 (Φ2k−1Tm
0 (xij))

and
σ2kTm
0 (xij) = σ2k−1Tm

0 (xij) + σ2k−1Tm
0 (Φ2k−1Tm

0 (xij)) .

5. Assign σT
0 (xij) = σ2nTm

0 (xij).

3.3. Computational complexity
To end this section, we consider the computational complexity of the proposed
Algorithm 1. Let I and K be the number of mesh points in one spatial direction
and the temporal direction, respectively. In Algorithm 1, only PDE (3.3) needs to
be solved. The discretization of the PDE takes O(I2) operations at each time step.
Summing up the procedures at all time steps, the overall computational complexity
comes to O(KI2) which is optimal in the sense that each grid point is visited for
only O(1) time.

4. Accuracy analysis on the longtime LCS identifi-
cation

For periodic dynamical systems, we have proposed an efficient Eulerian algorithm,
i.e. Algorithm 2, to compute the longtime σT

0 field and thus identify the longtime
hyperbolic LCS in Section 3.2. In particular, the interpolation scheme is iteratively
implemented to obtain the longtime flow map and the longtime σT

0 field. Now we are
analyzing the accuracy of this algorithm in this section. We first list the following
three lemmas, which will be used for further development. The first two lemmas are
exactly Lemma 3 and Lemma 5 from [35] and the third one is a rewritten version
of Theorem 1 from [36].
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Lemma 4.1. Suppose that the velocity field u(x, t) is smooth enough and has the
Lipschitz constant L on the computational domain Ω. Then for any spatial variable
xi, we have ∣∣∣∣∂Φt

0(x)

∂xi

∣∣∣∣ ≤ eLt

for any t > 0.

Lemma 4.2. Suppose that the velocity field u is smooth enough. For each s ≥ 2,
there exists a constant Cs such that for any multi-index γ with |γ| = s and any
x ∈ Ω, we have

|∂γΦt
0(x)| ≤ Cs t e

(2s−1)Lt, ∀t > 0 .

Lemma 4.3. Assuming that ΦTm
0 (xij) computed in step 3 of Algorithm 2 has second

order accuracy and the interpolation scheme in step 4 is at least second order
accurate, Φ2Tm

0 (xij) is also second order accurate.

Formula (3.1) can be equivalently rewritten as σt
0(x) =

∫ t

0
Q(Φτ

0(x), τ)dτ . Tak-
ing the derivative with respect to t gives

d

dt
σt
0(x) = Q(Φt

0(x), t) . (4.1)

In the rest of this section, we suppose that u(x, t) and Q(x, t) are smooth enough
and have the Lipschitz constants L and M , respectively, on the computational
domain Ω. Then we give the following two preliminary results.

Lemma 4.4. For any spatial variable xi, we have∣∣∣∣∂σt
0(x)

∂xi

∣∣∣∣ < M

L
eLt

for any t > 0.

Proof. Taking the partial derivative of both sides of (4.1) with respect to xi, we
have

d

dt

∂σt
0(x)

∂xi
=
∂Φt

0(x)

∂xi
· ∇Q .

Then

d

dt

∣∣∣∣∂σt
0(x)

∂xi

∣∣∣∣ ≤ ∣∣∣∣ ddt ∂σt
0(x)

∂xi

∣∣∣∣ = ∣∣∣∣∂Φt
0(x)

∂xi
· ∇Q

∣∣∣∣ ≤MeLt =
d

dt

(
M

L
eLt

)
where the first inequality is a direct corollary of the triangle inequality and the
second inequality is due to Lemma 4.1. It is equivalent to d

dt

(∣∣∣∂σt
0(x)
∂xi

∣∣∣− M
L e

Lt
)
≤ 0,

which gives
∣∣∣∂σt

0(x)
∂xi

∣∣∣− M
L e

Lt ≤
∣∣∣∂σ0

0(x)
∂xi

∣∣∣− M
L e

0 = −M
L , for any t > 0, i.e.

∣∣∣∂σt
0(x)
∂xi

∣∣∣ ≤
M
L (eLt − 1) < M

L e
Lt.

Lemma 4.5. For each s ≥ 2, there exists a constant Ds such that for any multi-
index γ with |γ| = s and any x ∈ Ω, we have

|∂γσt
0(x)| ≤ Ds e

2s2Lt, ∀t > 0 .
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Proof. For any fixed γ satisfying |γ| = s ≥ 2, differentiating both sides of formula
(4.1) gives

d∂γσt
0

dt
=

s∑
p=1

∑
(γ1,··· ,γp):γ=

p∑
l=1

γl

 d∑
k1,··· ,kp=1

Qk1···kp

p∏
j=1

∂γjϕkj

 ,

with ∂γσt
0|t=0 = 0, where ϕkj denotes the kj-th component of Φt

0(x) and Qk1···kp
≜

∂pQ
∂xk1

···∂xkp
. The second summation is over all different choices of (γ1, · · · , γp) such

that γ = γ1 + · · ·+ γp and |γl| > 0.
If |γj | = 1, we have |∂γjϕkj | ≤ eLt ≤ e2|γj |Lt by Lemma 4.1. If |γj | ≥ 2,

according to Lemma 4.2, we have |∂γjϕkj | ≤ C|γj |te
(2|γj |−1)Lt. When t > 0, the

maximum of the function te−Lt is achieved at t = 1/L and therefore, te−Lt ≤
1/(Le). As a result, |∂γjϕkj | ≤

C|γj |

Le e2|γj |Lt for |γj | ≥ 2. In summary, |∂γjϕkj | ≤
Ce2|γj |Lt for any γj where C = max{1, C2/(Le), · · · , Cs/(Le)}. Subsequently we

have |
p∏

j=1

∂γjϕkj | ≤ Cp e2s
2Lt and d|∂γσt

0|
dt ≤

∣∣∣d∂γσt
0

dt

∣∣∣ ≤ C ′ e2s
2Lt = d

dtDse
2s2Lt where

Ds ≜ C′

2s2L , C ′ depends on s and the norms of partial derivatives of Q. Therefore,
d
dt

(
|∂γσt

0| −Dse
2s2Lt

)
≤ 0, which gives |∂γσt

0| − Dse
2s2Lt ≤ −Ds for any t ≥ 0.

That is, |∂γσt
0| ≤ Ds(e

2s2Lt − 1) ≤ Dse
2s2Lt.

Now we are ready to state our main results about the accuracy of Algorithm 2.
In the rest of this section, we assume that the interpolation operator has a bounded
norm which is independent of the mesh size.

Theorem 4.1. Assuming that ΦTm
0 (xij) and σTm

0 (xij) computed in step 3 of Algo-
rithm 2 both have second order accuracy and the interpolation scheme in step 4 is
at least second order accurate, σ2Tm

0 (xij) is also second order accurate.

Proof. According to formula (3.4), we have

σ2Tm
0 (xij) = σTm

0 (xij) + σ2Tm

Tm
(ΦTm

0 (xij)) .

Since σTm
0 (xij) is second order accurate, we only need to prove that σ2Tm

Tm
(ΦTm

0 (xij))=

σTm
0 (ΦTm

0 (xij)) is also second order accurate.
Using ·̃ to denote the numerical solution and I to denote the interpolation

operator, σTm
0 (ΦTm

0 (xij)) is then approximated by Iσ̃Tm
0 (Φ̃Tm

0 (xij)) with the error

|Iσ̃Tm
0 (Φ̃Tm

0 (xij))− σTm
0 (ΦTm

0 (xij))| ≤|Iσ̃Tm
0 (Φ̃Tm

0 (xi,j))− IσTm
0 (Φ̃Tm

0 (xij))|
+ |IσTm

0 (Φ̃Tm
0 (xij))− σTm

0 (Φ̃Tm
0 (xij))|

+ |σTm
0 (Φ̃Tm

0 (xij))− σTm
0 (ΦTm

0 (xij))|
≜I1 + I2 + I3 .

Due to the second order accuracy of σTm
0 (xij), we can find a constant C0 such that

|σ̃Tm
0 (xij)− σTm

0 (xij)| ≤ C0∆x
2.

Suppose NI is the norm of the interpolation operator which is ∆x-independent,
then I1 is bounded by

I1 ≤ NI ·max
xij

|σ̃Tm
0 (xij)− σTm

0 (xij)| ≤ C1∆x
2.
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Since the interpolation scheme is at least second order accurate, I2 is bounded by

I2 ≤ C ′
2∆x

2 max
|γ|=2

sup
xij

|∂γσTm
0 (xij)|.

According to Lemma 4.5, there exists a constant D2 such that

max
|γ|=2

sup
xij

|∂γσTm
0 (xij)| ≤ D2 e

8LTm

which implies I2 ≤ C2∆x
2 where C2 is a constant. Finally, I3 is bounded by

I3 ≤ sup
x∈Ω

|∇σTm
0 (x)||Φ̃Tm

0 (xij)− ΦTm
0 (xij)| .

Since ΦTm
0 (xij) is second order accurate, |Φ̃Tm

0 (xij)−ΦTm
0 (xij)| ≤ C ′

3∆x
2 where C ′

3

is a constant. Besides, by Lemma 4.4, we have sup
x∈Ω

|∇σTm
0 (x)| ≤ C ′′

3 e
LTm where

C ′′
3 is a constant and therefore I3 ≤ C3∆x

2 where C3 = C ′
3C

′′
3 e

LTm . As a result,
σ2Tm
0 (xij) is second order accurate.

Iteratively applying Lemma 4.3 and Theorem 4.1 will give the following result:

Theorem 4.2. Assume that ΦTm
0 (xij) and σTm

0 (xij) computed in step 3 of Algorithm
2 are both second order accurate and the interpolation scheme in step 4 is at least
second order accurate. Φ2kTm

0 (xij) and σ2kTm
0 (xij) are second order accurate for

any positive integer k.

5. Numerical examples
In this section, we will demonstrate the proposed algorithms on four examples.
The first three examples are the double gyre flow, the Rayleigh-Bénard convection
cells and the forced-damped Duffing van der Pol equation. The velocity fields are all
synthetic and are analytically determined by a stream function. The fourth velocity
field is given by a real dataset.

5.1. The double gyre flow
This example is taken from [29] to describe a periodically varying double-gyre. The
flow is modeled by the following stream-function ψ(x, y, t) = A sin[πk(x, t)] sin(πy),
where

k(x, t) = a(t)x2 + b(t)x,

a(t) = ϵ sin(ωt),

b(t) = 1− 2a(t).

In this example, we follow [29] and set A = 0.1, ω = 2π/10 and use only the discrete
velocity data at mesh points.

We first set ϵ = 0.1 and look into the mixing-based partitions of the computa-
tional domain Ω = [0, 2]× [0, 1] at several time slices. In particular, we have shown
in Figure 2 the partitions at the time t = 1, t = 5, t = 7 and t = 10, where the dark
red region, the blue region and the thin green layer correspond to the hyperbolic
region H(t), the elliptic region E(t) and the parabolic region P(t), respectively.
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Figure 2. (Section 5.1) The mixing-based partition with ϵ = 0.1 at the time level (a) t = 1, (b) t = 5,
(c) t = 7 and (d) t = 10.
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Figure 3. (Section 5.1) (a) The σ5
0(x) field and (b) the σ10

0 (x) field with ϵ = 0.1, computed using the
proposed Algorithm 1.
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Figure 4. (Section 5.1) (a) The σ5
0(x) field and (b) the σ10

0 (x) field with ϵ = 0.1, computed using the
Lagrangian approach.

Table 1. (Section 5.1) The computational time of the proposed Eulerian approach and the Lagrangian
approach with different ∆x’s and fixed ∆t/∆x.

∆x 1/32 1/64 1/128 1/256 1/512
Eulerian approach 1.1s 4.5s 28.6s 258.9s 2024.7s

Lagrangian approach 1.8s 10.1s 61.3s 607.1s 4842.3s
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Figure 5. (Section 5.1) The L1 errors of the solutions σ10
0 (x) computed using the proposed Eulerian

approach (red solid line) and the Lagrangian approach (blue dot dashed line). We also plot a solid black
line with slope 2 as a reference.

Note that in the original definition, the parabolic region is given by P(t) = {x ∈ Ω :
min{φ+(x, t), φ−(x, t)} = 0}. To have a better visualization, we have relaxed the
parabolic region as P(t) = {x ∈ Ω : min{φ+(x, t), φ−(x, t)} ∈ (−0.1∆x, 0.1∆x)}.
Then we use the proposed Algorithm 1 to compute the σ5

0(x) field and the σ10
0 (x) field

as shown in Figure 3(a) and (b), respectively, with the mesh size ∆x = ∆y = 1/256.
The hyperbolic LCS at t = 0 is then located by looking for local maximum curves
of the corresponding σT

0 (x) field. It can be seen that we can identify sharper hyper-
bolic LCS from the σ10

0 (x) field. As a comparison, the solutions computed with the
Lagrangian approach are also shown in Figure 4 where the TVD-RK2 scheme is used
for the integration of corresponding ODEs and the third order cubic spline method
is used as the interpolation operator for solving the velocity and velocity gradient at
off-grid points. The solutions from the two approaches are almost the same. Then
we compare the L1 errors of the solutions σ10

0 (x) using the two approaches as shown
in Figure 5, with ∆x varying from 1/32 to 1/512 while keeping ∆t/∆x fixed. Since
we do not have the exact solution, the comparison benchmark is the Lagrangian
solution with a pretty small ∆x and ∆t where the velocity field is analytically given
and the RK4 method is used as the numerical integration scheme. As can be seen
from Figure 5, our Eulerian approach is a little more accurate than the Lagrangian
approach and the proposed Eulerian approach shows second order accuracy with
respect to ∆x. For the Lagrangian approach, high order numerical algorithms have
been used to implement the integration and interpolation and therefore, we can also
observe second order accuracy. However, once low order interpolation schemes are
used for the Lagrangian approach, it will no longer show second order accuracy. As
for the computational efficiency, our Eulerian approach behaves much better than
the Lagrangian approach. First, our approach only needs to solve one single PDE
(3.3) while the Lagrangian approach needs to solve the ODE system (1.1) and also
an integral (2.3). Furthermore, the Lagrangian approach requires interpolation on
the discrete velocity data and also the discrete velocity gradient data defined on
the mesh, which could cost much computational time. The comparison is given in
Table 1 which shows that the Lagrangian approach requires twice to three times
the computational time of our Eulerian approach.

Then we implement our algorithms for ϵ = 0.5. We have also shown the mixing-
partition of the physical space at the time level t = 1, t = 5, t = 7 and t = 10,
respectively, in Figure 6(a), (b), (c) and (d). Recalling the definition of the σT

0 field
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as given by (2.3), the integral is not computed along the whole particle trajectory
x(t), because the trajectory might not always stay in the hyperbolic region H(t).
For example, we have considered the particular trajectory of the particle taking
off the point (0.5, 0.25). The locations of this particle at t = 1, t = 5, t = 7 and
t = 10 are marked as white triangles in Figure 6, from which we can see that the
particle stays in the hyperbolic region at t = 1 and t = 7 while in the elliptic region
at t = 5 and t = 10. Corresponding to our Eulerian formulation (3.3), it means
that Q(Φ5

0(0.5, 0.25), 5) = Q(Φ10
0 (0.5, 0.25), 10) = 0. The σ5

0(x) field and the σ10
0 (x)

field are given in Figure 7, also from the latter we can observe sharper and finer
hyperbolic LCS.
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Figure 6. (Section 5.1) The mixing-based partition with ϵ = 0.5 at the time level (a) t = 1, (b) t = 5,
(c) t = 7 and (d) t = 10. The white triangles are the locations of the particle taking off from (0.5, 0.25)
at t = 0.
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Figure 7. (Section 5.1) (a) The σ5
0(x) field and (b) the σ10

0 (x) field with ϵ = 0.5, computed using the
proposed Algorithm 1.

When ϵ = 0.5, the double gyre flow is periodically varying with the period
Tm = 10. As a result, we can use the Algorithm 2 proposed in Section 3.2 to
compute the longtime σT

0 (x) field, i.e. T ≫ 1. In particular, we solve PDEs (2.2)
and (3.3) backward from t = Tm = 10 and t = t0 = 0 to obtain σ10

0 (xij) and
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Φ10
0 (xij) at each mesh point xij . Then based on σ10

0 (xij) and Φ10
0 (xij), we only

need to iteratively interpolate 1, 2, 3 and 4 times to obtain the σT
0 (xij) field for

T = 20, 40, 80 and 160, respectively. The corresponding solutions are given in
Figure 8, where we have used ∆x = ∆y = 1/256. It can be seen that the bigger the
value of T , the more complex the underlying hyperbolic LCS. Finally we numerically
show the convergence behavior of the solution σ160

0 (xij) by gradually decreasing the
mesh size. The L1 errors of the solution σ160

0 (x) are plotted using the red solid line
in Figure 9, which shows approximately second order accuracy matching with our
claim in Theorem 3.
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Figure 8. (Section 5.1) The σT
0 (x) field computed using the Algorithm 2, for (a) T = 20, (b) T = 40, (c)

T = 80 and (d) T = 160, respectively.
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Figure 9. (Section 5.1) The L1 errors of the solution σ160
0 (x) computed using the proposed Eulerian

approach (red solid line). We also plot a solid black line with slope 2 as a reference.
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5.2. Rayleigh-Bénard convection cells
In this section, we take the example of Rayleigh-Bénard convection cells introduced
in [31]. The stream-function of this model is given by

ψ(x, y, t) = sin[π(x− g(t))] sin(πy) .

Following [15], we here use a quasi-periodic roll motion g(t) = 0.3 sin(4πt) +
0.1 sin(2t). The mixing-based partition is shown in Figure 10 at four different time
levels t = 0, t = 0.3, t = 0.7 and t = 1.9. Then the proposed algorithm is used to
compute the σ1

0 and σ2
0 fields, based on which we can identify the underlying LCS.

The corresponding solutions are shown in Figure 11(a), (b), respectively, computed
using the mesh size ∆x = ∆y = 1/256. As we can see, the LCS identified from the
σ2
0 field is much finer and more complex than the σ1

0 field.
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Figure 10. (Section 5.2) The mixing-based partition at the time level (a) t = 0, (b) t = 0.3, (c) t = 0.7
and (d) t = 1.9.
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Figure 11. (Section 5.2) (a) The σ1
0(x) field and (b) the σ2

0(x) field computed using the proposed
Eulerian approach.
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5.3. The forced-damped Duffing van der Pol equation
We consider the dynamical system governed by a Duffing and a van der Pol oscil-
lator, as in [11]. The system is given by

u = y , v = x− x3 + 0.5y(1− x2) + 0.1 sin t .

The computational domain is [−2, 2]× [−1.5, 1.5], with mesh size ∆x = ∆y = 0.01.
We use the proposed algorithm to compute the σ10

0 field. The discretization size is
rather coarse for such a complicated dynamics, but the proposed algorithm can still
capture the fine details of the LCS as shown in Figure 12.
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Figure 12. (Section 5.3) (a) The σ10
0 field computed using the proposed Eulerian approach.

5.4. Ocean Surface Current Analyses Real-time (OSCAR)
To demonstrate the effectiveness of the proposed algorithm, we consider the Ocean
Surface Current Analyses Real-time (OSCAR) dataset in which the velocity data
is only available at discrete locations. In [40], we have used this dataset to test
the behaviors of the Eulerian methods for computing the FTLE field and the ISLE
field. The OSCAR data was obtained from JPL Physical Oceanography DAAC and
developed by ESR. It covers 0◦ to 360◦ longitude and −80◦ to 80◦ latitude. The
resolution is 1/3◦ in each spatial direction and about 5 days in the temporal direc-
tion. We have chosen an ocean region near the Line Islands as the computational
domain, which is enclosed by S17◦ to N8◦ latitude and E180◦ to E230◦ longitude.
In the temporal direction, we have chosen the first 50 days in year 2015. For a better
visualization, we first interpolate the velocity data to obtain a finer resolution of
1/12◦ in each spatial direction and 0.125 days in the temporal direction which gives
∆x = ∆y = 1/12 and ∆t = 0.125. Here we compute the σT

0 field of this dataset in
order to identify the hyperbolic LCS. The σ20

0 and σ50
0 fields, computed using our

Algorithm 1, are shown in Figure 13(a) and (b), respectively. We can see that the
proposed Eulerian approach works well in capturing fine features of the LCS even
for real data. Using the proposed algorithm, the CPU times required to compute
the σ20

0 and σ50
0 fields are 44 and 101 seconds, respectively. As a comparison, we

have also computed the σ50
0 field using the Lagrangian approach as shown in Figure
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13(c). We can observe similar FTLE ridge structures in Figure 13(b) and (c). How-
ever, the Lagrangian approach requires much more time (243 seconds) to compute
the σ50

0 field than the proposed algorithm.
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Figure 13. (Section 5.4) (a) The σ20
0 field and (b) the σ50

0 field computed using the proposed Eulerian
approach. (c) The σ50

0 field computed using the Lagrangian approach.
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6. Conclusions
Based on the so-called mixing-based partition of the physical space, we have pro-
posed an efficient Eulerian algorithm to identify the hyperbolic LCS of any given
two-dimensional flow field. The only thing we need to do is solving one single PDE
without interpolation procedure. In contrast, the traditional Lagrangian ray trac-
ing approach needs to solve an ODE system together with a line integral for each
particle taking from a mesh point. Furthermore, if velocity data is only available
at mesh points, the Lagrangian approach needs to use the interpolation schme to
obtain the velocity and the velocity gradient data along the each particle trajec-
tory. As a result, the proposed Eulerian algorithm is more efficient. Based on the
doubling technique, we have also proposed an efficient iterative Eulerian algorithm
to identify the longtime LCS for periodic flows. Moreover, we have theoretically
shown that the proposed algorithms have second order accuracy. Numerical exam-
ples have shown the accuracy, efficiency and effectiveness of the proposed Eulerian
algorithms.
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